1
|
Petroff BK, Eustace R, Thompson KA, Kozlowski C, Agnew D. Endocrine Diagnostics: Principles and Applications. Vet Clin North Am Exot Anim Pract 2024:S1094-9194(24)00036-7. [PMID: 39414472 DOI: 10.1016/j.cvex.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Endocrine diagnostics currently depend on the ability to measure low and high concentrations of diagnostic hormones using immunoassays. This often is challenging in species other than humans, dogs, cats, and horses due to lack of validated assays and reference intervals. There are strategies to approach endocrine testing in zoo, wildlife, and zoologic companion animals but caution is needed in interpreting results. Newer techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) may be more useful for all species, although technical hurdles remain for this method too.
Collapse
Affiliation(s)
- Brian K Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, MI, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| | - Ronan Eustace
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, MI, USA
| | - Kimberly A Thompson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, MI, USA
| | - Corinne Kozlowski
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, Saint Louis, MO, USA
| | - Dalen Agnew
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, MI, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Béland K, Lair S, Guay M, Juette T, Bédard C, Black SR, Marcoux M, Watt CA, Hussey NE, Desmarchelier M. VALIDATION OF ENZYME-LINKED IMMUNOSORBENT ASSAY TECHNIQUES TO MEASURE SERUM DEHYDROEPIANDROSTERONE (DHEA) AND DHEA-S IN NARWHALS ( MONODON MONOCEROS). J Zoo Wildl Med 2023; 54:119-130. [PMID: 36971636 DOI: 10.1638/2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 03/29/2023] Open
Abstract
Narwhals (Monodon monoceros) are increasingly exposed to anthropogenic disturbances that may increase their stress levels with unknown consequences for the overall population dynamics. The validation and measurement of chronic stress biomarkers could contribute toward improved understanding and conservation efforts for this species. Dehydroepiandrosterone (DHEA) and its sulfated metabolite DHEA-S are collectively referred to as DHEA(S). Serum DHEA(S) concentrations combined in ratios with cortisol [cortisol/DHEA(S)] have been shown to be promising indicators of chronic stress in humans, domestic animals, and wildlife. During field tagging in 2017 and 2018 in Baffin Bay, Nunavut, Canada, 14 wild narwhals were sampled at the beginning and end of the capture-tagging procedures. Serum DHEA(S) were measured with commercially available competitive enzyme-linked immunosorbent assays (ELISA) developed for humans. A partial validation of the ELISA assays was performed by the determination of the intra-assay coefficient of variation, confirmation of the DHEA(S) dilutional linearity, and the calculation of the percentage of recovery. Mean values (nanograms per milliliter ± standard error of the mean) of narwhal serum cortisol, DHEA(S), and cortisol/DHEA(S) ratios, at the beginning and at the end of handling, respectively, are reported (cortisol = 30.74 ± 4.87 and 41.83 ± 4.83; DHEA = 1.01 ± 0.52 and 0.99 ± 0.50; DHEA-S = 8.72 ± 1.68 and 7.70 ± 1.02; cortisol/DHEA = 75.43 ± 24.35 and 84.41 ± 11.76, and cortisol/DHEA-S = 4.16 ± 1.07 and 6.14 ± 1.00). Serum cortisol and cortisol/DHEA-S were statistically higher at the end of the capture (P= 0.024 and P= 0.035, respectively). Moreover, serum cortisol at the end of handling was positively correlated to total body length (P = 0.042) and tended to be higher in males (P = 0.086). These assays proved easy to perform, rapid, and suitable for measuring serum DHEA(S) of narwhals and that calculated cortisol/DHEA(S) are potential biomarkers for chronic stress in narwhals and possibly other cetaceans.
Collapse
Affiliation(s)
- Karine Béland
- Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada
| | - Stéphane Lair
- Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada
| | - Mario Guay
- Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada
| | - Tristan Juette
- Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada
| | - Christian Bédard
- Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada
| | - Sandra R Black
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Marianne Marcoux
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Cortney A Watt
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Marion Desmarchelier
- Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada,
| |
Collapse
|
3
|
Shultz S, Britnell JA, Harvey N. Untapped potential of physiology, behaviour and immune markers to predict range dynamics and marginality. Ecol Evol 2021; 11:16446-16461. [PMID: 34938448 PMCID: PMC8668750 DOI: 10.1002/ece3.8331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Linking environmental conditions to the modulators of individual fitness is necessary to predict long-term population dynamics, viability, and resilience. Functional physiological, behavioral, and reproductive markers can provide this mechanistic insight into how individuals perceive physiological, psychological, chemical, and physical environmental challenges through physiological and behavioral responses that are fitness proxies. We propose a Functional Marginality framework where relative changes in allostatic load, reproductive health, and behavior can be scaled up to evidence and establish causation of macroecological processes such as local extirpation, colonization, population dynamics, and range dynamics. To fully exploit functional traits, we need to move beyond single biomarker studies to develop an integrative approach that models the interactions between extrinsic challenges, physiological, and behavioral pathways and their modulators. In addition to providing mechanistic markers of range dynamics, this approach can also serve as a valuable conservation tool for evaluating individual- and population-level health, predicting responses to future environmental change and measuring the impact of interventions. We highlight specific studies that have used complementary biomarkers to link extrinsic challenges to population performance. These frameworks of integrated biomarkers have untapped potential to identify causes of decline, predict future changes, and mitigate against future biodiversity loss.
Collapse
Affiliation(s)
- Susanne Shultz
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Jake A. Britnell
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
- Chester ZooUpton‐By‐ChesterUK
| | - Nicholas Harvey
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
- Chester ZooUpton‐By‐ChesterUK
| |
Collapse
|
4
|
Atkinson S, Crocker D, Houser D, Mashburn K. Stress physiology in marine mammals: how well do they fit the terrestrial model? J Comp Physiol B 2015; 185:463-86. [PMID: 25913694 DOI: 10.1007/s00360-015-0901-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022]
Abstract
Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.
Collapse
Affiliation(s)
- Shannon Atkinson
- School of Fisheries and Ocean Sciences, Juneau Center, University of Alaska Fairbanks, 17101 Pt. Lena Loop Road, Juneau, AK, 99801, USA,
| | | | | | | |
Collapse
|
5
|
Phillips CJC, Pines MK, Latter M, Muller T, Petherick JC, Norman ST, Gaughan JB. The physiological and behavioral responses of steers to gaseous ammonia in simulated long-distance transport by ship. J Anim Sci 2010; 88:3579-89. [DOI: 10.2527/jas.2010-3089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|