1
|
Ichikawa T, Ikeda Y, Sadanaga J, Kikuchi A, Kawamura K, Ikeda R, Ishibashi Y. Identification of heparin-binding proteins expressed on Trichosporon asahii cell surface. Yeast 2024; 41:299-306. [PMID: 38297467 DOI: 10.1002/yea.3928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
Trichosporon asahii is a pathogenic yeast that cause trichosporonosis. T. asahii exhibits several colony morphologies, such as white (W)- or off-white (O)-type, which may affect virulence. In this study, we compared the expression pattern of heparin-binding proteins in various colony morphologies and identified heparin-binding protein in T. asahii. Surface plasmon resonance analysis revealed that cell surface molecules attached more strongly to heparin in W- than O-type cells. We purified and identified a heparin-binding protein strongly expressed in W-type cells using heparin-Sepharose beads, named it heparin-binding protein 1 (HepBP1), and expressed Flag-tagged HepBP1 in mammalian cells. The heparin-binding ability of Flag-tagged HepBP1 was confirmed by pulldown assay using heparin-Sepharose beads. Thus, HepBP1 is a heparin-binding protein on T. asahii cell surface. These results suggest that several T. asahii cell surface proteins interact with glycosaminoglycans; therefore, they could contribute to infection.
Collapse
Affiliation(s)
- Tomoe Ichikawa
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Yuka Ikeda
- Meiji Pharmaceutical University, Kiyose, Japan
| | | | | | | | - Reiko Ikeda
- Meiji Pharmaceutical University, Kiyose, Japan
| | - Yoshio Ishibashi
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
de Andrade IB, Figueiredo-Carvalho MHG, Chaves ALDS, Coelho RA, Almeida-Silva F, Zancopé-Oliveira RM, Frases S, Brito-Santos F, Almeida-Paes R. Metabolic and phenotypic plasticity may contribute for the higher virulence of Trichosporon asahii over other Trichosporonaceae members. Mycoses 2022; 66:430-440. [PMID: 36564594 DOI: 10.1111/myc.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Leal da Silva Chaves
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Análises Clínicas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | | | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Fu J, Liu J, Wen X, Zhang G, Cai J, Qiao Z, An Z, Zheng J, Li L. Unique Probiotic Properties and Bioactive Metabolites of Saccharomyces boulardii. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09953-1. [PMID: 35608794 DOI: 10.1007/s12602-022-09953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Saccharomyces boulardii (S. boulardii) is a probiotic and is widely used to improve the nutritional and functional value of food. This study aimed to compare the probiotic properties of S. boulardii and Saccharomyces cerevisiae. A series of in vitro probiotic experiments was performed, including simulated gastrointestinal digestion, bile salt tolerance, hydrophobicity, self-aggregation, and antioxidant and antibacterial properties. Self-aggregation and hydrophobic properties of S. boulardii were relatively poor, but they showed high tolerance, antioxidant properties, and broad antibacterial properties. In addition, non-targeted metabolomics was used to comprehensively analyze the active metabolites of S. boulardii and the metabolic differences between S. boulardii and S. cerevisiae were compared. Saccharomyces boulardii produced many bioactive metabolites, which generally showed antioxidant, antibacterial, antitumor, anti-inflammatory, and other properties. In contrast to S. cerevisiae, S. boulardii produced phenyllactic acid and 2-hydroxyisocaproic acid. There were also significant differences in their metabolic pathways. These results may be of great significance in the medical and food industries and provide a basis for understanding the metabolism of S. boulardii. It also shows that metabolomics is an effective and novel method for screening microbial functional metabolites and identifying functional differences between similar microorganisms.
Collapse
Affiliation(s)
- JunJie Fu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Jun Liu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - XuePing Wen
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Guirong Zhang
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Ji Cai
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Zongwei Qiao
- Wuliangye Yibin Co, Ltd, 150, Yibin, 644000, China
| | - Zheming An
- Wuliangye Yibin Co, Ltd, 150, Yibin, 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co, Ltd, 150, Yibin, 644000, China
| | - Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
4
|
Danchik C, Casadevall A. Role of Cell Surface Hydrophobicity in the Pathogenesis of Medically-Significant Fungi. Front Cell Infect Microbiol 2021; 10:594973. [PMID: 33569354 PMCID: PMC7868426 DOI: 10.3389/fcimb.2020.594973] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Cell surface hydrophobicity (CSH) is an important cellular biophysical parameter which affects both cell-cell and cell-surface interactions. In dimorphic fungi, multiple factors including the temperature-induced shift between mold and yeast forms have strong effects on CSH with higher hydrophobicity more common at the lower temperatures conducive to filamentous cell growth. Some strains of Cryptococcus neoformans exhibit high CSH despite the presence of the hydrophilic capsule. Among individual yeast colonies from the same isolate, distinct morphologies can correspond to differences in CSH. These differences in CSH are frequently associated with altered virulence in medically-significant fungi and can impact the efficacy of antifungal therapies. The mechanisms for the maintenance of CSH in pathogenic fungi remain poorly understood, but an appreciation of this fundamental cellular parameter is important for understanding its contributions to such phenomena as biofilm formation and virulence.
Collapse
Affiliation(s)
- Carina Danchik
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Chelliah R, Saravanakumar K, Daliri EBM, Kim JH, Lee JK, Jo HY, Kim SH, Ramakrishnan SR, Madar IH, Wei S, Rubab M, Barathikannan K, Ofosu FK, Subin H, Eun-Ji P, Yeong JD, Elahi F, Wang MH, Park JH, Ahn J, Kim DH, Park SJ, Oh DH. Unveiling the potentials of bacteriocin (Pediocin L50) from Pediococcus acidilactici with antagonist spectrum in a Caenorhabditis elegans model. Int J Biol Macromol 2019; 143:555-572. [PMID: 31785295 DOI: 10.1016/j.ijbiomac.2019.10.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
Human-milk-based probiotics play a major role in the early colonization and protection of infants against gastrointestinal infection. We investigated potential probiotics in human milk. Among 41 Lactic acid bacteria (LAB) strains, four strains showed high antimicrobial activity against Escherichia coli 0157:H7, Listeria monocytogenes ATCC 15313, Bacillus cereus ATCC 14576, Staphylococcus aureus ATCC 19095, and Helicobacter pylori. The selected LAB strains were tested in simulated gastrointestinal conditions for their survival. Four LAB strains showed high resistance to pepsin (82%-99%), bile with pancreatine stability (96%-100%), and low pH (80%-94%). They showed moderate cell surface hydrophobicity (22%-46%), auto-aggregation abilities (12%-34%), and 70%-80% co-aggregation abilities against L. monocytogenes ATCC 15313, S. aureus ATCC 19095, B. cereus ATCC 14576, and E. coli 0157:H7. All four selected isolates were resistant to gentamicin, imipenem, novobiocin, tetracycline, clindamycin, meropenem, ampicillin, and penicillin. The results show that Pediococcus acidilatici is likely an efficient probiotic strain to produce < 3 Kda pediocin-based antimicrobial peptides, confirmed by applying amino acid sequences), using liquid chromatography mass spectrometry and HPLC with the corresponding sequences from class 2 bacteriocin, and based on the molecular docking, the mode of action of pediocin was determined on LipoX complex, further the 13C nuclear magnetic resonance structural analysis, which confirmed the antimicrobial peptide as pediocin.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Joong-Hark Kim
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Erom, Co., Ltd, Chuncheon, Gangwon-do 24427, South Korea
| | - Jung-Kun Lee
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Erom, Co., Ltd, Chuncheon, Gangwon-do 24427, South Korea
| | - Hyeon-Yeong Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | | | - Inamul Hasan Madar
- Department of Biochemistry, School of Life Science, Bharathidasan University, Thiruchirappalli, Tamilnadu, India
| | - Shuai Wei
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Hwang Subin
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Park Eun-Ji
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Jung Da Yeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, Chonnam National University, Gwangju, South Korea
| | - Juhee Ahn
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Dong-Hwan Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Sung Jin Park
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
6
|
Perpetuini G, Tittarelli F, Mattarelli P, Modesto M, Cilli E, Suzzi G, Tofalo R. Intraspecies polymorphisms of Kluyveromyces marxianus strains from Yaghnob valley. FEMS Microbiol Lett 2019; 365:4834011. [PMID: 29401260 DOI: 10.1093/femsle/fny028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, 29 strains of Kluyveromyces marxianus with peculiar genetic and phenotypic traits previously isolated from a fermented goat milk of Yaghnob valley were investigated for chromosome length polymorphism (CLP) by PFGE, adhesion properties and carbon usage by Biolog analysis. Obtained data showed that strains differed in terms of number and size of chromosome bands. The number of bands ranged from 5 to 7, suggesting a probable genome size from 1.4 to 2.6 Mb. Strains showed a certain level of cell surface hydrophobicity ranging from 32% to 77.7%. Strains were also tested for their ability to form a biofilm on polystyrene plates: planktonic cells ranged from 6.3 cfu/mL to 7.95 cfu/mL, while sessile from 7.11 cfu/mL to 8.6 cfu/mL. The strains able to adhere to polystyrene plates were also able to form a mature MAT. Biolog analysis revealed that almost all strains were able to use putrescine, malic acid, α-D lactose, phenylethylamine, β-methyl D-gucoside and xylose; 5 strains were able to grow on cellobiose and 3 were able to catabolise α-ketobutyric. The obtained data highlighted a number of interesting features underlying the peculiar capacities of these strains for industrial applications.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy.,Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Fabrizia Tittarelli
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, I-48121 Ravenna, Italy
| | | | - Rosanna Tofalo
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy
| |
Collapse
|
7
|
Perpetuini G, Tittarelli F, Suzzi G, Tofalo R. Cell Wall Surface Properties of Kluyveromyces marxianus Strains From Dairy-Products. Front Microbiol 2019; 10:79. [PMID: 30766524 PMCID: PMC6366010 DOI: 10.3389/fmicb.2019.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 01/30/2023] Open
Abstract
Thirty-three Kluyveromyces marxianus strains were tested for the ability to form biofilm and mat structures in YPD and whey and for cell surface hydrophobicity. To identify genes potentially involved in adhesion properties, a RT-qPCR analysis was performed. Eight strains were able to adhere on polystyrene plates in both media and formed a mature mat structure. These strains showed a different level of hydrophobicity ranging from 55 to 66% in YPD and from 69 to 81% in whey. Four K. marxianus orthologs genes (FLO11, STE12, TPK3, and WSC4), known from studies in other yeast to be involved in biofilm formation, have been studied. FLO11 and STE12 showed the highest fold changes in all conditions tested and especially in whey: 15.05 and 11.21, respectively. TPK3 was upregulated only in a strain, and WSC4 in 3 strains. In YPD, fold changes were lower than in whey with STE12 and FLO11 genes showing the highest fold changes. In mat structures FLO11 and STE12 fold changes ranged from 3.6-1.3 to 2-1.17, respectively. Further studies are necessary to better understand the role of these genes in K. marxianus adhesion ability.
Collapse
Affiliation(s)
| | | | | | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|