1
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Falomir Lockhart LJ, Burgardt NI, Ferreyra RG, Ceolin M, Ermácora MR, Córsico B. Fatty acid transfer from Yarrowia lipolytica sterol carrier protein 2 to phospholipid membranes. Biophys J 2009; 97:248-56. [PMID: 19580762 PMCID: PMC2711373 DOI: 10.1016/j.bpj.2009.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 02/11/2009] [Accepted: 03/03/2009] [Indexed: 11/17/2022] Open
Abstract
Sterol carrier protein 2 (SCP2) is an intracellular protein domain found in all forms of life. It was originally identified as a sterol transfer protein, but was recently shown to also bind phospholipids, fatty acids, and fatty-acyl-CoA with high affinity. Based on studies carried out in higher eukaryotes, it is believed that SCP2 targets its ligands to compartmentalized intracellular pools and participates in lipid traffic, signaling, and metabolism. However, the biological functions of SCP2 are incompletely characterized and may be different in microorganisms. Herein, we demonstrate the preferential localization of SCP2 of Yarrowia lipolytica (YLSCP2) in peroxisome-enriched fractions and examine the rate and mechanism of transfer of anthroyloxy fatty acid from YLSCP2 to a variety of phospholipid membranes using a fluorescence resonance energy transfer assay. The results show that fatty acids are transferred by a collision-mediated mechanism, and that negative charges on the membrane surface are important for establishing a "collisional complex". Phospholipids, which are major constituents of peroxisome and mitochondria, induce special effects on the rates of transfer. In conclusion, YLSCP2 may function as a fatty acid transporter with some degree of specificity, and probably diverts fatty acids to the peroxisomal metabolism.
Collapse
Affiliation(s)
- Lisandro J. Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia I. Burgardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Raúl G. Ferreyra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Marcelo Ceolin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Físico-Química Teórica y Aplicada (INIFTA), Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario R. Ermácora
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Oh Y, Donofrio N, Pan H, Coughlan S, Brown DE, Meng S, Mitchell T, Dean RA. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 2008; 9:R85. [PMID: 18492280 PMCID: PMC2441471 DOI: 10.1186/gb-2008-9-5-r85] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/18/2008] [Accepted: 05/20/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood. RESULTS We analyzed genome-wide gene expression changes during spore germination and appressorium formation on a hydrophobic surface compared to induction by cAMP. During spore germination, 2,154 (approximately 21%) genes showed differential expression, with the majority being up-regulated. During appressorium formation, 357 genes were differentially expressed in response to both stimuli. These genes, which we refer to as appressorium consensus genes, were functionally grouped into Gene Ontology categories. Overall, we found a significant decrease in expression of genes involved in protein synthesis. Conversely, expression of genes associated with protein and amino acid degradation, lipid metabolism, secondary metabolism and cellular transportation exhibited a dramatic increase. We functionally characterized several differentially regulated genes, including a subtilisin protease (SPM1) and a NAD specific glutamate dehydrogenase (Mgd1), by targeted gene disruption. These studies revealed hitherto unknown findings that protein degradation and amino acid metabolism are essential for appressorium formation and subsequent infection. CONCLUSION We present the first comprehensive genome-wide transcript profile study and functional analysis of infection structure formation by a fungal plant pathogen. Our data provide novel insight into the underlying molecular mechanisms that will directly benefit efforts to identify fungal pathogenicity factors and aid the development of new disease management strategies.
Collapse
Affiliation(s)
- Yeonyee Oh
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| | - Nicole Donofrio
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
- Current address: University of Delaware, Department of Plant and Soil Science, Newark, DE 19716, USA
| | - Huaqin Pan
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
- Current address: RTI international, Research Triangle Park, NC 27709-2194, USA
| | - Sean Coughlan
- Agilent Technologies, Little Falls, DE 19808-1644, USA
| | - Douglas E Brown
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| | - Shaowu Meng
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| | - Thomas Mitchell
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
- Current address: Ohio State University, Department of Plant Pathology, Columbus, OH 43210, USA
| | - Ralph A Dean
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| |
Collapse
|
4
|
Ferreyra RG, Burgardt NI, Milikowski D, Melen G, Kornblihtt AR, Dell' Angelica EC, Santomé JA, Ermácora MR. A yeast sterol carrier protein with fatty-acid and fatty-acyl-CoA binding activity. Arch Biochem Biophys 2006; 453:197-206. [PMID: 16890184 DOI: 10.1016/j.abb.2006.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 11/22/2022]
Abstract
The 14-kDa sterol carrier protein 2 (SCP2) domain is present in Eukaria, Bacteria and Archaea, and has been implicated in the transport and metabolism of lipids. We report the cloning, expression, purification and physicochemical characterization of a SCP2 from the yeast Yarrowia lipolytica (YLSCP2). Analytical size-exclusion chromatography, circular dichroism and fluorescence spectra, indicate that recombinant YLSCP2 is a well-folded monomer. Thermal unfolding experiments show that SCP2 maximal stability is at pH 7.0-9.0. YLSCP2 binds cis-parinaric acid and palmitoyl-CoA with KD values of 81+/-40 nM and 73+/-33 nM, respectively, sustaining for the first time the binding of fatty acids and their CoA esters to a nonanimal SCP2. The role of yeast SCP2 and other lipid binding proteins in transport, storage and peroxisomal oxidation of fatty acids is discussed.
Collapse
Affiliation(s)
- Raúl G Ferreyra
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Edqvist J, Rönnberg E, Rosenquist S, Blomqvist K, Viitanen L, Salminen TA, Nylund M, Tuuf J, Mattjus P. Plants Express a Lipid Transfer Protein with High Similarity to Mammalian Sterol Carrier Protein-2. J Biol Chem 2004; 279:53544-53. [PMID: 15456765 DOI: 10.1074/jbc.m405099200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This is the first report describing the cloning and characterization of sterol carrier protein-2 (SCP-2) from plants. Arabidopsis thaliana SCP-2 (AtSCP-2) consists of 123 amino acids with a molecular mass of 13.6 kDa. AtSCP-2 shows 35% identity and 56% similarity to the human SCP-2-like domain present in the human D-bifunctional protein (DBP) and 30% identity and 54% similarity to the human SCP-2 encoded by SCP-X. The presented structural models of apo-AtSCP-2 and the ligand-bound conformation of AtSCP-2 reveal remarkable similarity with two of the structurally known SCP-2s, the SCP-2-like domain of human DBP and the rabbit SCP-2, correspondingly. The AtSCP-2 models in both forms have a similar hydrophobic ligand-binding tunnel, which is extremely suitable for lipid binding. AtSCP-2 showed in vitro transfer activity of BODIPY-phosphatidylcholine (BODIPY-PC) from donor membranes to acceptor membranes. The transfer of BODIPY-PC was almost completely inhibited after addition of 1-palmitoyl 2-oleoyl phosphatidylcholine or ergosterol. Dimyristoyl phosphatidic acid, stigmasterol, steryl glucoside, and cholesterol showed a moderate to marginal ability to lower the BODIPY-PC transfer rate, and the single chain palmitic acid and stearoyl-coenzyme A did not affect transfer at all. Expression analysis showed that AtSCP-2 mRNA is accumulating in most plant tissues. Plasmids carrying fusion genes between green fluorescent protein and AtSCP-2 were transformed with particle bombardment to onion epidermal cells. The results from analyzing the transformants indicate that AtSCP-2 is localized to peroxisomes.
Collapse
Affiliation(s)
- Johan Edqvist
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jamai L, Sendide K, Ettayebi K, Errachidi F, Hamdouni-Alami O, Tahri-Jouti MA, McDermott T, Ettayebi M. Physiological difference during ethanol fermentation between calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae. FEMS Microbiol Lett 2001; 204:375-9. [PMID: 11731151 DOI: 10.1111/j.1574-6968.2001.tb10913.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae are compared for glucose fermentation. Immobilized C. tropicalis cells showed a slight morphological alteration during ethanol production at 40 degrees C, but their fermentation capacity was reduced by 25%. Under immobilization conditions, the two species demonstrated two different mathematical patterns when the relationship between growth rate, respiration rate, and ethanol tolerance was assessed. The interspecific difference in behavior of immobilized yeast cells is mainly due to their natural metabolic preference. The production of CO(2) by calcium alginate-immobilized C. tropicalis, as well as the lower supply of oxygen to the cells, are the major factors that reduce ethanol production.
Collapse
Affiliation(s)
- L Jamai
- Biotechnology Unit, University Sidi Mohamed Ben Abdallah, Atlas, Fes, Morocco
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Togo SH, Maebuchi M, Yokota S, Bun-Ya M, Kawahara A, Kamiryo T. Immunological detection of alkaline-diaminobenzidine-negativeperoxisomes of the nematode Caenorhabditis elegans purification and unique pH optima of peroxisomal catalase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1307-12. [PMID: 10691967 DOI: 10.1046/j.1432-1327.2000.01091.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We purified catalase-2 of the nematode Caenorhabditis elegans and identified peroxisomes in this organism. The peroxisomes of C. elegans were not detectable by cytochemical staining using 3, 3'-diaminobenzidine, a commonly used method depending on the peroxidase activity of peroxisomal catalase at pH 9 in which genuine peroxidases are inactive. The cDNA sequences of C. elegans predict two catalases very similar to each other throughout the molecule, except for the short C-terminal sequence; catalase-2 (500 residues long) carries a peroxisomal targeting signal 1-like sequence (Ser-His-Ile), whereas catalase-1 does not. The catalase purified to near homogeneity from the homogenate of C. elegans cells consisted of a subunit of 57 kDa and was specifically recognized by anti-(catalase-2) serum but not by anti-(catalase-1) serum. Subcellular fractionation and indirect immunoelectron microscopy of the nematode detected catalase-2 inside vesicles judged to be peroxisomes using morphological criteria. The purified enzyme (220 kDa) was tetrameric, similar to many catalases from various sources, but exhibited unique pH optima for catalase (pH 6) and peroxidase (pH 4) activities; the latter value is unusually low and explains why the peroxidase activity was undetectable using the standard alkaline diaminobenzidine-staining method. These results indicate that catalase-2 is peroxisomal and verify that it can be used as a marker enzyme for C. elegans peroxisomes.
Collapse
Affiliation(s)
- S H Togo
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Maebuchi M, Togo SH, Yokota S, Ghenea S, Bun-Ya M, Kamiryo T, Kawahara A. Type-II 3-oxoacyl-CoA thiolase of the nematode Caenorhabditis elegans is located in peroxisomes, highly expressed during larval stages and induced by clofibrate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:509-15. [PMID: 10491098 DOI: 10.1046/j.1432-1327.1999.00655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the expression and localization of type-II 3-oxoacyl-CoA thiolase in the nematode Caenorhabditis elegans. Type-II thiolase acts on 3-oxoacyl-CoA esters with a methyl group at the alpha carbon, whereas conventional thiolases do not. Mammalian type-II thiolase, which is also termed sterol carrier protein x (SCPx) or SCP2/3-oxoacyl-CoA thiolase, is located in the peroxisomes and involved in phytanic acid degradation and most probably in bile acid synthesis. The nematode enzyme lacks the SCP2 domain, which carries the peroxisomal-targeting signal, but produces bile acids in a cell-free system. Northern and Western blot analyses demonstrated that C. elegans expressed type-II thiolase throughout its life cycle, especially during the larval stages, and that the expression was significantly enhanced by the addition of clofibrate at 5 mM or more to the culture medium. Whole-mount in situ hybridization and immunostaining of L4 larvae revealed that the enzyme was mainly expressed in intestinal cells, which are multifunctional like many of the cell types in C. elegans. Subcellular fractionation and indirect immunoelectron microscopy of the nematode detected the enzyme in the matrix of peroxisomes. These results indicate the fundamental homology between mammalian SCPx and the nematode enzyme regardless of whether the SCP2 part is fused, suggesting their common physiological roles.
Collapse
Affiliation(s)
- M Maebuchi
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Wouters FS, Bastiaens PI, Wirtz KW, Jovin TM. FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J 1998; 17:7179-89. [PMID: 9857175 PMCID: PMC1171064 DOI: 10.1093/emboj/17.24.7179] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fate of fluorescently labeled pre-nsL-TP (Cy3-pre-nsL-TP) microinjected into BALB/c 3T3 fibroblasts was investigated by confocal laser scanning microscopy. The protein exhibited a distinct punctate fluorescence pattern and colocalized to a high degree with the immunofluorescence pattern for the peroxisomal enzyme acyl-CoA oxidase. Proteolytic removal of the C-terminal leucine of the putative peroxisomal targeting sequence (AKL) resulted in a diffuse cytosolic fluorescence. These results indicate that microinjected Cy3-pre-nsL-TP is targeted to peroxisomes. The association of nsL-TP with peroxisomal enzymes was investigated in cells by measuring fluorescence resonance energy transfer (FRET) between the microinjected Cy3-pre-nsL-TP and Cy5-labeled antibodies against the peroxisomal enzymes acyl-CoA oxidase, 3-ketoacyl-CoA thiolase, bifunctional enzyme, PMP70 and catalase. The technique of photobleaching digital imaging microscopy (pbDIM), used to quantitate the FRET efficiency on a pixel-by-pixel basis, revealed a specific association of nsL-TP with acyl-CoA oxidase, 3-ketoacyl-CoA thiolase and bifunctional enzyme in the peroxisomes. These observations were corroborated by subjecting a peroxisomal matrix protein fraction to affinity chromatography on Sepharose-immobilized pre-nsL-TP. Acyl-CoA oxidase was retained. These studies provide strong evidence for a role of nsL-TP in the regulation of peroxisomal fatty acid beta-oxidation, e.g. by facilitating the presentation of substrates and/or stabilization of the enzymes.
Collapse
Affiliation(s)
- F S Wouters
- Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
10
|
Bun-Ya M, Maebuchi M, Hashimoto T, Yokota S, Kamiryo T. A second isoform of 3-ketoacyl-CoA thiolase found in Caenorhabditis elegans, which is similar to sterol carrier protein x but lacks the sequence of sterol carrier protein 2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:252-9. [PMID: 9151950 DOI: 10.1111/j.1432-1033.1997.t01-1-00252.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We cloned a full-length cDNA of the nematode Caenorhabditis elegans that encodes a 44-kDa protein (P-44, 412 residues) similar to sterol carrier protein x (SCPx). Mammalian SCPx is a bipartite protein: its 404-residue N-terminal and 143-residue C-terminal domains are similar to 3-ketoacyl-CoA thiolase and identical to the precursor of sterol carrier protein 2 (SCP2; also termed non-specific lipid-transfer protein), respectively. P-44 has 56% sequence identity to the thiolase domain of SCPx but lacks the SCP2 sequence. Northern blot analysis revealed only a single mRNA species of 1.4 kb, which agrees well with the length of the cDNA (1371 bp), making it improbable that alternative splicing produces an SCPx-like fusion protein. The sequence similarities of P-44 to conventional thiolases are lesser than that to SCPx. Purified recombinant P-44 cleaved long-chain 3-ketoacyl-CoAs (C(8-16)) in a thiolytic manner by the ping-pong bi-bi reaction mechanism. The inhibition of P-44 by acetyl-CoA was competitive with CoA and non-competitive with 3-ketooctanoyl-CoA. This pattern of inhibition is shared with SCPx but not with conventional 3-ketoacyl-CoA thiolase, which is inhibited uncompetitively with respect to 3-ketoacyl-CoA. From these results, we concluded that nematode P-44 and mammalian SCPx constitute a second isoform of thiolase, which we propose to term type-II 3-ketoacyl-CoA thiolase.
Collapse
Affiliation(s)
- M Bun-Ya
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
11
|
Kamiryo T, Bun-Ya M, Niki T, Hiraga Y. Yeast homologue of nonspecific lipid-transfer protein (sterol carrier protein 2) may be a stress protein in peroxisomes. Ann N Y Acad Sci 1996; 804:687-90. [PMID: 8993596 DOI: 10.1111/j.1749-6632.1996.tb18668.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T Kamiryo
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | |
Collapse
|
12
|
Ceolotto C, Flekl W, Schorsch FJ, Tahotna D, Hapala I, Hrastnik C, Paltauf F, Daum G. Characterization of a non-specific lipid transfer protein associated with the peroxisomal membrane of the yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1285:71-8. [PMID: 8948477 DOI: 10.1016/s0005-2736(96)00147-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A lipid transfer protein with a broad substrate specificity is associated with the peroxisomal membrane of the yeast Saccharomyces cerevisiae. The protein catalyzes in vitro the transfer of various phospholipids, phosphatidylinositol and phosphatidylserine being translocated at the highest rates. The transfer protein can be released from peroxisomal membranes by treatment with 0.25 M KCl and highly enriched using conventional chromatographic techniques. It is inactivated by heat, detergents, divalent cations and proteinases. During various steps of purification this lipid transfer protein co-fractionated with peroxisomal acyl-CoA oxidase (Pox1p). In a pox1 disruptant peroxisomal lipid transfer activity was still present, although at a reduced level. The peroxisomal lipid transfer protein from the pox1 mutant exhibited different chromatographic properties as compared to the wild-type strain suggesting that acyl-CoA oxidase and the peroxisomal lipid transfer protein may from a complex.
Collapse
Affiliation(s)
- C Ceolotto
- Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Niki T, Bun-Ya M, Hiraga Y, Muro Y, Kamiryo T. Near-stoichiometric interaction between the non-specific lipid-transfer protein of the yeast Candida tropicalis and peroxisomal acyl-coenzyme A oxidase prevents the thermal denaturation of the enzyme in vitro. Yeast 1994; 10:1467-76. [PMID: 7871886 DOI: 10.1002/yea.320101110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 14-kDa peroxisomal-matrix protein, named PXP-18, of the yeast Candida tropicalis is a structural and functional homologue of the mammalian nonspecific lipid-transfer protein (identical to sterol carrier protein-2). PXP-18 protected acyl-coenzyme A oxidase (ACO), the rate limiting enzyme of the peroxisomal beta-oxidation of fatty acids, from thermal inactivation at 48 degrees C or 70 degrees C. This effect was dose-dependent and not replaceable either by chicken egg white lysozyme, which is similar to PXP-18 (insofar as it is basic, small, and monomeric), or by bovine serum albumin, a carrier of lipids in the blood. ACO was irreversibly denatured by heat treatment at 70 degrees C for 15 min. However, when ACO and PXP-18 were similarly heat-treated, they formed a large complex at a molar ratio of PXP-18 to ACO subunit that was about one, independent of their initial ratio. This near-stoichiometric complex had ACO activity after a 500-fold dilution and was accompanied by ACO that was free of PXP-18 and indistinguishable from native ACO in size and activity. PXP-18 also protected urate oxidase, another peroxisomal enzyme, from inactivation at 66 degrees C for 15 min and facilitated the renaturation of ACO denatured by 2 M urea. These results indicated that PXP-18 is active in modulating the structure of peroxisomal enzymes in vitro. It is possible that PXP-18 functions as a stress protein or as a part of the system that keeps peroxisomal proteins intact.
Collapse
Affiliation(s)
- T Niki
- Faculty of Integrated Arts and Sciences, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|