Hejl AM, Koster KL. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays).
J Chem Ecol 2004;
30:453-71. [PMID:
15112735 DOI:
10.1023/b:joec.0000017988.20530.d5]
[Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Juglone is phytotoxic, but the mechanisms of growth inhibition have not been fully explained. Previous studies have proposed that disruption of electron transport functions in mitochondria and chloroplasts contribute to observed growth reduction in species exposed to juglone. In studies reported here, corn and soybean seedlings grown in nutrient solution amended with 10, 50, or 100 microM juglone showed significant decreases in root and shoot dry weights and lengths with increasing concentrations. However, no significant differences in leaf chlorophyll fluorescence or CO2-dependent leaf oxygen evolution were observed, even in seedlings that were visibly affected. Disruption of root oxygen uptake was positively correlated with increasing concentrations of juglone, suggesting that juglone may reach mitochondria in root cells. Water uptake and acid efflux also decreased for corn and soybean seedlings treated with juglone, suggesting that juglone may affect metabolism of root cells by disrupting root plasma membrane function. Therefore, the effect of juglone on H+-ATPase activity in corn and soybean root microsomes was tested. Juglone treatments from 10 to 1000 microM significantly reduced H+-ATPase activity compared to controls. This inhibition of H+-ATPase activity and observed reduction of water uptake offers a logical explanation for previously documented phytotoxicity of juglone. Impairment of this enzyme's activity could affect plant growth in a number of ways because proton-pumping in root cells drives essential plant processes such as solute uptake and, hence, water uptake.
Collapse