1
|
Shi H, Li W, Chen H, Meng Y, Wu H, Wang J, Shen S. Synthetic Microbial Community Members Interact to Metabolize Caproic Acid to Inhibit Potato Dry Rot Disease. Int J Mol Sci 2024; 25:4437. [PMID: 38674022 PMCID: PMC11050339 DOI: 10.3390/ijms25084437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The potato dry rot disease caused by Fusarium spp. seriously reduces potato yield and threatens human health. However, potential biocontrol agents cannot guarantee the stability and activity of biocontrol. Here, 18 synthetic microbial communities of different scales were constructed, and the synthetic microbial communities with the best biocontrol effect on potato dry rot disease were screened through in vitro and in vivo experiments. The results show that the synthetic community composed of Paenibacillus amylolyticus, Pseudomonas putida, Acinetobacter calcoaceticus, Serratia proteamaculans, Actinomycetia bacterium and Bacillus subtilis has the best biocontrol activity. Metabolomics results show that Serratia protoamaculans interacts with other member strains to produce caproic acid and reduce the disease index to 38.01%. Furthermore, the mycelial growth inhibition after treatment with caproic acid was 77.54%, and flow cytometry analysis showed that the living conidia rate after treatment with caproic acid was 11.2%. This study provides potential value for the application of synthetic microbial communities in potatoes, as well as the interaction mechanisms between member strains of synthetic microbial communities.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Hongyu Chen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Yao Meng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Huifang Wu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| |
Collapse
|
2
|
He Y, Degraeve P, Oulahal N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024; 10:e24929. [PMID: 38318029 PMCID: PMC10839994 DOI: 10.1016/j.heliyon.2024.e24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Yeasts are a widespread group of microorganisms that are receiving increasing attention from scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity make them promising candidates for application, especially in postharvest biocontrol of fruits and vegetables and food biopreservation. The present review focuses on recent knowledge of the mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The main mechanisms of action of bioprotective yeasts include competition for nutrients and space, synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts and thus more effectively play biocontrol roles under a wider range of environmental conditions, thereby reducing economic losses. Combined application with other antimicrobial substances can effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as substitute for chemical additives in various food fields, but their commercialization is still limited. Hence, additional investigation is required to explore the prospective advancements of yeasts in the field of biopreservation for food.
Collapse
Affiliation(s)
- Yan He
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Pascal Degraeve
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Nadia Oulahal
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| |
Collapse
|
3
|
Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon 2023; 9:e22390. [PMID: 38046151 PMCID: PMC10686857 DOI: 10.1016/j.heliyon.2023.e22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The potato plant is one of the main crops in the world. However, relatively little is known about key virulence factors of major fungal and bacterial diseases in potatoes, biocontrol measures to improve activity and stability, and the core driving forces in the control process. Here, we focus on analyzing the mechanisms by which genes, proteins, or (and) metabolites of potato pathogens as key virulence factors. Then, the single strain biocontrol agents, synthetic microbial communities, microbial microcapsule strategies were introduced, and the latter two strategies can improve stability and activity in biocontrol. Meanwhile, summarized the defense mechanisms of biocontrol and their specific issues in practical applications. Furthermore, explore how potato crop management, soil management, and climate effects, as crucial driving forces affect potato biocontrol in the system. Dynamic and systematic research, excavation of biocontrol strain resources, find the causes of regional disease resistance and exploration of biocontrol mechanism will provide promising solutions for biotic stress faced by potato in the future.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| |
Collapse
|