1
|
Maurya MR, Kumar N, Avecilla F. Controlled Modification of Triaminoguanidine-Based μ 3 Ligands in Multinuclear [V IVO]/[V VO 2] Complexes and Their Catalytic Potential in the Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes. Inorg Chem 2024; 63:2505-2524. [PMID: 38243891 DOI: 10.1021/acs.inorgchem.3c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Reaction of tris(2-hydroxybenzylidene)-triaminoguanidinium chloride (I·HCl) and tris(5-bromo-2-hydroxybenzylidene)-triaminoguanidinium chloride (II·HCl) with [VIVO(acac)2] (1:1 molar ratio) in refluxing methanol resulted in mononuclear [VIVO] complexes, [VIVO(H2L1')(MeOH)] (1) and [VIVO(H2L2')(MeOH)] (2), respectively, where I and II undergo intramolecular triazole ring formation. Aerial oxidation of 1 and 2 in MeOH in the presence of Cs2CO3 gave corresponding cis-[VVO2] complexes Cs[(VO2)(H2L1')] (3) and Cs[(VO2)(H2L2')] (4). However, reaction of an aerially oxidized methanolic solution of [VIVO(acac)2] with I·HCl and II·HCl in the presence of Cs2CO3 (in 1:1:1 molar ratio) gave mononuclear complexes Cs[(VO2)(H3L1)] (5) and Cs[(VO2)(H3L2)] (6) without intramolecular triazole ring formation. Similar anionic trinuclear complexes Cs2[(VO2)3(L1)] (7) and Cs2[(VO2)3(L2)] (8) were isolable upon increasing the amounts of the vanadium precursor and Cs2CO3 to 3 equiv to the reaction applied for 5 and 6. Keeping the reaction mixture of 1 in MeOH under air gave [VVO(H2L1')(OMe)] (9). Structures of 3, 7, 8, and 9 were confirmed by X-ray crystal structure study. A permanent porosity in the crystalline metal-organic framework of 7 confirmed by single-crystal X-ray investigation was further verified by the BET study. Along with a suitable reaction mechanism, these synthesized compounds were explored as effective catalysts for the synthesis of biomolecules 4H-pyran/4H-chromenes.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| |
Collapse
|
2
|
Kintzel B, Böhme M, Plaul D, Görls H, Yeche N, Seewald F, Klauss HH, Zvyagin AA, Kampert E, Herrmannsdörfer T, Pascua G, Baines C, Luetkens H, Plass W. A Trinuclear High-Spin Iron(III) Complex with a Geometrically Frustrated Spin Ground State Featuring Negligible Magnetic Anisotropy and Antisymmetric Exchange. Inorg Chem 2023; 62:3420-3430. [PMID: 36796032 DOI: 10.1021/acs.inorgchem.2c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The trinuclear high-spin iron(III) complex [Fe3Cl3(saltagBr)(py)6]ClO4 {H5saltagBr = 1,2,3-tris[(5-bromo-salicylidene)amino]guanidine} was synthesized and characterized by several experimental and theoretical methods. The iron(III) complex exhibits molecular 3-fold symmetry imposed by the rigid ligand backbone and crystallizes in trigonal space group P3̅ with the complex cation lying on a crystallographic C3 axis. The high-spin states (S = 5/2) of the individual iron(III) ions were determined by Mößbauer spectroscopy and confirmed by CASSCF/CASPT2 ab initio calculations. Magnetic measurements show an antiferromagnetic exchange between the iron(III) ions leading to a geometrically spin-frustrated ground state. This was complemented by high-field magnetization experiments up to 60 T, which confirm the isotropic nature of the magnetic exchange and negligible single-ion anisotropy for the iron(III) ions. Muon-spin relaxation experiments were performed and further prove the isotropic nature of the coupled spin ground state and the presence of isolated paramagnetic molecular systems with negligible intermolecular interactions down to 20 mK. Broken-symmetry density functional theory calculations are consistent with the antiferromagnetic exchange between the iron(III) ions within the presented trinuclear high-spin iron(III) complex. Ab initio calculations further support the absence of appreciable magnetic anisotropy (D = 0.086, and E = 0.010 cm-1) and the absence of significant contributions from antisymmetric exchange, as the two Kramers doublets are virtually degenerate (ΔE = 0.005 cm-1). Therefore, this trinuclear high-spin iron(III) complex should be an ideal candidate for further investigations of spin-electric effects arising exclusively from the spin chirality of a geometrically frustrated S = 1/2 spin ground state of the molecular system.
Collapse
Affiliation(s)
- Benjamin Kintzel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Daniel Plaul
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Nicolas Yeche
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Felix Seewald
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hans-Henning Klauss
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Andrei A Zvyagin
- Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv 61103, Ukraine.,V. N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine.,Max-Planck Institut für Physik komplexer Systeme, 01187 Dresden, Germany
| | - Erik Kampert
- Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Thomas Herrmannsdörfer
- Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Gwendolyne Pascua
- Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, 5232 Villigen, Switzerland
| | - Christopher Baines
- Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, 5232 Villigen, Switzerland
| | - Hubertus Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, 5232 Villigen, Switzerland
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Ali B, Li XL, Gendron F, Le Guennic B, Tang J. A new class of Dy III-SIMs associated with a guanidine-based ligand. Dalton Trans 2021; 50:5146-5153. [PMID: 33688901 DOI: 10.1039/d1dt00260k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of four mononuclear DyIII complexes of the guanidine-based ligand L [L = tris(2-hydroxybenzylidene)triaminoguanidine] with formulas [DyLCl2(DMF)2]·DMF·CH3OH (1), [DyL2(CH3OH)2]Br·H2O·3CH3OH (2), [DyL2(H2O)2]SCN·3H2O·CH3OH (3) and [DyL2(CH3OH)2]SCN·CH3CN·CH3OH (4) were successfully prepared by varying reaction conditions. Complex 1 is seven-coordinate, with three N2O from ligand L along with two equatorially trapped DMF molecules and two axial Cl- anions, adopting pentagonal bipyramidal D5h symmetry. Complexes 2-4 have somewhat similar structures with six donor N4O2 sites from two ligands and two O from corresponding solvent molecules, featuring a N4O4 octa-coordinate environment with triangular dodecahedron D2d symmetry. Magnetic investigations indicated that complex 1 did not demonstrate single-molecule magnetic behavior, while complexes 2-4 were single-ion magnets (SIMs) under zero applied DC field with the effective energy barriers (Ueff) of 207.3 (2), 222.5 (3) and 311.7 K (4), respectively. The different types of coordinated solvent molecules and counter anions caused changes in intermolecular interactions and coordination geometries that severely affected their magnetic dynamics. The magnetic behaviors of these complexes were investigated through complete-active space self-consistent field (CASSCF) calculations with the inclusion of spin-orbit effects. Calculations revealed that the measured differences in magnetic behaviors originated mainly from intermolecular and crystal-packing effects as isolated complexes 1-4 have almost identical electronic and magnetic properties.
Collapse
Affiliation(s)
- Basharat Ali
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Frédéric Gendron
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Jia AQ, Zhou WY, Wu SM, Shi HT, Zhang QF. Cis‐Dioxo‐molybdenum(VI) Complexes with Diaminoguanidinium and Triaminoguanidinium Schiff Bases and Their Catalytic Application for Epoxidation of Cyclohexene. ChemistrySelect 2020. [DOI: 10.1002/slct.202002938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ai Q. Jia
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Wen Y. Zhou
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Si M. Wu
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Hua T. Shi
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Qian F. Zhang
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| |
Collapse
|
5
|
Doroshenko I, Böhme M, Buchholz A, Simonikova L, Plass W, Pinkas J. Octanuclear nickel phosphonate core forming extended and molecular structures. CrystEngComm 2020. [DOI: 10.1039/d0ce01055c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new nickel(ii) phosphonate complexes {[Na2Ni8(L)6]·nSolv}m (L = SAA3− (1), BSAA3− (2), NAA3− (3); Solv = H2O, MeOH; m = ∞ (1, 2), 1 (3)) possessing a new octanuclear {Ni8} phosphonate core were obtained and studied in detail.
Collapse
Affiliation(s)
- Iaroslav Doroshenko
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Lucie Simonikova
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Jiri Pinkas
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| |
Collapse
|