1
|
Gaire S, Ortiz RJ, Schrage BR, Lozada IB, Mandapati P, Osinski AJ, Herbert DE, Ziegler CJ. (8-Amino)quinoline and (4-Amino)phenanthridine Complexes of Re(CO) 3 Halides. J Organomet Chem 2020; 921. [PMID: 32831401 DOI: 10.1016/j.jorganchem.2020.121338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this report, we present a study on the synthesis, structure, and electronics of a series of (8-amino)quinoline and (4-amino)phenanthridine complexes of Re(CO)3X, where X = Cl and Br. In all cases, the (amino)heterocycles bind as bidentate ligands, with surprisingly symmetric modes of binding based on Re-N bond lengths. Between the complexes of (8-amino)quinolines and (4-amino)phenanthridines studied in this report, we do not observe much structural variation, and remarkably similar UV-visible absorption spectra. Expansion of the π-system in the (4-amino)phenanthridine complexes does result in an increase in the intensity of the lowest energy transitions (λmax), which computational modeling suggests are more purely MLCT in character compared with the mixed π-π*/MLCT character of these transitions in the smaller (8-amino)quinoline-supported complexes. DFT and TDDFT modeling further showed that consideration of spin-orbit coupling (SOC) is essential; omitting SOC misses the π-π* contributions to λmax and is unable to accurately model the observed electronic absorption spectra.
Collapse
Affiliation(s)
- Sanjay Gaire
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Robert J Ortiz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Briana R Schrage
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Issiah B Lozada
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pavan Mandapati
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Allen J Osinski
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | | |
Collapse
|
2
|
He G, Shynkaruk O, Lui MW, Rivard E. Small Inorganic Rings in the 21st Century: From Fleeting Intermediates to Novel Isolable Entities. Chem Rev 2014; 114:7815-80. [DOI: 10.1021/cr400547x] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang He
- Department of Chemistry, University of Alberta, 11227 Saskatchewan
Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Olena Shynkaruk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan
Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Melanie W. Lui
- Department of Chemistry, University of Alberta, 11227 Saskatchewan
Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan
Drive, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|