Pritzl RM, Steinadler J, Buda AT, Wendl S, Schnick W. ZnH
2P
4N
8: Case Study on Topochemical Imidonitridophosphate High-Pressure Synthesis.
Chemistry 2024:e202402741. [PMID:
39196605 DOI:
10.1002/chem.202402741]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Nitridophosphates are subject of current research, as they have a broad spectrum of properties and potential applications, such as ion conductors or luminescent materials. Yet, the subclass of imidonitridophosphates has been studied less extensively. The primary reason is that the controlled N-H functionalization of nitridophosphates is not straight forward, making targeted synthesis more challenging. Inspired by the high-pressure (HP) post-synthetic modification of nitridophosphates, we present the topochemical HP deprotonation of phosphorus nitride imides using the high-pressure polymorph β-PN(NH) as an example. Additional incorporation of Zn2+ results in the first quaternary transition metal imidonitridophosphate ZnH2P4N8. The crystal structure was elucidated by single-crystal X-ray diffraction (SCXRD), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD) and solid-state magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). In addition, the presence of H as part of an imide group was confirmed by IR spectroscopy. The potential of this defunctionalization approach for controlling the N-H content is demonstrated by the preparation of partially deprotonated intermediates ZnxH4-2xP4N8 (x≈0.5, 0.85). This topochemical high-pressure reaction represents a promising way to prepare, control and manipulate new imide-based materials without altering their overall anionic framework.
Collapse