1
|
Valdivieso JP, Erickson AN, Gardinier JR. Group 7 carbonyl complexes of a PNN-heteroscorpionate ligand. RSC Adv 2024; 14:31502-31516. [PMID: 39372051 PMCID: PMC11450551 DOI: 10.1039/d4ra05287k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
A series of rhenium and manganese carbonyl complexes of a heteroscorpionate ligand with an atypical N2P-donor set has been prepared to better understand their electronic and CO releasing properties. Thus, the ligand, pz2TTP, with an a,a-bis(pyrazol-1-yl)tolyl group decorated with an ortho-situated di(p-tolyl)phosphanyl reacts with carbonyl group 17 reagents to give [fac-(κ2NP-pz2TTP)Re(CO)3Br], 1, and [fac-(κ3N2P-pz2TTP)M(CO)3](OTf = O3SCF3), 2-M (M = Re, Mn), if care is taken during the preparation of the manganeses derivative. When heated in CH3CN, 2-Mn slowly transforms to [fac,cis-(κ3N2P-pz2TTP)Mn(CO)2(NCCH3)](OTf), 3-Mn. In contrast, the corresponding 3-Re can only be prepared from 2-Re using Me3NO; pure 3-Mn can also be prepared by this method. Experimental and density functional calculations at the M06L/Def2-TZVP/PCM(CH3CN) level show that the replacement of a carbonyl with an acetonitrile solvent decreases the oxidation potential by around 0.8 V per carbonyl released, making decarbonylated species potent reductants. At the same time, the electronic spectrum broadens and undergoes a red-shift, making dicarbonyl complexes more susceptible to photo-initiated decarbonylation reactions than tricarbonyls. When 2-Mn or 3-Mn are irradiated in with 390 nm LED light in aerated solutions, [trans-Mn(pz2TTP = O)2](OTf)2, 4, along with insoluble manganese oxides are rapidly formed.
Collapse
Affiliation(s)
- Jorge P Valdivieso
- Department of Chemistry, Marquette University Milwaukee Wisconsin 53201-1881 USA
| | - Alexander N Erickson
- Department of Chemistry, Marquette University Milwaukee Wisconsin 53201-1881 USA
| | - James R Gardinier
- Department of Chemistry, Marquette University Milwaukee Wisconsin 53201-1881 USA
| |
Collapse
|
2
|
Del Gobbo J, Santini C, Dolmella A, Li Z, Caviglia M, Pellei M. New Copper Complexes with N,O-Donor Ligands Based on Pyrazole Moieties Supported by 3-Substituted Acetylacetone Scaffolds. Molecules 2024; 29:621. [PMID: 38338366 PMCID: PMC10856362 DOI: 10.3390/molecules29030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The new 3-monosubstituted acetylacetone ligands, 3-(phenyl(1H-pyrazol-1-yl)methyl)pentane-2,4-dione (HLacPz) and 3-((3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methyl)pentane-2,4-dione (HLacPzMe), were synthesized and used as supporting ligands for new copper(II) and copper(I) phosphane complexes of the general formulae [Cu(HLacX)2(LacX)2] and [Cu(PPh3)2(HLacX)]PF6 (X = Pz (pyrazole) or PzMe (3,5-dimethylpyrazole)), respectively. In the syntheses of the Cu(I) complexes, the triphenylphosphine coligand (PPh3) was used to stabilize copper in the +1 oxidation state, avoiding oxidation to Cu(II). All compounds were characterized by CHN analysis, 1H-NMR, 13C-NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). The ligands HLacPz (1) and HLacPzMe (2) and the copper complex [Cu(PPh3)2(HLacPz)]PF6 (3) were also characterized by X-ray crystallography. The reactivity of these new compounds was investigated and the new compounds 4-phenyl-4-(1H-pyrazol-1-yl)butan-2-one (7) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-4-phenylbutan-2-one (8) were obtained in basic conditions via the retro-Claisen reaction of related 3-monosubstituted acetylacetone, providing efficient access to synthetically useful ketone compounds. Compound 8 was also characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Jo’ Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Zhenzhen Li
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| |
Collapse
|
3
|
Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method? Molecules 2022; 27:molecules27134249. [PMID: 35807493 PMCID: PMC9267986 DOI: 10.3390/molecules27134249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited in the synthesis of metal complexes. As microwave irradiation has been proving its utility as both a time-saving procedure and an alternative way to carry on tricky transformations, its use can help inorganic chemists, too. This review focuses on the use of microwave irradiation in the preparation of transition metal complexes and organometallic compounds and also includes new, unpublished results. The syntheses of the compounds are described following the group of the periodic table to which the contained metal belongs. A general overview of the results from over 150 papers points out that microwaves can be a useful synthetic tool for inorganic chemists, reducing dramatically the reaction times with respect to traditional heating. This is often accompanied by a more limited risk of decomposition of reagents or products by an increase in yield, purity, and (sometimes) selectivity. In any case, thermal control is operative, whereas nonthermal or specific microwave effects seem to be absent.
Collapse
|
4
|
Li B, Hildebrandt S, Hagenbach A, Abram U. Tricarbonylrhenium(I) and ‐technetium(I) Complexes with Tris(1,2,3‐triazolyl)phosphine Oxides. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Li
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sarah Hildebrandt
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
5
|
Beillard A, Bantreil X, Métro TX, Martinez J, Lamaty F. Alternative Technologies That Facilitate Access to Discrete Metal Complexes. Chem Rev 2019; 119:7529-7609. [PMID: 31059243 DOI: 10.1021/acs.chemrev.8b00479] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organometallic complexes: these two words jump to the mind of the chemist and are directly associated with their utility in catalysis or as a pharmaceutical. Nevertheless, to be able to use them, it is necessary to synthesize them, and it is not always a small matter. Typically, synthesis is via solution chemistry, using a round-bottom flask and a magnetic or mechanical stirrer. This review takes stock of alternative technologies currently available in laboratories that facilitate the synthesis of such complexes. We highlight five such technologies: mechanochemistry, also known as solvent-free chemistry, uses a mortar and pestle or a ball mill; microwave activation can drastically reduce reaction times; ultrasonic activation promotes chemical reactions because of cavitation phenomena; photochemistry, which uses light radiation to initiate reactions; and continuous flow chemistry, which is increasingly used to simplify scale-up. While facilitating the synthesis of organometallic compounds, these enabling technologies also allow access to compounds that cannot be obtained in any other way. This shows how the paradigm is changing and evolving toward new technologies, without necessarily abandoning the round-bottom flask. A bright future is ahead of the organometallic chemist, thanks to these novel technologies.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
6
|
Brückmann NE, Wahl M, Reiß GJ, Kohns M, Wätjen W, Kunz PC. Polymer Conjugates of Photoinducible CO-Releasing Molecules. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100545] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Brückmann NE, Kögel S, Hamacher A, Kassack MU, Kunz PC. Fluorescent Polylactides with Rhenium(bisimine) Cores for Tumour Diagnostics. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Affiliation(s)
- Ulrich Schatzschneider
- Lehrstuhl für Anorganische Chemie I – Bioanorganische Chemie and Research Department Interfacial Systems Chemistry (RD IFSC), Ruhr‐Universität Bochum NC 3/74, Universitätsstr. 150, 44801 Bochum, Germany, Fax: +49‐234‐32‐14378
| |
Collapse
|
9
|
Kunz PC, Huber W, Rojas A, Schatzschneider U, Spingler B. Tricarbonylmanganese(I) and ârhenium(I) Complexes of Imidazol-Based Phosphane Ligands: Influence of the Substitution Pattern on the CO Release Properties. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900650] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|