1
|
Qin S, Yuan Y, Huang X, Tan Z, Hu X, Liu H, Pu Y, Ding YQ, Su Z, He C. Topoisomerase IIA in adult NSCs regulates SVZ neurogenesis by transcriptional activation of Usp37. Nucleic Acids Res 2022; 50:9319-9338. [PMID: 36029179 PMCID: PMC9458435 DOI: 10.1093/nar/gkac731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yu-qiang Ding
- Department of Laboratory Animal Science, and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Elton TS, Hernandez VA, Carvajal-Moreno J, Wang X, Ipinmoroti D, Yalowich JC. Intronic Polyadenylation in Acquired Cancer Drug Resistance Circumvented by Utilizing CRISPR/Cas9 with Homology-Directed Repair: The Tale of Human DNA Topoisomerase IIα. Cancers (Basel) 2022; 14:cancers14133148. [PMID: 35804920 PMCID: PMC9265003 DOI: 10.3390/cancers14133148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary DNA topoisomerase IIα (170 kDa, TOP2α/170) resolves nucleic acid topological entanglements by generating transient double-strand DNA breaks. TOP2α inhibitors/poisons stabilize TOP2α-DNA covalent complexes resulting in persistent DNA damage and are frequently utilized to treat a variety of cancers. Acquired resistance to these chemotherapeutic agents is often associated with decreased TOP2α/170 expression levels. Studies have demonstrated that a reduction in TOP2α/170 results from a type of alternative polyadenylation designated intronic polyadenylation (IPA). As a consequence of IPA, variant TOP2α mRNA transcripts have been characterized that have resulted in the translation of C-terminal truncated TOP2α isoforms with altered biological activities. In this paper, an example is discussed where circumvention of acquired TOP2α-mediated drug resistance was achieved by utilizing CRISPR/Cas9 specific gene editing of an exon/intron boundary through homology directed repair (HDR) to reduce TOP2α IPA. These results illustrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant IPA. Abstract Intronic polyadenylation (IPA) plays a critical role in malignant transformation, development, progression, and cancer chemoresistance by contributing to transcriptome/proteome alterations. DNA topoisomerase IIα (170 kDa, TOP2α/170) is an established clinical target for anticancer agents whose efficacy is compromised by drug resistance often associated with a reduction of nuclear TOP2α/170 levels. In leukemia cell lines with acquired resistance to TOP2α-targeted drugs and reduced TOP2α/170 expression, variant TOP2α mRNA transcripts have been reported due to IPA that resulted in the translation of C-terminal truncated isoforms with altered nuclear-cytoplasmic distribution or heterodimerization with wild-type TOP2α/170. This review provides an overview of the various mechanisms regulating pre-mRNA processing and alternative polyadenylation, as well as the utilization of CRISPR/Cas9 specific gene editing through homology directed repair (HDR) to decrease IPA when splice sites are intrinsically weak or potentially mutated. The specific case of TOP2α exon 19/intron 19 splice site editing is discussed in etoposide-resistant human leukemia K562 cells as a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. This example supports the importance of aberrant IPA in acquired drug resistance to TOP2α-targeted drugs. In addition, these results demonstrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant splicing/polyadenylation.
Collapse
|
3
|
Elton TS, Ozer HG, Yalowich JC. Effects of DNA topoisomerase IIα splice variants on acquired drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:161-170. [PMID: 32566920 PMCID: PMC7304410 DOI: 10.20517/cdr.2019.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes (Basel) 2019; 10:genes10110859. [PMID: 31671531 PMCID: PMC6896119 DOI: 10.3390/genes10110859] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.
Collapse
|
5
|
Kanagasabai R, Karmahapatra S, Kientz CA, Yu Y, Hernandez VA, Kania EE, Yalowich JC, Elton TS. The Novel C-terminal Truncated 90-kDa Isoform of Topoisomerase II α (TOP2 α/90) Is a Determinant of Etoposide Resistance in K562 Leukemia Cells via Heterodimerization with the TOP2 α/170 Isoform. Mol Pharmacol 2018; 93:515-525. [PMID: 29514855 PMCID: PMC11033944 DOI: 10.1124/mol.117.111567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) is essential in proliferating cells by resolving DNA topological entanglements during chromosome condensation, replication, and segregation. We previously characterized a C-terminally truncated isoform (TOP2α/90), detectable in human leukemia K562 cells but more abundantly expressed in a clonal subline, K/VP.5, with acquired resistance to the anticancer agent etoposide. TOP2α/90 (786 aa) is the translation product of a TOP2α mRNA that retains a processed intron 19. TOP2α/90 lacks the active-site tyrosine-805 required to generate double-strand DNA breaks as well as nuclear localization signals present in the TOP2α/170 isoform (1531 aa). Here, we found that TOP2α/90, like TOP2α/170, was detectable in the nucleus and cytoplasm of K562 and K/VP.5 cells. Coimmunoprecipitation of endogenous TOP2α/90 and TOP2α/170 demonstrated heterodimerization of these isoforms. Forced expression of TOP2α/90 in K562 cells suppressed, whereas siRNA-mediated knockdown of TOP2α/90 in K/VP.5 cells enhanced, etoposide-mediated DNA strand breaks compared with similarly treated cells transfected with empty vector or control siRNAs, respectively. In addition, forced expression of TOP2α/90 in K562 cells inhibited etoposide cytotoxicity assessed by clonogenic assays. qPCR and immunoassays demonstrated TOP2α/90 mRNA and protein expression in normal human tissues/cells and in leukemia cells from patients. Together, results strongly suggest that TOP2α/90 expression decreases drug-induced TOP2α-DNA covalent complexes and is a determinant of chemoresistance through a dominant-negative effect related to heterodimerization with TOP2α/170. Alternative processing of TOP2α pre-mRNA, and subsequent synthesis of TOP2α/90, may be an important mechanism regulating the formation and/or stability of cytotoxic TOP2α/170-DNA covalent complexes in response to TOP2α-targeting agents.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Cell Line
- Cell Nucleus/enzymology
- DNA Breaks, Double-Stranded/drug effects
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Dimerization
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Etoposide/therapeutic use
- Humans
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Yu
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Evan E Kania
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Kanagasabai R, Serdar L, Karmahapatra S, Kientz CA, Ellis J, Ritke MK, Elton TS, Yalowich JC. Alternative RNA Processing of Topoisomerase IIα in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform. J Pharmacol Exp Ther 2016; 360:152-163. [PMID: 27974648 DOI: 10.1124/jpet.116.237107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Lucas Serdar
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Soumendrakrishna Karmahapatra
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Justin Ellis
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Mary K Ritke
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| |
Collapse
|
7
|
Muronetz VI, Sholukh M, Korpela T. Use of protein-protein interactions in affinity chromatography. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 49:29-47. [PMID: 11694271 DOI: 10.1016/s0165-022x(01)00187-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins.
Collapse
Affiliation(s)
- V I Muronetz
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russian Federation.
| | | | | |
Collapse
|
8
|
Peebles KA, Baker RK, Kurz EU, Schneider BJ, Kroll DJ. Catalytic inhibition of human DNA topoisomerase IIalpha by hypericin, a naphthodianthrone from St. John's wort (Hypericum perforatum). Biochem Pharmacol 2001; 62:1059-70. [PMID: 11597574 DOI: 10.1016/s0006-2952(01)00759-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
St. John's wort (Hypericum perforatum) is the most widely used herbal medicine for the treatment of depression. However, concerns have arisen about the potential of its interaction with other drugs due to the induction of cytochrome P450 isozymes 1A2 and 3A4 by the components hypericin and hyperforin, respectively. Structurally similar natural products are often employed as antitumor agents due to their action as inhibitors of DNA topoisomerases, nuclear enzymes that modify DNA during cellular proliferation. Preliminary findings that hypericin inhibited the DNA relaxation activity of topoisomerase IIalpha (topo II; EC 5.99.1.3) led us to investigate the mechanism of enzyme inhibition. Rather than stabilizing the enzyme in covalent complexes with DNA (cleavage complexes), hypericin inhibited the enzyme prior to DNA cleavage. In vitro assays indicate that hypericin is a potent antagonist of cleavage complex stabilization by the chemotherapeutics etoposide and amsacrine. This antagonism appears to be due to the ability of hypericin to intercalate or distort DNA structure, thereby precluding topo II binding and/or DNA cleavage. Supporting its non-DNA damaging, catalytic inhibition of topo II, hypericin was shown to be equitoxic to both wild-type and amsacrine-resistant HL-60 leukemia cell lines. Moreover, hypericin was incapable of stimulating DNA damage-responsive gene promoters that are activated by etoposide. As with the in vitro topo II assay, antagonism of DNA damage stimulated by 30 microM etoposide was evident in leukemia cells pretreated with 5 microM hypericin. Since many cancer patients experience clinical depression and concomitantly self-medicate with herbal remedies, extracts of St. John's wort should be investigated further for their potential to antagonize topo II-directed chemotherapy regimens.
Collapse
Affiliation(s)
- K A Peebles
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
9
|
Kurz EU, Leader KB, Kroll DJ, Clark M, Gieseler F. Modulation of human DNA topoisomerase IIalpha function by interaction with 14-3-3epsilon. J Biol Chem 2000; 275:13948-54. [PMID: 10788521 DOI: 10.1074/jbc.275.18.13948] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA topoisomerase IIalpha (topo II), a ubiquitous nuclear enzyme, is essential for normal and neoplastic cellular proliferation and survival. Several common anticancer drugs exert their cytotoxic effects through interaction with topo II. In experimental systems, altered topo II expression has been associated with the appearance of drug resistance. This mechanism, however, does not adequately account for clinical cases of resistance to topo II-directed drugs. Modulation by protein-protein interactions represents one mechanism of topo II regulation that has not been extensively defined. Our laboratory has identified 14-3-3epsilon as a topo II-interacting protein. In this study, glutathione S-transferase co-precipitation, affinity column chromatography, and immunoprecipitations confirm the authenticity of these interactions. Three assays evaluate the impact of 14-3-3epsilon on distinct topo II functional properties. Using both a modified alkaline comet assay and a DNA cleavage assay, we demonstrate that 14-3-3epsilon negatively affects the ability of the chemotherapeutic, etoposide, to trap topo II in cleavable complexes with DNA, thereby preventing DNA strand breaks. By electrophoretic mobility shift assay, this appears to be due to reduced DNA binding activity. The association of topo II with 14-3-3 proteins does not extend to all 14-3-3 isoforms. No protein interaction or disruption of topo II function was observed with 14-3-3final sigma.
Collapse
Affiliation(s)
- E U Kurz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center and University of Colorado Cancer Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
10
|
Bjergbaek L, Jensen S, Westergaard O, Andersen AH. Using a biochemical approach to identify the primary dimerization regions in human DNA topoisomerase IIalpha. J Biol Chem 1999; 274:26529-36. [PMID: 10473615 DOI: 10.1074/jbc.274.37.26529] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic topoisomerase II is a nuclear enzyme essential for DNA metabolism and chromosome dynamics. The enzyme has a dimeric structure, and subunit dimerization is vital to the cellular functions and activities of the enzyme. Two biochemical approaches based on metal ion affinity chromatography and immunoprecipitation have been carried out to map the dimerization region(s) in human topoisomerase IIalpha. The results demonstrate that two regions spanning amino acids 1053-1069 and 1124-1143 are both essential for dimerization. The regions correspond to the interaction domains revealed in yeast topoisomerase II after crystallization of a central fragment of this enzyme, indicating that the overall C-terminal dimerization structure of eukaryotic topoisomerase II is conserved from yeast to human. Furthermore, linker insertion analysis has demonstrated that the two dimerization regions are located in a highly flexible part of the enzyme. Topoisomerase IIalpha mutant enzymes unable to dimerize via the C-terminal primary dimerization regions due to lack of one of the defined dimerization regions can still be forced to dimerize if DNA and an ATP analog are added to the reaction mixture. The result indicates that secondary interactions occur by ATP analog-mediated clamp closing when the subunits are brought together on DNA.
Collapse
Affiliation(s)
- L Bjergbaek
- Department of Molecular and Structural Biology, University of Aarhus, C. F. Mollers Allé, Building 130, 8000 Arhus C, Denmark
| | | | | | | |
Collapse
|
11
|
Bhat UG, Raychaudhuri P, Beck WT. Functional interaction between human topoisomerase IIalpha and retinoblastoma protein. Proc Natl Acad Sci U S A 1999; 96:7859-64. [PMID: 10393912 PMCID: PMC22152 DOI: 10.1073/pnas.96.14.7859] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1999] [Accepted: 05/20/1999] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerase II-an essential nuclear enzyme in DNA replication and transcription, chromatin segregation, and cell cycle progression-is also a target of clinically useful anticancer drugs. Preliminary observations of a positive correlation between the expression of topoisomerase (topo) IIalpha and the retinoblastoma protein (Rb) in a series of rhabdomyosarcoma cells prompted us to ask whether these two proteins interact in vivo. Using human rhabdomyosarcoma and leukemic cell lines, we found a physical association between topo IIalpha and Rb protein by reciprocal immunoprecipitation and immunoblotting, in which topo IIalpha appeared to interact primarily with the underphosphorylated form of Rb. Experiments with truncated glutathione S-transferase-Rb fusion proteins and nuclear extracts of Rh1 rhabdomyosarcoma cells indicated that topo IIalpha binds avidly to the A/B pocket domain of Rb, which contains the intact spacer amino acid sequence. To determine whether this interaction has functional consequences in vivo, we expressed wild-type and mutant Rb in human cervical carcinoma cells lacking functional Rb. Wild-type, but not mutant, Rb inhibited topo II activity in nuclear extracts of these transfected cells. Moreover, purified wild-type Rb inhibited the activity of purified human topo IIalpha, indicating a direct interaction between these two proteins. We conclude that topo IIalpha associates physically with Rb in interactions that appear to have functional significance.
Collapse
Affiliation(s)
- U G Bhat
- Division of Molecular Pharmacology, Department of Molecular Genetics (M/C 669), College of Medicine, University of Illinois, Chicago, IL 60607-7173, USA
| | | | | |
Collapse
|
12
|
McVean M, Liebler DC. Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake. Mol Carcinog 1999; 24:169-76. [PMID: 10204801 DOI: 10.1002/(sici)1098-2744(199903)24:3<169::aid-mc3>3.0.co;2-a] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Topical application of alpha-tocopherol (alphaTH), the most prominent naturally occurring form of vitamin E, inhibits ultraviolet (UV) B-induced photocarcinogenesis and DNA photodamage in C3H mice in vivo. In this study, we compared alphaTH with other vitamin E compounds and with three commercial sunscreen compounds for their ability to inhibit DNA photodamage in C3H mouse skin in vivo. When applied in a 5% dispersion in a neutral cream vehicle, alpha-tocopherol (alphaTH), gamma-tocopherol (gammaTH), and delta-tocopherol (deltaTH) each produced a statistically significant inhibition of thymine dimer formation, whereas alpha-tocopherol acetate (alphaTAc) and alpha-tocopherol methyl ether (alphaTOMe) did not. Application of 5% dispersions of the commercial sunscreen agent octylmethoxycinnamate also inhibited dimer formation, whereas ethylhexyl salicylate and oxybenzone did not, despite their considerably greater UVB absorbances than alphaTH. To test the hypothesis that cellular uptake and distribution are necessary for optimal photoprotection by tocopherols, photoprotection was studied in mouse 308 keratinocyte cells in vitro. Preincubation of 308 cells with 1 microM alphaTH for at least 2 h before exposure to 2.5 J/m2/s UVB for 10 min significantly (P < 0.05) attenuated thymine dimer formation. Pre-incubation with 1 microM gammaTH, deltaTH, alphaTAc, or alphaTOMe for 2 h did not inhibit thymine dimer formation significantly. Uptake of alphaTH was measured after incubation with 1 microM [2H3]alphaTH (d3-alphaTH) and resulted in a time-dependent increase in alphaTH levels. Use of d3-alphaTH allowed separate, simultaneous measurement of added d3-alphaTH and unlabeled endogenous alphaTH by gas chromatography-mass spectrometry. Accumulation of 167 +/- 62 pmol d3-alphaTH/mg protein was measured within 1 h in whole-cell fractions. d3-AlphaTH in the nuclear fraction reached levels of 15 +/- 4 pmol d3-alphaTH/mg protein at 2 h. Accumulation of alphaTH in the whole cell and nuclei corresponded temporally with significant protection against DNA photodamage. The kinetics of accumulation of the three tocopherols in whole cells and in nuclei were similar. Although only alphaTH conferred significant protection compared with irradiated controls at 2 h, the differences between individual tocopherols were not statistically significant. This work suggests that incorporation of tocopherol compounds into sunscreen products confers protection against procarcinogenic DNA photodamage and that cellular uptake and distribution of tocopherol compounds is necessary for their optimal photoprotection.
Collapse
Affiliation(s)
- M McVean
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, USA
| | | |
Collapse
|