1
|
Fang H, Zhao J, Zhao X, Dong N, Zhao Y, Zhang D. Standardized Iterative Genome Editing Method for Escherichia coli Based on CRISPR-Cas9. ACS Synth Biol 2024; 13:613-623. [PMID: 38243901 DOI: 10.1021/acssynbio.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The introduction of complex biosynthetic pathways into the hosts' chromosomes is gaining attention with the development of synthetic biology. While CRISPR-Cas9 has been widely employed for gene knock-in, the process of multigene insertion remains cumbersome due to laborious and empirical gene cloning procedures. To address this, we devised a standardized iterative genome editing system for Escherichia coli, harnessing the power of CRISPR-Cas9 and MetClo assembly. This comprehensive toolkit comprises two fundamental elements based on the Golden Gate standard for modular assembly of sgRNA or CRISPR arrays and donor DNAs. We achieved a gene insertion efficiency of up to 100%, targeting a single locus. Expression of tracrRNA using a strong promoter enhances multiplex genomic insertion efficiency to 7.3%, compared with 0.76% when a native promoter is used. To demonstrate the robust capabilities of this genome editing toolbox, we successfully integrated 5-10 genes from the coenzyme B12 biosynthetic pathway ranging from 5.3 to 8 Kb in length into the chromosome of E. coli chassis cells, resulting in 14 antibiotic-free, plasmid-free producers. Following an extensive screening process involving genes from diverse sources, cistronic design modifications, and chromosome repositioning, we obtained a recombinant strain yielding 1.49 mg L-1 coenzyme B12, the highest known titer achieved by using E. coli as the producer. Illuminating its user-friendliness, this genome editing system is an exceedingly versatile tool for expediently integrating complex biosynthetic pathway genes into hosts' genomes, thus facilitating pathway optimization for chemical production.
Collapse
Affiliation(s)
- Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jianghua Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xinfang Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|