1
|
Wang Y, Sheng K, Lou J, Su Z, Wu M, Wang L. Design and synthesis of pyrene-based probes and their fluorescent detection of Sb(III). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124171. [PMID: 38507843 DOI: 10.1016/j.saa.2024.124171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
A series of pyrene-based fluorescent (FL) probes for Sb(III) were designed and synthesized. All of them exhibited luminescence by pyrene excimers in the mixture of DMSO and water and showed enhanced emission with the addition of Sb(III). By comparing their FL response to Sb(III), the effects of intramolecular hydrogen bond, inductive effect, and steric effect were investigated. Meanwhile, the FL enhancement factor of the best performing probe reached 10.28 and the detection limit was calculated to be 0.0535 mg/L, indicating that it might be used as a potential candidate for the treatment of Sb(III) in printing and dyeing wastewater.
Collapse
Affiliation(s)
- Yijia Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Kai Sheng
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiahao Lou
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhiqin Su
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
2
|
Cui F, Xie Z, Yang R, Zhang Y, Liu Y, Zheng H, Han X. Aggregation-induced emission enhancement (AIEE) active bispyrene-based fluorescent probe: "turn-off" fluorescence for the detection of nitroaromatics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124222. [PMID: 38565053 DOI: 10.1016/j.saa.2024.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The detection of nitroaromatic explosives in real samples is essential for environmental monitoring because of their strongly powerful nature and wide applications in industries. Aggregation-induced emission enhancement (AIEE) active fluorescent probe has been widely employed to detect nitroaromatic explosives. Hereby, a simple V-shaped bispyrene-based fluorescent probe (called py-o) with AIEE properties was designed and synthesized, which was fully charactered by 1D NMR, ESI, FTIR, and 2D NOESY spectra. The py-o displayed bright blue-green fluorescence excimer emission at 480 nm in DMF/H2O (v/v 1:1). It is observed that the fluorescence excimer emission of py-o at 480 nm was quenched by PA in solution with a quenching constant of 5.45 × 104 M-1, and the limit of detection was approximately 0.139 μM. The details of the sensing mechanism were explained using 1H NMR titrations, Job's plot and Bensi-Hildebrand methods, which revealed a 1:1 binding ratio via the π-π interactions between PA and py-o. Meanwhile, it exhibited outstanding anti-interference ability in the detection of PA when interfering analytes were added under the same conditions. Furthermore, low-cost thin-layer chromatography (TLC) plates coated with py-o were developed as fluorescent tools for naked-eye detection of PA in the solid state. Therefore, this work provides a new method for constructing an AIEE fluorescent probe for the detection of nitroaromatic explosives to utilize in environmental monitoring.
Collapse
Affiliation(s)
- Fengjuan Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China.
| | - Zhiyu Xie
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Rui Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Yue Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Huiyuan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Xue Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| |
Collapse
|
3
|
Zhan X, Yang KL, Luo D. Liquid crystal based sensor for antimony ions detection using poly-adenine oligonucleotides. Talanta 2024; 267:125148. [PMID: 37678004 DOI: 10.1016/j.talanta.2023.125148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Antimony is highly toxic and a key water pollutant, which needs to be monitored closely. To date, however, most analytical methods for antimony detection are quite limited because they are complicated, expensive, and not suitable for real-time monitoring of antimony. In this study, a label-free and rapid method for antimony ions (Sb3+) detection is developed based on liquid crystals and a 10-mer poly-adenine oligonucleotide as a specific recognition probe for the first time. The working principle is based on the binding of the oligonucleotide to Sb3+, which weakens the interaction between the oligonucleotide and cationic surfactants. As a result, the event induces a planar-to-homeotropic orientational change of liquid crystals and a bright-to-dark optical change under crossed polars. This liquid crystal-based optical sensor exhibits a rapid response to Sb3+ in 10 s, a detection range between 20 nM and 5 μM, and a detection limit at 6.7 nM calculated from 10-mins assay time. It also shows good selectivity against other metal ions including Ag+, Cd2+, Cu2+, Fe3+, K+, Mg2+, Mn2+, Na+, Pb2+, and Zn2+. Moreover, this system can be used to detect Sb3+ in aqueous solutions with different pH or ionic strengths. This simple, fast, and low-cost liquid crystal-based sensing approach with high sensitivity and selectivity has a high potential for detecting Sb3+ in natural environments and industrial wastewater.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, 518055, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Komova NS, Serebrennikova KV, Berlina AN, Zherdev AV, Dzantiev BB. Sensitive Silver-Enhanced Microplate Apta-Enzyme Assay of Sb 3+ Ions in Drinking and Natural Waters. Molecules 2023; 28:6973. [PMID: 37836816 PMCID: PMC10574334 DOI: 10.3390/molecules28196973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.
Collapse
Affiliation(s)
| | | | - Anna N. Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (N.S.K.); (K.V.S.); (A.V.Z.); (B.B.D.)
| | | | | |
Collapse
|
5
|
Liu Y, Zhang Y, Sheng M, Kang Y, Jia B, Li W, Fu Y. A novel pyrene-based fluorescent probe for Al 3+ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122085. [PMID: 36379088 DOI: 10.1016/j.saa.2022.122085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Based on the classical Schiff base reaction, fluorescent probe dimethyl 5-((pyren-1-ylmethylene)amino)isophthalate (PAI) is designed and synthesized through introducing Schiff base structure to pyrene unit for structural modification. The structure of the synthesized probe PAI is determined and characterized by FT-IR, 1H NMR, 13C NMR and HRMS. PAI is a type of "turn-on" probe which can specifically recognize Al3+ ion with high selectivity. The limit of detection is calculated to be 3.07 × 10-8 M, which proves the probe's high sensitivity and is lower than that of many efficient reported probes. The probe PAI is intrinsically non-fluorescent due to the photoinduced electron transfer (PET) process. However, the addition of Al3+ ion leads to the breakage of the carbon-nitrogen double bond of Schiff base in PAI resulting in the product without PET property, which shows a typical localized state with enhanced fluorescence and blue color. In addition, PAI can recognize Al3+ ion through test papers, which is in favor of the future research regarding to Al3+ ion sensing.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yeqi Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ming Sheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yihan Kang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Wenbo Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
6
|
Garoub M, Gado M. Separation of Cadmium Using a new Adsorbent of Modified Chitosan with Pyridine Dicarboxyamide derivative and application in different samples. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mohannad Garoub
- Occupational Health Department Faculty of Public Health and Health Informatics Umm Al-Qura University Makkah Saudi Arabiaa
| | - Mohamed Gado
- Geology of isotopes Nuclear Materials Authority Cairo Egypt
| |
Collapse
|
7
|
Cao M, Wang J, Wang Y, Wang X, Li J, Chen J, Hu B, Hu D. Two cobalt(II) and copper(II) complexes with 2,4,5‐tri(4‐pyridyl)‐imidazole and 5‐hydroxyisophthalic acid as turn‐on luminescence sensors for Mg
2+
, Ca
2+
and SCN
−
ions. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Meng‐Ge Cao
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Jun‐Jie Wang
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Xin‐Fang Wang
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Ji‐Xiang Li
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Jing‐Xia Chen
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Bing‐Qing Hu
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Dou‐Dou Hu
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| |
Collapse
|