Davison N, Waddell PG, Dixon C, Wills C, Penfold TJ, Lu E. A monomeric (trimethylsilyl)methyl lithium complex: synthesis, structure, decomposition and preliminary reactivity studies.
Dalton Trans 2021;
51:10707-10713. [PMID:
34854445 DOI:
10.1039/d1dt03532k]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric organolithium (LiR) complexes could provide enhanced Li-C bond reactivity and suggest mechanisms for a plethora of LiR-mediated reactions. They are highly sought-after but remain a synthetic challenge for organometallic chemists. In this work, we report the synthesis and characterisation of a monomeric (trimethylsilyl)methyl lithium complex, namely [Li(CH2SiMe3)(κ3-N,N',N''-Me6Tren)] (1), where Me6Tren is a tetradentate neutral amine ligand. The structure of 1 was comprehensively examined by single-crystal X-ray diffraction, variable temperature NMR spectroscopy and electron absorption spectroscopy. Complex 1 decomposes via ligand C-H and C-N activations to produce a Li amide complex 2. Preliminary reactivity studies of 1 reveal CO insertion and C-H activation reaction patterns.
Collapse