1
|
Sunada Y, Yamaguchi K, Suzuki K. “Template synthesis” of discrete metal clusters with two- or three-dimensional architectures. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Tracing the incorporation of the "ninth sulfur" into the nitrogenase cofactor precursor with selenite and tellurite. Nat Chem 2021; 13:1228-1234. [PMID: 34635813 PMCID: PMC8629924 DOI: 10.1038/s41557-021-00799-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
The Mo-nitrogenase catalyzes the reduction of N2 to NH3 at its cofactor, an [(R-homocitrate)MoFe7S9C] cluster synthesized via the formation of a [Fe8S9C] L-cluster prior to the insertion of Mo and homocitrate. Previously, we have identified a [Fe8S8C] L*-cluster, which is homologous to the core structure of the L-cluster but lacks the ‘9th sulfur’ in the belt region. However, direct evidence and mechanistic details of the L*- to L-cluster conversion upon ‘9th sulfur’ insertion remain elusive. Here, we trace the ‘9th sulfur’ insertion using SeO32− and TeO32− as ‘labeled’ SO32−. Biochemical, EPR and XAS/EXAFS studies suggest a role of the ‘9th sulfur’ in cluster transfer during cofactor biosynthesis while revealing the incorporation of Se2−- and Te2−-like species into the L-cluster. DFT calculations further point to a plausible mechanism involving in-situ reduction of SO32− to S2−, thereby suggesting the utility of this reaction to label the catalytically-important belt region for mechanistic investigations of nitrogenase.
Collapse
|
4
|
Jiang GD, Li ZY, Mou LH, He SG. Dual Iron Sites in Activation of N 2 by Iron-Sulfur Cluster Anions Fe 5S 2- and Fe 5S 3. J Phys Chem Lett 2021; 12:9269-9274. [PMID: 34533969 DOI: 10.1021/acs.jpclett.1c02683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the fact that the active centers of natural nitrogenases are polynuclear iron-sulfur clusters, the reactivity of isolated iron-sulfur clusters toward N2 has received considerable attention to gain fundamental insights into the activation of the N≡N triple bond. Herein, a series of gas-phase iron-sulfur cluster anions FexSy- (x = 1-8, y = 0-x) were prepared and their reactivities toward N2 were investigated systematically by mass spectrometry. Among the 44 investigated clusters, only Fe5S2- and Fe5S3- showed superior reactivity toward N2. Theoretical results revealed that N2 binds molecularly to the iron sites of Fe5S2,3- in a common end-on coordination mode with an unprecedented back-donation interaction from the localized d-d bonding orbitals of Fe-Fe sites to the π* antibonding orbitals of N2. This is the first example to disclose the significant contribution of the dual metal sites rather than the single metal atom to N2 adsorption in the prevalent end-on binding mode.
Collapse
Affiliation(s)
- Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Buratto WR, Ferreira RB, Catalano VJ, García-Serres R, Murray LJ. Cleavage of cluster iron-sulfide bonds in cyclophane-coordinated Fe nS m complexes. Dalton Trans 2021; 50:816-821. [PMID: 33393563 PMCID: PMC7880558 DOI: 10.1039/d0dt03805a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reaction of the tri(μ-sulfido)triiron(iii) tris(β-diketiminate) cyclophane complex, Fe3S3LEt/Me (1), or of the di(μ-sulfido)diiron(iii) complex Fe2S2HLEt/Me (5), with the related tri(bromide)triiron(ii) complex Fe3Br3LEt/Me (2) results in electron and ligand redistribution to yield the mixed-ligand multiiron complexes, including Fe3Br2SLEt/Me (3) and Fe2Br2SHLEt/Me (4). The cleavage and redistribution observed in these complexes is reminiscent of necessary Fe-S bond cleavage for substrate activation in nitrogenase enzymes, and provides a new perspective on the lability of Fe-S bonds in FeS clusters.
Collapse
Affiliation(s)
- William R Buratto
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | | | |
Collapse
|
6
|
Jiang GD, Mou LH, Chen JJ, Li ZY, He SG. Reactivity of Neutral Tantalum Sulfide Clusters Ta 3S n ( n = 0-4) with N 2. J Phys Chem A 2020; 124:7749-7755. [PMID: 32840105 DOI: 10.1021/acs.jpca.0c06462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitrogen (N2) fixation is a challenging and vital issue in chemistry. Inspired by the fact that the active sites of nitrogenases are polynuclear metal sulfide clusters, the reactivity of gas-phase metal sulfide clusters toward N2 has received considerable attention to gain fundamental insights into nitrogen fixation. Herein, neutral tantalum sulfide clusters have been prepared and their reactivity toward N2 has been investigated by mass spectrometry in conjunction with density functional theory (DFT) calculations. The experimental results showed that Ta3Sn (n = 0-3) could adsorb N2, while Ta3S4 was inert to N2. The DFT calculations revealed that the complete cleavage of the N≡N bond on the trinuclear metal center in the Ta3S0-3/N2 reaction systems was overall barrierless under thermal collision conditions. The sulfur ligands can facilitate the approaching of N2 toward the metal center but weaken the electron-donating ability of the metal center. The inertness of Ta3S4 is ascribed to the electron-deficient state of Ta3 in Ta3S4 and the least effective orbital interaction in the Ta3S4/N2 couple. This study provides new insights into the ligand effect on the interaction of the metal clusters with N2.
Collapse
Affiliation(s)
- Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
7
|
Tanifuji K, Ohki Y. Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry. Chem Rev 2020; 120:5194-5251. [DOI: 10.1021/acs.chemrev.9b00544] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yasuhiro Ohki
- Department of Chemsitry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
8
|
Progress in Synthesizing Analogues of Nitrogenase Metalloclusters for Catalytic Reduction of Nitrogen to Ammonia. Catalysts 2019. [DOI: 10.3390/catal9110939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ammonia (NH3) has played an essential role in meeting the increasing demand for food and the worldwide need for nitrogen (N2) fertilizer since 1913. Unfortunately, the traditional Haber–Bosch process for producing NH3 from N2 is a high energy-consumption process with approximately 1.9 metric tons of fossil CO2 being released per metric ton of NH3 produced. As a very challenging target, any ideal NH3 production process reducing fossil energy consumption and environmental pollution would be welcomed. Catalytic NH3 synthesis is an attractive and promising alternative approach. Therefore, developing efficient catalysts for synthesizing NH3 from N2 under ambient conditions would create a significant opportunity to directly provide nitrogenous fertilizers in agricultural fields as needed in a distributed manner. In this paper, the literature on alternative, available, and sustainable NH3 production processes in terms of the scientific aspects of the spatial structures of nitrogenase metalloclusters, the mechanism of reducing N2 to NH3 catalyzed by nitrogenase, the synthetic analogues of nitrogenase metalloclusters, and the opportunities for continued research are reviewed.
Collapse
|
9
|
Gómez M, Hernández-Prieto C, Martín A, Mena M, Santamaría C. Synthesis and characterization of cyclopentadienyl sulfur niobium complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Jasniewski AJ, Wilcoxen J, Tanifuji K, Hedman B, Hodgson KO, Britt RD, Hu Y, Ribbe MW. Spectroscopic Characterization of an Eight-Iron Nitrogenase Cofactor Precursor that Lacks the "9 th Sulfur". Angew Chem Int Ed Engl 2019; 58:14703-14707. [PMID: 31411369 DOI: 10.1002/anie.201907593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 01/09/2023]
Abstract
Nitrogenases catalyze the reduction of N2 to NH4 + at its cofactor site. Designated the M-cluster, this [MoFe7 S9 C(R-homocitrate)] cofactor is synthesized via the transformation of a [Fe4 S4 ] cluster pair into an [Fe8 S9 C] precursor (designated the L-cluster) prior to insertion of Mo and homocitrate. We report the characterization of an eight-iron cofactor precursor (designated the L*-cluster), which is proposed to have the composition [Fe8 S8 C] and lack the "9th sulfur" in the belt region of the L-cluster. Our X-ray absorption and electron spin echo envelope modulation (ESEEM) analyses strongly suggest that the L*-cluster represents a structural homologue to the l-cluster except for the missing belt sulfur. The absence of a belt sulfur from the L*-cluster may prove beneficial for labeling the catalytically important belt region, which could in turn facilitate investigations into the reaction mechanism of nitrogenases.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.,Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.,Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| |
Collapse
|
11
|
Jasniewski AJ, Wilcoxen J, Tanifuji K, Hedman B, Hodgson KO, Britt RD, Hu Y, Ribbe MW. Spectroscopic Characterization of an Eight‐Iron Nitrogenase Cofactor Precursor that Lacks the “9
th
Sulfur”. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrew J. Jasniewski
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Jarett Wilcoxen
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Kazuki Tanifuji
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Stanford University Menlo Park CA 94025 USA
| | - Keith O. Hodgson
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Stanford University Menlo Park CA 94025 USA
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - R. David Britt
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
12
|
Sokolov MN, Gushchin AL. On the Way Towards Fine Inorganic Synthesis: Manipulating Bridging Ligands in Chalcogenide Clusters. RUSS J COORD CHEM+ 2019. [DOI: 10.1134/s1070328419060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Shimamoto K, Sunada Y. Dimensionality Expansion of a Butterfly Shaped Pd 4 Framework: Constructing Edge-Sharing Pd 6 Tetrahedra. Chemistry 2019; 25:3761-3765. [PMID: 30762905 DOI: 10.1002/chem.201805678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/22/2019] [Indexed: 11/09/2022]
Abstract
The construction of well-defined transition-metal clusters has attracted substantial attention due to their unique chemical and/or physical properties. Metal clusters with 1D or 2D structures are now accessible by template-synthesis methods, in which multiple metal atoms are arranged with the aid of template molecules and their 1D or 2D structures. However, the rational synthesis of 3D clusters remains challenging, mostly due to a lack of appropriate template molecules. Herein, we report the rational synthesis of a 2D butterfly shaped Pd4 framework (2) and 3D edge-sharing Pd6 tetrahedra (5) by treatment of easily available organosilicon compounds with Pd(CNtBu)2 . The diphenylsilylene moiety thereby serves as the key component to generate the butterfly structure of the Pd4 clusters in 2. A dimensionality expansion, induced by two Cl atoms, of two butterfly shaped Pd4 subunits supported by two diphenylsilylene moieties afforded the edge-sharing tetrahedral architecture of the Pd6 cluster in 5.
Collapse
Affiliation(s)
- Kento Shimamoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Meguro-ku, Komaba, Tokyo, Japan.,Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Chemical Synthesis of an Asymmetric Mimic of the Nitrogenase Active Site. Methods Mol Biol 2018. [PMID: 30317485 DOI: 10.1007/978-1-4939-8864-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The synthetic inorganic chemistry of metal-sulfur (M-S, M = metals) clusters has played an important, complementary role to the biochemical analyses of nitrogenase toward a better understanding of the enzyme active site. The active site of nitrogenase (designated the M-cluster) can be extracted from the protein in a solvent-stabilized form, [(cit)MoFe7S9C] (cit = (R)-homocitrate). One important finding of the extracted M-cluster is its catalytic activity toward the reduction of C1-substrates (CN-, CO, CO2) into C1-C5 hydrocarbons in solution. This catalytic property poses challenges for chemists to reproduce the function with synthetic mimics, not only because of the biochemical interests but also due to the potential significance in green chemistry and catalysis research. In this context, our successful synthesis of an asymmetric Mo-Fe-S cluster, [Cp*MoFe5S9(SH)]3-, is one of the recent important achievements in synthetic M-S chemistry, as this cluster catalyzes the reduction of C1-substrates in a similar manner to the extracted M-cluster. Even though the synthetic protocol for this cluster has been described in the literature, there are plenty of pitfalls for researchers unfamiliar with synthetic M-S chemistry. In this chapter, we provide general precautionary statements and detailed protocols for the synthesis of [Cp*MoFe5S9(SH)]3-, with a brief discussion of the experimental tips based on the authors' experience in both biochemical and synthetic chemical fields.
Collapse
|
15
|
Abstract
The FeMo-cofactor of nitrogenase, a metal–sulfur cluster that contains eight transition metals, promotes the conversion of dinitrogen into ammonia when stored in the protein. Although various metal–sulfur clusters have been synthesized over the past decades, their use in the activation of N2 has remained challenging, and even the FeMo-cofactor extracted from nitrogenase is not able to reduce N2. Herein, we report the activation of N2 by a metal–sulfur cluster that contains molybdenum and titanium. An N2 moiety bridging two [Mo3S4Ti] cubes is converted into NH3 and N2H4 upon treatment with Brønsted acids in the presence of a reducing agent. Nitrogenase—whose cofactor consists of a metal–sulfur cluster—catalyzes the production of NH3 from N2, but designing metal–sulfur complexes capable of promoting this conversion remains challenging. Here, the authors report on the activation of N2 by a metal–sulfur cluster containing [Mo3S4Ti] cubes, demonstrating NH3 and N2H4 production.
Collapse
|
16
|
Construction of a Planar Tetrapalladium Cluster by the Reaction of Palladium(0) Bis(isocyanide) with Cyclic Tetrasilane. INORGANICS 2017. [DOI: 10.3390/inorganics5040084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Sickerman NS, Tanifuji K, Hu Y, Ribbe MW. Synthetic Analogues of Nitrogenase Metallocofactors: Challenges and Developments. Chemistry 2017; 23:12425-12432. [DOI: 10.1002/chem.201702496] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
18
|
Ohta S, Ohki Y. Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Ji X, Tong P, Yang D, Wang B, Zhao J, Li Y, Qu J. Synthesis, structural characterization and conversion of dinuclear iron-sulfur clusters containing the disulfide ligand: [Cp*Fe(μ-η 2:η 2-bdt)(cis-μ-η 1:η 1-S 2)FeCp*], [Cp*Fe(μ-S(C 6H 4S 2))(cis-μ-η 1:η 1-S 2)FeCp*], and [{Cp*Fe(bdt)} 2(trans-μ-η 1:η 1-S 2)]. Dalton Trans 2017; 46:3820-3824. [PMID: 28265627 DOI: 10.1039/c7dt00450h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of [Cp*Fe(μ-η2:η4-bdt)FeCp*] (1, Cp* = η5-C5Me5, bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S8) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η2:η2-bdt)(cis-μ-η1:η1-S2)FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S8, another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C6H4S2))(cis-μ-η1:η1-S2)FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)}2(trans-μ-η1:η1-S2)] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S8, which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η2:η2-S2)(cis-μ-η1:η1-S2)FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Xiaoxiao Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Peng Tong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China. and Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
20
|
Holm RH, Lo W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem Rev 2016; 116:13685-13713. [DOI: 10.1021/acs.chemrev.6b00276] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. H. Holm
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Wayne Lo
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
21
|
Čorić I, Holland PL. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. J Am Chem Soc 2016; 138:7200-11. [PMID: 27171599 PMCID: PMC5508211 DOI: 10.1021/jacs.6b00747] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrogenase enzymes are used by microorganisms for converting atmospheric N2 to ammonia, which provides an essential source of N atoms for higher organisms. The active site of the molybdenum-dependent nitrogenase is the unique carbide-containing iron-sulfur cluster called the iron-molybdenum cofactor (FeMoco). On the FeMoco, N2 binding is suggested to occur at one or more iron atoms, but the structures of the catalytic intermediates are not clear. In order to establish the feasibility of different potential mechanistic steps during biological N2 reduction, chemists have prepared iron complexes that mimic various structural aspects of the iron sites in the FeMoco. This reductionist approach gives mechanistic insight, and also uncovers fundamental principles that could be used more broadly for small-molecule activation. Here, we discuss recent results and highlight directions for future research. In one direction, synthetic iron complexes have now been shown to bind N2, break the N-N triple bond, and produce ammonia catalytically. Carbon- and sulfur-based donors have been incorporated into the ligand spheres of Fe-N2 complexes to show how these atoms may influence the structure and reactivity of the FeMoco. Hydrides have been incorporated into synthetic systems, which can bind N2, reduce some nitrogenase substrates, and/or reductively eliminate H2 to generate reduced iron centers. Though some carbide-containing iron clusters are known, none yet have sulfide bridges or high-spin iron atoms like the FeMoco.
Collapse
Affiliation(s)
- Ilija Čorić
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Gómez M, Hernández-Prieto C, Martín A, Mena M, Santamaría C. Systematic Approach for the Construction of Niobium and Tantalum Sulfide Clusters. Inorg Chem 2016; 55:3815-21. [PMID: 27050923 DOI: 10.1021/acs.inorgchem.5b02816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treatment of the imido complexes [MCl3(NR)py2] (R = (t)Bu, 2,6-Me2C6H3; M = Nb 1, 3; Ta 2, 4) (Xyl = 2,6-Me2C6H3) with (Me3Si)2S in a 1:1 ratio afforded the new cube-type sulfide clusters [MCl(NR)py(μ3-S)]4 (R = (t)Bu, 2,6-Me2C6H3; M = Nb 5, 7; Ta 6, 8) with loss of Me3SiCl. Reactions of 5 and 6 with cyclopentadienyllithium in 1:4 ratio resulted in the rupture of the coordinative M-S bonds and the replacement of a pyridine molecule and a chlorine atom by an η(5)-cyclopentadienyl group in each metal center, affording the compounds [M(η(5)-C5H5)(N(t)Bu)(μ-S)]4 (M = Nb 9, Ta 10). These processes may develop through formation of the complexes [M4(η(5)-C5H5)2(μ-Cl)(N(t)Bu)4py2(μ3-S)2(μ-S)2](C5H5) (M = Nb 11, Ta 12), also obtained by reaction of 5 and 6 with cyclopentadienyllithium in 1:3 ratio. As further evidence, 11 and 12 led to complexes 9 and 10 by treatment with one more equivalent of the lithium reagent. The structural study of these metal sulfide clusters has been also performed by X-ray crystallography.
Collapse
Affiliation(s)
- Manuel Gómez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Cristina Hernández-Prieto
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Cristina Santamaría
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
23
|
Tanifuji K, Lee CC, Ohki Y, Tatsumi K, Hu Y, Ribbe MW. Combining a Nitrogenase Scaffold and a Synthetic Compound into an Artificial Enzyme. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697‐3900 (USA)
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697‐3900 (USA)
| | - Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, Nagoya 464‐8602 (Japan)
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, Nagoya 464‐8602 (Japan)
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697‐3900 (USA)
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697‐3900 (USA)
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697‐2025 (USA)
| |
Collapse
|
24
|
Tanifuji K, Lee CC, Ohki Y, Tatsumi K, Hu Y, Ribbe MW. Combining a Nitrogenase Scaffold and a Synthetic Compound into an Artificial Enzyme. Angew Chem Int Ed Engl 2015; 54:14022-5. [PMID: 26473503 DOI: 10.1002/anie.201507646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/21/2015] [Indexed: 11/06/2022]
Abstract
Nitrogenase catalyzes substrate reduction at its cofactor center ([(Cit)MoFe7S9C](n-); designated M-cluster). Here, we report the formation of an artificial, nitrogenase-mimicking enzyme upon insertion of a synthetic model complex ([Fe6S9(SEt)2](4-); designated Fe6(RHH)) into the catalytic component of nitrogenase (designated NifDK(apo)). Two Fe6(RHH) clusters were inserted into NifDK(apo), rendering the conformation of the resultant protein (designated NifDK(Fe)) similar to the one upon insertion of native M-clusters. NifDK(Fe) can work together with the reductase component of nitrogenase to reduce C2H2 in an ATP-dependent reaction. It can also act as an enzyme on its own in the presence of Eu(II)DTPA, displaying a strong activity in C2H2 reduction while demonstrating an ability to reduce CN(-) to C1-C3 hydrocarbons in an ATP-independent manner. The successful outcome of this work provides the proof of concept and underlying principles for continued search of novel enzymatic activities based on this approach.
Collapse
Affiliation(s)
- Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900 (USA)
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900 (USA)
| | - Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900 (USA).
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900 (USA). .,Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025 (USA).
| |
Collapse
|
25
|
Martínez-Espada N, Mena M, Pérez-Redondo A, Varela-Izquierdo V, Yélamos C. Heterometallic complexes with cube-type [MTi3N4] cores containing Group 10 metals in a variety of oxidation states. Dalton Trans 2015; 44:9782-94. [DOI: 10.1039/c5dt01200g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metalloligand [{Ti(η5-C5Me5)(μ-NH)}3(μ3-N)] is capable of stabilizing Group 10 metals in the oxidation states 0,iioriv.
Collapse
Affiliation(s)
- Noelia Martínez-Espada
- Departamento de Química Orgánica y Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Víctor Varela-Izquierdo
- Departamento de Química Orgánica y Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| |
Collapse
|
26
|
Dance I. Protonation of bridging sulfur in cubanoid Fe4S4 clusters causes large geometric changes: the theory of geometric and electronic structure. Dalton Trans 2015; 44:4707-17. [DOI: 10.1039/c4dt03681f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Density functional calculations indicate that protonation of a μ3-S atom in cubanoid clusters [Fe4S4X4]2− leads to a large extension of one Fe–S(H) bond such that the SH ligand is doubly-bridging, μ-SH.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry
- University of New South Wales
- Sydney 2052
- Australia
| |
Collapse
|
27
|
Ohki Y. Synthetic Analogues of the Active Sites of Nitrogenase and [NiFe] Hydrogenase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, Nagoya University
| |
Collapse
|
28
|
Nuester J, Newville M, Twining BS. Distributions of iron, phosphorus and sulfur along trichomes of the cyanobacteria Trichodesmium. Metallomics 2014; 6:1141-9. [DOI: 10.1039/c4mt00042k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in the elemental composition within trichomes of the nonheterocystous cyanobacteriaTrichodesmiumare potentially related to N2-fixation.
Collapse
Affiliation(s)
| | - Matthew Newville
- Center for Advanced Radiation Sources
- The University of Chicago
- Argonne, USA
| | | |
Collapse
|
29
|
Zartilas S, Papatriantafyllopoulou C, Stamatatos TC, Nastopoulos V, Cremades E, Ruiz E, Christou G, Lampropoulos C, Tasiopoulos AJ. A MnII6MnIII6 Single-Strand Molecular Wheel with a Reuleaux Triangular Topology: Synthesis, Structure, Magnetism, and DFT Studies. Inorg Chem 2013; 52:12070-9. [DOI: 10.1021/ic401872c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sotiris Zartilas
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | | | | | | | - Eduard Cremades
- Department de Química Inorgànica
and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Department de Química Inorgànica
and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - George Christou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christos Lampropoulos
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
- Department of Chemistry, University of North Florida, Jacksonville, Florida 32224, United States
| | | |
Collapse
|