1
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
2
|
Camargo G, Elizalde A, Trujillo X, Montoya-Pérez R, Mendoza-Magaña ML, Hernandez-Chavez A, Hernandez L. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans. Cell Stress Chaperones 2016; 21:763-72. [PMID: 27230213 PMCID: PMC5003793 DOI: 10.1007/s12192-016-0701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.
Collapse
Affiliation(s)
- Gabriela Camargo
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
- Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitariode Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez # 2100, Zapopan, 45110, Jalisco, Mexico
| | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
| | - Xochitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Morelia, 58030, Michoacán, Mexico
| | - María Luisa Mendoza-Magaña
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico
| | - Abel Hernandez-Chavez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, SierraMojada # 950, Guadalajara, 44340, Jalisco, Mexico
| | - Leonardo Hernandez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico.
| |
Collapse
|
3
|
McCarty MF, Contreras F. Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells may Sensitize Them to Extracellular Ascorbate. Front Oncol 2014; 4:249. [PMID: 25279352 PMCID: PMC4165285 DOI: 10.3389/fonc.2014.00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Low millimolar concentrations of ascorbate are capable of inflicting lethal damage on a high proportion of cancer cells lines, yet leave non-transformed cell lines unscathed. Extracellular generation of hydrogen peroxide, reflecting reduction of molecular oxygen by ascorbate, has been shown to mediate this effect. Although some cancer cell lines express low catalase activity, this cannot fully explain the selective sensitivity of cancer cells to hydrogen peroxide. Ranzato and colleagues have presented evidence for a plausible new explanation of this sensitivity - a high proportion of cancers, via NADPH oxidase complexes or dysfunctional mitochondria, produce elevated amounts of superoxide. This superoxide, via a transition metal-catalyzed transfer of an electron to the hydrogen peroxide produced by ascorbate, can generate deadly hydroxyl radical (Haber-Weiss reaction). It thus can be predicted that concurrent measures which somewhat selectively boost superoxide production in cancers will enhance their sensitivity to i.v. ascorbate therapy. One way to achieve this is to increase the provision of substrate to cancer mitochondria. Measures which inhibit the constitutive hypoxia-inducible factor-1 (HIF-1) activity in cancers (such as salsalate and mTORC1 inhibitors, or an improvement of tumor oxygenation), or that inhibit the HIF-1-inducible pyruvate dehydrogenase kinase (such as dichloroacetate), can be expected to increase pyruvate oxidation. A ketogenic diet should provide more lipid substrate for tumor mitochondria. The cancer-killing activity of 42°C hyperthermia is to some degree contingent on an increase in oxidative stress, likely of mitochondrial origin; reports that hydrogen peroxide synergizes with hyperthermia in killing cancer cells suggest that hyperthermia and i.v. ascorbate could potentiate each other's efficacy. A concurrent enhancement of tumor oxygenation might improve results by decreasing HIF-1 activity while increasing the interaction of ascorbic acid with oxygen. An increased pool of labile iron in cancer cells may contribute to the selective susceptibility of many cancers to i.v. ascorbate; antagonism of NF-kappaB activity with salicylate, and intravenous iron administration, could be employed to further elevate free iron in cancers.
Collapse
|
4
|
Pallepati P, Averill-Bates DA. Activation of ER stress and apoptosis by hydrogen peroxide in HeLa cells: Protective role of mild heat preconditioning at 40°C. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1987-99. [DOI: 10.1016/j.bbamcr.2011.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/08/2011] [Accepted: 07/28/2011] [Indexed: 11/27/2022]
|
5
|
Löhrke B, Xu J, Weitzel JM, Krüger B, Goldammer T, Viergutz T. N-acetylcysteine impairs survival of luteal cells through mitochondrial dysfunction. Cytometry A 2010; 77:310-20. [PMID: 20151456 DOI: 10.1002/cyto.a.20873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-acetylcysteine (NAC) is known as an antioxidant and used for mucus viscosity reduction. However, this drug prevents or induces cell death depending on the cell type. The response of steroidogenic luteal cells to NAC is unknown. Our data shows that NAC can behave as an antioxidant or prooxidant in dependency on the concentration and mitochondrial energization. NAC elevated the flowcytometric-measured portion of hypodiploid (dying) cells. This rise was completely abolished by aurintricarboxylic acid, an inhibitor of topoisomerase II. NAC increased the secretion of nitric oxide and cellular nitrotyrosine. An image analysis indicated that cells pretreated with NAC and loaded with DHR showed a fluorescent structure probably elicited by the oxidative product of DHR, rhodamine 123 that sequesters mitochondrially. Pretreating luteal cells with NAC or adding NAC directly to mitochondrial fractions followed by assessing the mitochondrial transmembrane potential difference (Deltapsi) by the JC-1 technique demonstrated a marked decrease in Deltapsi. A protonophore restored Deltapsi and rotenone (an inhibitor of respiratory chain complex I) inhibited mitochondrial recovering. Thus, in steroidogenic luteal cells from healthy mature corpus luteum, NAC impairs cellular survival by interfering with mitochondrial metabolism. The protonophore-induced recovering of NAC-provoked decrease in Deltapsi indicates that an ATP synthase-favored route of H(+) re-entry to the matrix is essentially switched off by NAC while other respiratory chain complexes remain intact. These data may be important for therapeutic timing of treatments with NAC. (c) 2010 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Berthold Löhrke
- Research Institute for the Biology of Farm Animals, Dummerstorf, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Effects of different detachment procedures on viability, nitroxide reduction kinetics and plasma membrane heterogeneity of V-79 cells. Cell Biol Int 2010; 34:663-8. [PMID: 20337597 DOI: 10.1042/cbi20090276] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell detachment procedures can cause severe damage to cells. Many studies require cells to be detached before measurements; therefore, research on cells that have been grown attached to the bottom of the culture dish and later detached represents a special problem with respect to the experimental results when the properties of cell membranes undergo small changes such as in spectroscopic studies of membrane permeability. We characterized the influence of three different detachment procedures: cell scraping by rubber policeman, trypsinization and a citrate buffer treatment on V-79 cells in the plateau phase of growth (arrested in G1). We have measured cell viability by a dye-exclusion test; nitroxide reduction kinetics and membrane fluidity by EPR (electron paramagnetic resonance) method using the lipophilic spin-probe MeFASL(10,3) (5-doxylpalmitoyl-methylester), which partitions mainly in cell membranes and the hydrophilic spin-probe TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl). The resulting cell damage due to the detachment process was observed with SEM (scanning electron microscopy). We found out that cell viability was 91% for trypsin treatment, 85% for citrate treatment and 70% for cell scraping. Though the plasma membrane was mechanically damaged by scraping, the membrane domain structure was not significantly altered compared with other detachment methods. On the other hand, the spin-probe reduction rate, which depends both on the transport across plasma membrane as well as on metabolic properties of cells, was the highest for trypsin method, suggesting that metabolic rate was the least influenced. Only the reduction rate of trypsin-treated cells stayed unchanged after 4 h of stirring in suspension. These results suggest that, compared with scraping cells or using citrate buffer, the most suitable detachment method for V-79 cells is detachment by trypsin and keeping cells in the stirred cell suspension until measurement. This method provides the highest cell viability, less visible damage on SEM micrographs and leaves the metabolic rate of cells unchanged.
Collapse
|
7
|
Pallepati P, Averill-Bates D. Mild thermotolerance induced at 40°C increases antioxidants and protects HeLa cells against mitochondrial apoptosis induced by hydrogen peroxide: Role of p53. Arch Biochem Biophys 2010; 495:97-111. [DOI: 10.1016/j.abb.2009.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/20/2009] [Accepted: 12/11/2009] [Indexed: 12/11/2022]
|
8
|
Bettaieb A, Averill-Bates DA. Thermotolerance induced at a fever temperature of 40 °C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling. Biochem Cell Biol 2008; 86:521-38. [DOI: 10.1139/o08-136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mild temperatures such as 40 °C are physiological and occur during fevers. This study determines whether mild thermotolerance induced at 40 °C can protect HeLa cells against activation of the death receptor pathway of apoptosis by lethal hyperthermia (42–45 °C). Protein expression of heat shock proteins (Hsps) 27, 32, 60, 72, 90, and 110 was increased in thermotolerant cells (3 h, 40°C). Lethal hyperthermia (42–43 °C) caused cell death by apoptosis, but at 45 °C there was a switch to necrosis. Mild thermotolerance protected cells against heat-induced apoptosis (Annexin V labelling). Hyperthermia induced apoptosis through generation of reactive oxygen species (ROS) and death receptor signalling. The antioxidant polyethylene glycol-catalase abrogated increased expression of Fas death ligand and caspase-8 activation in response to lethal hyperthermia (42–43 °C). Mild thermotolerance attenuated the heat induction of ROS and FasL, which were initiating events in death receptor activation and signalling. Mild thermotolerance inhibited early events in hyperthermia-induced death receptor apoptosis such as Fas-associated death domain (FADD) translocation to membranes, caspase-8 activation, and tBid translocation to mitochondria. Downstream events in apoptosis such as caspase-3 activation, cleavage of PARP and ICAD, and chromatin condensation were also diminished in thermotolerant cells. It is important to improve knowledge about adaptive responses induced by exposure to mild stresses, such as fever temperatures, which can protect cells against subsequent exposure to lethal stress.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Diana A. Averill-Bates
- Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
9
|
Sakatani M, Yamanaka K, Kobayashi S, Takahashi M. Heat shock-derived reactive oxygen species induce embryonic mortality in in vitro early stage bovine embryos. J Reprod Dev 2008; 54:496-501. [PMID: 18762719 DOI: 10.1262/jrd.20017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock is known to increase the mortality of early stage embryos, but the exact mechanism is unclear. In the present study, we investigated the possibility that the increased mortality is caused by heat shock-generated reactive oxygen species (ROS). The level of ROS was controlled by using beta-mercaptoethanol (beta-ME), a scavenger of ROS. In vitro-produced 8-cell stage embryos were cultured at 38.5 C or heat-shocked by exposure to 41 C for 6 h with 0, 10 and 50 microM beta-ME. Intracellular ROS levels were measured by a fluorescent dye, 2',7'-dichlorodihydrofluorescein diacetate (DCHFDA), and intracellular reduced form of glutathione (GSH) contents were estimated by another fluorescent dye, 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin. Total glutathione content was estimated by the glutathione recycling assay. On day 8 after insemination, heat shock decreased the percentage of embryos that developed to the blastocyst stage and increased intracellular ROS levels, but there was no significant effect on the GSH and total glutathione contents. In contrast, beta-ME significantly decreased ROS levels in heat-shocked embryos and increased the GSH and total glutathione concentrations. Ten microM beta-ME significantly improved the viability of heat-shocked embryos. beta-ME caused no detrimental effects when it was added at normal culture temperature (38.5 C). These results indicate that ROS is the primary cause of increased embryonic mortality in heat-shocked early stage embryos.
Collapse
Affiliation(s)
- Miki Sakatani
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, Japan.
| | | | | | | |
Collapse
|
10
|
Yoshioka Y, Kitao T, Kishino T, Yamamuro A, Maeda S. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase. THE JOURNAL OF IMMUNOLOGY 2006; 176:4675-81. [PMID: 16585560 DOI: 10.4049/jimmunol.176.8.4675] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | | | | | | | | |
Collapse
|
11
|
Sener G, Sehirli O, Ercan F, Sirvanci S, Gedik N, Kacmaz A. Protective Effect of MESNA (2-Mercaptoethane Sulfonate) Against Hepatic Ischemia/Reperfusion Injury in Rats. Surg Today 2005; 35:575-80. [PMID: 15976955 DOI: 10.1007/s00595-004-2985-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 11/16/2004] [Indexed: 11/27/2022]
Abstract
PURPOSE Reoxygenation of ischemic tissue generates various reactive oxygen metabolites (ROMs), which have a deleterious effect on various cellular functions. We evaluated the possible protective effect of 2-mercaptoethane sulfonate (MESNA) on hepatic ischemia/reperfusion (I/R) injury. METHODS Wistar albino rats were subjected to 45-min hepatic ischemia, followed by 60-min reperfusion. 2-Mercaptoethane sulfonate, 150 mg/kg, or saline was given intraperitoneally (i.p.) twice, 15 min before ischemia and immediately before reperfusioin. We measured serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels to assess liver function. Liver tissue samples were taken to measure the levels of malondialdehyde (MDA), an end-product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. We also measured hepatic collagen content, as a fibrosis marker. RESULTS Plasma ALT and AST levels were higher in the I/R group than in the control group, but this increase was significantly decreased by MESNA treatment. Hepatic GSH levels, which were significantly depressed by I/R, increased back to the control levels in the MESNA-treated I/R group. Increases in tissue MDA levels and MPO activity caused by I/R injury decreased back to the control levels after MESNA treatment. Similarly, the increased hepatic collagen content in the I/R group decreased to the level of the control group after MESNA treatment. CONCLUSION The fact that MESNA alleviated I/R-induced injury of the liver and improved hepatic structure and function suggests that its antioxidant and oxidant scavenging properties may be of therapeutic value in protecting the liver against oxidative injury caused by I/R.
Collapse
Affiliation(s)
- Goksel Sener
- Department of Pharmacology, School of Pharmacy, Marmara University, Tibbiye cad., 34668 Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
12
|
El-Medany A, Hagar HH, Moursi M, At Muhammed R, El-Rakhawy FI, El-Medany G. Attenuation of bleomycin-induced lung fibrosis in rats by mesna. Eur J Pharmacol 2005; 509:61-70. [PMID: 15713430 DOI: 10.1016/j.ejphar.2004.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 10/23/2004] [Accepted: 11/30/2004] [Indexed: 11/29/2022]
Abstract
Lung fibrosis is a common side effect of the chemotherapeutic agent, bleomycin. Current evidence suggests that reactive oxygen species may play a key role in the development of lung fibrosis. The present study examined the effect of mesna on bleomycin-induced lung fibrosis in rats. Animals were divided into three groups: (1) saline control group; (2) Bleomycin group in which rats were injected with bleomycin (15 mg/kg, i.p.) three times a week for four weeks; (3) Bleomycin and mesna group, in which mesna was given to rats (180 mg/kg/day, i.p.) a week prior to bleomycin and daily during bleomycin injections for 4 weeks until the end of the treatment. Bleomycin treatment resulted in a pronounced fall in the average body weight of animals. Bleomycin-induced pulmonary injury and lung fibrosis was indicated by increased lung hydroxyproline content, and elevated nitric oxide synthase, myeoloperoxidase, platelet activating factor, and tumor necrosis factor-alpha in lung tissues. On the other hand, bleomycin induced a reduction in reduced glutathione concentration and angiotensin converting enzyme activity in lung tissues. Moreover, bleomycin-induced severe histological changes in lung tissues revealed as lymphocytes and neutrophils infiltration, increased collagen deposition and fibrosis. Co-administration of bleomycin and mesna reduced bleomycin-induced weight loss and attenuated lung injury as evaluated by the significant reduction in hydroxyproline content, nitric oxide synthase activity, and concentrations of myeoloperoxidase, platelet activating factor, and tumor necrosis factor-alpha in lung tissues. Furthermore, mesna ameliorated bleomycin-induced reduction in reduced glutathione concentration and angiotensin activity in lung tissues. Finally, histological evidence supported the ability of mesna to attenuate bleomycin-induced lung fibrosis and consolidation. Thus, the findings of the present study provide evidence that mesna may serve as a novel target for potential therapeutic treatment of lung fibrosis.
Collapse
Affiliation(s)
- Azza El-Medany
- Department of Pharmacology, College of Medicine and KHUH, King Saud University, P.O. BOX 2925, Riyadh 11461, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
13
|
Tyihák E, Móricz Á, Ott P, Kátay G, Király-Véghely Z. The potential of BioArena in the study of the formaldehydome. JPC-J PLANAR CHROMAT 2005. [DOI: 10.1556/jpc.18.2005.1.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Sener G, Sehirli O, Cetinel S, Yeğen BG, Gedik N, Ayanoğlu-Dülger G. Protective effects of MESNA (2-mercaptoethane sulphonate) against acetaminophen-induced hepatorenal oxidative damage in mice. J Appl Toxicol 2005; 25:20-9. [PMID: 15669031 DOI: 10.1002/jat.1012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetaminophen, a widely used analgesic and antipyretic, is known to cause hepatic and renal injury in humans and experimental animals when administered in high doses. It was reported that these toxic effects of acetaminophen are due to oxidative reactions that take place during its metabolism. In this study we aimed to investigate the possible beneficial effect of 2-mercaptoethane sulphonate (MESNA), an antioxidant agent, against acetaminophen toxicity in mice. Balb-c mice were injected i.p. with: vehicle (the control group); a single dose of 150 mg kg(-1) MESNA (MES group); a single dose of 900 mg kg(-1) i.p. acetaminophen (AA4h and AA24h groups); and MESNA, at a dose of 150 mg kg(-1) after acetaminophen injection (AA4h-MES and AA24h-MES groups). The MESNA injection was repeated once more 12 h after the first injection in the AA24h-MES group. Blood urea nitrogen, serum creatinine, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in blood and glutathione (GSH) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity and collagen contents in liver and kidney tissues were measured. Tissues also were examined microscopically. Blood urea nitrogen and serum creatinine, which were increased significantly (P < 0.001) following acetaminophen treatment were decreased significantly (P < 0.05-0.001) after treatment with MESNA. The ALT and AST levels were also increased significantly (P < 0.001) after acetaminophen treatment but were not reduced with MESNA. Acetaminophen treatment caused a significant (P < 0.05-0.001) decrease in GSH levels whereas MDA levels and MPO activity were increased in both tissues. These changes were reversed by MESNA treatment. Collagen contents of the liver and kidney tissues were increased by acetaminophen treatment (P < 0.001) and reversed back to the control levels with MESNA. Our results imply that acetaminophen causes oxidative damage in hepatic and renal tissues and that MESNA, via its antioxidant effects, protects these tissues. Therefore, its therapeutic role as a 'tissue injury-limiting agent' must be elucidated further in drug-induced oxidative damage.
Collapse
Affiliation(s)
- Göksel Sener
- School of Pharmacy, Department of Pharmacology, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Souslova T, Averill-Bates DA. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide. Int J Radiat Oncol Biol Phys 2004; 60:1538-51. [PMID: 15590186 DOI: 10.1016/j.ijrobp.2004.07.686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 07/19/2004] [Indexed: 01/23/2023]
Abstract
PURPOSE Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. METHODS AND MATERIALS Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. RESULTS The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 degrees C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. CONCLUSIONS Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.
Collapse
Affiliation(s)
- Tatiana Souslova
- Département de Chimie et de Biochimie, Université du Québec à Montréal, Succursale Centre Ville, Montréal, Québec, Canada
| | | |
Collapse
|
16
|
Sener G, Sehirli O, Erkanli G, Cetinel S, Gedik N, Yeğen B. 2-Mercaptoethane sulfonate (MESNA) protects against burn-induced renal injury in rats. Burns 2004; 30:557-64. [PMID: 15302421 DOI: 10.1016/j.burns.2004.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Animal models of thermal injury implicate oxygen radicals as causative agents in local wound response and distant organ injury following burn. In this study we investigated the putative protective effects of 2-mercaptoethane sulfonate (MESNA) against oxidative kidney damage in rats with thermal injury. Under ether anaesthesia, shaved dorsum of the rats was exposed to 90 degrees C bath for 10s to induce burn injury. Rats were decapitated either 6 or 24h after burn injury. MESNA was administered i.p. immediately after burn injury. MESNA injections were repeated once more 12h after the first injection in the 24h burn group. In the control group the same protocol was applied except that the dorsum was dipped in a 25 degrees C water bath for 10s. Kidney tissues were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, protein oxidation (PO), myeloperoxidase (MPO) activity and collagen contents. Creatinine, urea concentrations (BUN) and lactate dehydrogenase (LDH) in blood were measured for the evaluation of renal functions and tissue damage, respectively. Tissues were also examined microscopically. Severe skin scald injury (30% of total body surface area) caused significant decrease in GSH level, significant increase in MDA level, protein oxidation (PO), MPO activity and collagen content of renal tissue. Serum creatinine was slightly increased at the early phase of thermal trauma but not changed in 24h groups. On the other hand BUN and LDH were significantly elevated by thermal trauma in both 6 and 24h of burn groups. Treatment of rats with MESNA significantly increased the GSH level and decreased the MDA level, PO, MPO activity, collagen contents, BUN and LDH. Since MESNA reversed the oxidant responses seen in burn injury, it seems likely that MESNA could protect against thermal trauma-induced renal damage.
Collapse
Affiliation(s)
- Göksel Sener
- Marmara University, School of Pharmacy, Department of Pharmacology, Tibbiye Cad. 34668 Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
17
|
Kabasakal L, Sehirli AO, Cetinel S, Cikler E, Gedik N, Sener G. Mesna (2-mercaptoethane sulfonate) prevents ischemia/reperfusion induced renal oxidative damage in rats. Life Sci 2004; 75:2329-40. [PMID: 15350830 DOI: 10.1016/j.lfs.2004.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 04/19/2004] [Indexed: 11/25/2022]
Abstract
Reoxygenation of the ischemic tissue promotes the generation of various reactive oxygen metabolites (ROM) which are known to have deleterious effects on various cellular functions. This study was designed to determine the possible protective effect of mesna (2-Mercaptoethane Sulfonate) on renal ischemia/reperfusion (I/R) injury. Wistar albino rats were unilaterally nephrectomized, and 15 days later they were subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Mesna (MESNA, 150 mg/kg, i.p.; an effective dose against I/R injury) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion period, rats were killed by decapitation. Kidney samples were taken for histological examination or determination of the free radicals, renal malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Renal tissue collagen content, as a fibrosis marker was also determined. Creatinine and urea concentrations in blood were measured for the evaluation of renal function. The results demonstrated that renal I/R caused nephrotoxicity, as evidenced by increases in blood urea and creatinine levels, which was reversed by MESNA treatment. Increased free radical levels, as assessed by nitroblue-tetrazolium test were reduced with MESNA. Moreover, the decrease in GSH and increases in MDA levels, and MPO activity induced by I/R indicated that renal injury involves free radical formation. Treatment of rats with MESNA restored the reduced GSH levels while it decreased MDA levels as well as MPO activity. Increased collagen contents of the kidney tissues by I/R were reversed back to the control levels by MESNA treatment. Since MESNA administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that MESNA protects kidney tissue against I/R induced oxidative damage.
Collapse
Affiliation(s)
- Levent Kabasakal
- Department of Pharmacology, Marmara University, School of Pharmacy, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
18
|
NAKASHIMA K, NONAKA I, MASAKI S, YAMAZAKI M, ABE H. Myofibrillar proteolysis in chick muscle cell cultures during heat stress. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00197.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Grasso S, Scifo C, Cardile V, Gulino R, Renis M. Adaptive responses to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts. Exp Biol Med (Maywood) 2003; 228:491-8. [PMID: 12709575 DOI: 10.1177/15353702-0322805-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Perturbation of oxidant/antioxidant cellular balance, induced by cellular metabolism and by exogenous sources, causes deleterious effects to proteins, lipids, and nucleic acids, leading to a condition named "oxidative stress" that is involved in several diseases, such as cancer, ischemia-reperfusion injury, and neurodegenerative disorders. Among the exogenous agents, both H(2)O(2) and hyperthermia have been implicated in oxidative stress promotion linked with the activation of apoptotic or necrotic mechanisms of cell death. The goal of this work was to better understand the involvement of some stress-related proteins in adaptive responses mounted by human fibroblasts versus the oxidative stress differently induced by 42 degrees C hyperthermia or H(2)O(2.) The research was developed, switching off inducible nitric oxide synthase (iNOS) expression through antisense oligonucleotide transfection by studying the possible coregulation in the expression of HSP32 (also named HO-1), HSP70, and iNOS and their involvement in the induction of DNA damage. Several biochemical parameters, such as cell viability (MTT assay), cell membrane integrity (lactate dehydrogenase release), reactive oxygen species formation, glutathione levels, immunocytochemistry analysis of iNOS, HSP70, and HO-1 levels, genomic DNA fragmentation (HALO/COMET assay), and transmembrane mitochondrial potential (deltaPsi) were examined. Cells were collected immediately at the end of the stress-inducing treatment. The results, confirming the pleiotropic function of i-NOS, indicate that: (i). HO-1/HSP32, HSP70, and iNOS are finely tuned in their expression to contribute all together, in human fibroblasts, in ameliorating the resistance to oxidative stress damage; (ii). ROS exposure, at least in hyperthermia, in human fibroblasts contributes to growth arrest more than to apoptosis activation; and (iii). mitochondrial dysfunction, in presence of iNOS inhibition seems to be clearly involved in apoptotic cell death of human fibroblasts after H(2)O(2) treatment, but not after hyperthermia.
Collapse
Affiliation(s)
- S Grasso
- Department of Biological Chemistry, Catania 95125, Italy
| | | | | | | | | |
Collapse
|
20
|
Sakatani M, Kobayashi SI, Takahashi M. Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Mol Reprod Dev 2003; 67:77-82. [PMID: 14648877 DOI: 10.1002/mrd.20014] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effects of heat shock on developmental competence of bovine embryos and intracellular oxidative state. After in vitro fertilization, embryos were exposed to heat shock at 41 degrees C for 6 hr on days 0, 2, 4, and 6, respectively. On day 2, cleavage rate was not significantly different in all groups. However, the percentage of embryos developing to blastocyst stage after exposure to heat shock on day 0 (18.8 +/- 4.3%) and day 2 (23.6 +/- 3.7%) were significantly decreased compared with control (37.5 +/- 4.0%), day 4 (40.0 +/- 7.4%), and day 6 (38.1 +/- 2.0%). In addition, the total cell number of blastocysts was significantly decreased by heat shock on day 0 (107.5 +/- 6.6) and day 2 (112.8 +/- 5.7) compared with the control (143.2 +/- 9.4). To evaluate intracellular oxidative state by heat shock, embryos exposed to heat shock on days 0, 2, 4, and 6 were incubated with 2',7'-dichlorodihydrofluorescein diacetate (DCHFDA) and fluorescence of oxidized DCHFDA by reactive oxygen species (ROS) was detected under fluorescent microscope. The intensity of fluorescence was significantly increased when embryos were exposed to heat shock on days 0 and 2. However, heat shock on day 4 and day 6 did not increase the fluorescence intensity. These results indicate that (1) heat shock to earlier stage embryos causes a decrease in development to blastocysts and cell proliferation and (2) the decrease in development by heat shock could be involved in an increase of intracellular oxidative stress. Mol. Reprod. Dev. 67: 77-82, 2004.
Collapse
Affiliation(s)
- Miki Sakatani
- Department of Animal and Grassland Research, National Agricultural Research Center for Kyushu Okinawa Region, Nishigoshi, Kikuchi, Kumamoto, Japan.
| | | | | |
Collapse
|
21
|
Horton JK, Baker A, Berg BJV, Sobol RW, Wilson SH. Involvement of DNA polymerase beta in protection against the cytotoxicity of oxidative DNA damage. DNA Repair (Amst) 2002; 1:317-33. [PMID: 12509250 DOI: 10.1016/s1568-7864(02)00008-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We had shown previously that DNA polymerase beta (beta-pol) null mouse fibroblasts, deficient in base excision repair (BER), are hypersensitive to monofunctional methylating agents but not to hydrogen peroxide (H2O2). This is surprising because beta-pol is thought to be involved in BER of oxidative as well as methylated DNA damage. We confirm these findings here in early-passage cells. However, with time in culture, beta-pol null cells become hypersensitive to H2O2 and other reactive oxygen species-generating agents. Analysis of in vitro BER reveals a strong deficiency in single-nucleotide BER of 8-oxoguanine (8-oxoG) by both early- and late-passage beta-pol null cell extracts. Therefore, in early-passage wild-type and beta-pol null cells, the capacity for single-nucleotide BER of 8-oxoG does not correlate with cellular sensitivity to H2O2. Expression of beta-pol protein in the late-passage null cells almost completely reverses the H2O2-hypersensitivity phenotype. Methoxyamine (MX) treatment sensitizes late-passage wild-type cells to H2O2 as expected for beta-pol-mediated single-nucleotide BER; however in beta-pol null cells, MX has no effect. The data indicate a role(s) of beta-pol-dependent repair in protection against the cytotoxicity of oxidative DNA damage in wild-type cells.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
22
|
Lord-Fontaine S, Averill-Bates DA. Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: protection by glucose. Free Radic Biol Med 2002; 32:752-65. [PMID: 11937301 DOI: 10.1016/s0891-5849(02)00769-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperthermia is used in cancer treatment and potentiates the cytotoxicity of radiation and certain chemotherapy drugs. The mechanism(s) of heat killing and those involved in heat potentiation of cytotoxic modalities are not understood. This study examines whether heat shock causes a redox imbalance, leading to oxidative changes in Chinese hamster ovary cells. Decreases in the GSH/GSSG ratio reflected an oxidative imbalance in heated (42 degrees C) and in H(2)O(2)-challenged cells. Glucose provided protection against these changes. Glucose also protected cells against cytotoxicity of H(2)O(2) and/or hyperthermia (42 to 43 degrees C). Glucose appears to protect cells against H(2)O(2) and heat shock by providing NADPH through its metabolism via the pentose phosphate cycle (PC). When cells were deprived of glucose, there was a marked decrease in the GSH/GSSG ratio and in NADPH levels, indicating a severe redox imbalance. Glucose deprivation caused cell death, which was consistent with increased accumulation of H(2)O(2), since three distinct H(2)O(2)-detoxifying systems (N-acetyl-L-cysteine, sodium pyruvate, and catalase) rescued cells against cytotoxicity. Nontoxic levels of H(2)O(2) stimulated a corresponding increase in both PC activity and NADPH levels. NADPH levels and basal activity of the PC increased at 42 degrees C. However, the oxidant-stimulated increases in PC activity and NADPH levels were lost in heated cells. Therefore, heat shock inactivates an important cellular defense mechanism against oxidants. These findings suggest that heat shock may enhance the cytotoxicity of oxidants by inhibiting increases in PC activity following oxidative stress. These data are potentially relevant to understanding the potentiation of cytotoxicity of radiation and oxidant-generating drugs by heat shock, used in combined modality cancer treatment.
Collapse
Affiliation(s)
- Stephanie Lord-Fontaine
- Département de chimie et biochimie, Université du Québec à Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
23
|
Yu JW, Yoon SS, Yang R. Iron chlorin e6 scavenges hydroxyl radical and protects human endothelial cells against hydrogen peroxide toxicity. Biol Pharm Bull 2001; 24:1053-9. [PMID: 11558568 DOI: 10.1248/bpb.24.1053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron chlorin e6 (FeCe6) has recently been proposed to be potentially antimutagenic and antioxidative. However, the antioxidant property of FeCe6 has not been elucidated in detail. In this study, we investigated the ability of FeCe6 to scavenge hydroxyl radical and to protect biomolecules and mammalian cells from oxidative stress-mediated damage. In electron spin resonance (ESR) experiments, FeCe6 showed excellent hydroxyl radical scavenging activity, whereas its iron-deficient molecule, chlorin e6 (Ce6) showed little effect. FeCe6 also significantly reduced hydroxyl radical-induced thiobarbituric acid reactive substance (TBARS) formation and benzoate hydroxylation in a dose-dependent manner. The rate constant for reaction between FeCe6 and hydroxyl radical was measured as 8.5 x 10(10) M(-1) s(-1) by deoxyribose degradation method, and this value was much higher than that of most hydroxyl radical scavengers. Superoxide dismutase (SOD) activity of FeCe6 was also confirmed by ESR study and cytochrome c reduction assay, but its in vitro activity appeared to be less efficient in comparison with other well-known SOD mimics. In addition, FeCe6 appreciably diminished hydroxyl radical-induced DNA single-strand breakage and protein degradation in Fe-catalyzed and Cu-catalyzed Fenton systems, and it significantly protected human endothelial cells against hydrogen peroxide (H2O2) toxicity. These results suggest that FeCe6 is a novel hydroxyl radical scavenger and may be useful for preventing oxidative injury in biological systems.
Collapse
Affiliation(s)
- J W Yu
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
24
|
Turcotte S, Averill-Bates DA. Sensitization to the cytotoxicity of melphalan by ethacrynic acid and hyperthermia in drug-sensitive and multidrug-resistant Chinese hamster ovary cells. Radiat Res 2001; 156:272-82. [PMID: 11500136 DOI: 10.1667/0033-7587(2001)156[0272:sttcom]2.0.co;2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ability of physical and pharmacological modulators to increase the cytotoxicity of melphalan was investigated in Chinese hamster ovary cells using a clonogenic cell survival assay. Hyperthermia has potential for use in cancer treatment, particularly as an adjuvant to chemotherapy or radiotherapy. Ethacrynic acid is a glutathione S-transferase inhibitor and also undergoes conjugation with glutathione. Interactions between hyperthermia (41-43 degrees C), ethacrynic acid and melphalan were evaluated in multidrug-resistant (CH(R)C5) cells with overexpression of P-glycoprotein (33.69-fold), and in drug-sensitive (AuxB1) cells. GST alpha was expressed at a higher level (3.65-fold) in CH(R)C5 cells than in sensitive cells, whereas levels of isoforms pi and mu were the same. GST pi was the most highly expressed isoform in the two cell populations. Ethacrynic acid was cytotoxic at elevated temperatures, while it caused little or no cytotoxicity at 37 degrees C. This effect occurred in drug-resistant and drug-sensitive cells, and attributes thermosensitizing properties to ethacrynic acid. Ethacrynic acid (20 microM) alone did not alter the cytotoxicity of melphalan at 37 degrees C. Hyperthermia potentiated drug cytotoxicity in cells, both with and without ethacrynic acid treatment. Ethacrynic acid could be useful in cancer treatment by acting as a thermosensitizer when combined with heat and by enhancing the cytotoxicity of melphalan at elevated temperatures. A major advantage arising from the use of regional hyperthermia is the ability to target drug cytotoxicity to the tumor volume. A useful finding is that ethacrynic acid, heat and/or melphalan are also effective against multidrug-resistant cells with overexpression of P-glycoprotein.
Collapse
Affiliation(s)
- S Turcotte
- Département de Chimie et Biochimie/TOXEN, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, Québec H3C 3P8, Canada
| | | |
Collapse
|
25
|
Symons MC, Rusakiewicz S, Rees RC, Ahmad SI. Hydrogen peroxide: a potent cytotoxic agent effective in causing cellular damage and used in the possible treatment for certain tumours. Med Hypotheses 2001; 57:56-8. [PMID: 11421625 DOI: 10.1054/mehy.2000.1406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
H2O2, a highly reactive agent, can react under certain conditions with a variety of cellular components. These reactions include the lipid peroxidation of membrane and hydroxylation of proteins and DNA. The reactions can take place in the presence of oxygen and are fairly rapid, the H2O2 being converted to water and oxygen. Experiments were carried out in vitro to assess the ability of this agent to destroy cancer cells without generating dangerous by-products. The direct administration of aqueous H2O2 into solid tumours has the potential to cause tumour cell death. The efficacy of the use of H2O2 for treating 'solid' cancers will necessitate its delivery to the tumour site, for example by direct special multiple injection of H2O2 into a detectable tumour mass. We anticipate that, if suggested mode of delivery can be obtained, H2O2 can act as an anti-cancer drug with two distinct advantages over conventional chemotherapeutic agents: to produce minimal short- and long-term side-effects and is relatively cheap and cost effective.
Collapse
Affiliation(s)
- M C Symons
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | | | | | | |
Collapse
|
26
|
Tyihák E, Bocsi J, Timár F, Rácz G, Szende B. Formaldehyde promotes and inhibits the proliferation of cultured tumour and endothelial cells. Cell Prolif 2001; 34:135-41. [PMID: 11380483 PMCID: PMC6496578 DOI: 10.1046/j.1365-2184.2001.00206.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2000] [Accepted: 12/06/2000] [Indexed: 11/20/2022] Open
Abstract
Formaldehyde was applied in various doses (0.1-10.0 mM) to HT-29 human colon carcinoma and HUV-EC-C human endothelial cell cultures. Cell number, apoptotic and mitotic index as well as proportion of cells in S-phase was investigated by morphological methods and flow cytometry. Ten mM of formaldehyde caused high degree of cell damage and practically eradicated the cell cultures. One mM of formaldehyde enhanced apoptosis and reduced mitosis in both types of cell cultures, in a moderate manner. The low dose (0.1 mM) enhanced cell proliferation and decreased apoptotic activity of the cultured cells, the tumour cells appeared to be more sensitive. The possible role of this dose-dependent effect of formaldehyde in various pathological conditions, such as carcinogenesis and atherogenesis is discussed with emphasis on the eventual interaction between formaldehyde and hydrogen peroxide.
Collapse
Affiliation(s)
- E Tyihák
- Plant Protection Institute, Hungarian Academy of Sciences, Molecular Pathology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
27
|
Lord-Fontaine S, Agostinelli E, Przybytkowski E, Averill-Bates DA. Amine oxidase, spermine, and hyperthermia induce cytotoxicity in P-glycoprotein overexpressing multidrug resistant Chinese hamster ovary cells. Biochem Cell Biol 2001. [DOI: 10.1139/o00-097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance is a major obstacle for the successful use of chemotherapy. The multidrug resistance phenotype is often attributed to overexpression of P-glycoprotein, which is an energy-dependent drug efflux pump. We investigated a new strategy to overcome multidrug resistance, using purified bovine serum amine oxidase, which generates two major toxic products from the polyamine spermine. The cytotoxicity of the aldehyde(s) and H2O2, produced by the enzymatic oxidation of micromolar concentrations of spermine, was evaluated in multidrug resistant Chinese hamster ovary cells CHRC5 with overexpression of P-glycoprotein, using a clonogenic cell survival assay. We examined the ability of hyperthermia (42°C), and inhibition of cellular detoxification systems, to sensitize multidrug resistant cells to spermine oxidation products. Severe depletion of intracellular glutathione was achieved using L-buthionine sulfoximine and inhibition of glutathione S-transferase by ethacrynic acid. CHRC5 cells showed no resistance to the toxic oxidation products of spermine, relative to drug-sensitive AuxB1 cells. Exogenous catalase protected cells against cytotoxicity of H2O2, but spermine-derived aldehyde(s) still caused some cytotoxicity. Hyperthermia (42°C) enhanced cytotoxicity of spermine oxidation products. Cytotoxic responses in CHRC5 cells were compared to the drug-sensitive cells, to determine whether there are differential responses. CHRC5 cells were more sensitive to the cytotoxic effect of spermine oxidation products under more extreme conditions (higher temperature, higher spermine concentration, and longer exposure time). Glutathione depletion or glutathione S-transferase inhibition also led to enhanced cytotoxicity of spermine oxidation products in CHRC5 and AuxB1 cells. Our findings suggest that hyperthermia, combined with toxic oxidation products generated from spermine and amine oxidase, could be useful for eliminating drug-sensitive and multidrug resistant cells.Key words: amine oxidase, spermine, multidrug resistance, P-glycoprotein, hyperthermia.
Collapse
|
28
|
Griffin RJ, Lee SH, Rood KL, Stewart MJ, Lyons JC, Lew YS, Park H, Song CW. Use of arsenic trioxide as an antivascular and thermosensitizing agent in solid tumors. Neoplasia 2000; 2:555-60. [PMID: 11228548 PMCID: PMC1508087 DOI: 10.1038/sj.neo.7900123] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Arsenic trioxide, As2O3 (ATO), has been found to be an effective chemotherapeutic for acute promyelocytic leukemia but its effect on solid tumors has not been fully explored. In the present report, we describe our observation that ATO is a potent antivascular agent and that it markedly enhances the effect of hyperthermia on tumors. The tumor blood perfusion in SCK tumors of A/J mice and FSaII tumors of C3H mice was significantly suppressed for up to 24 hours after an i.p. injection of 8 mg/kg ATO. ATO was also found to be able to increase the thermosensitivity of tumor cells in vitro. As a probable consequence of these effects, ATO treatment markedly increased the tumor growth delay caused by hyperthermia at 41.5 to 42.5 degrees C. Immunohistochemical staining of tumor tissue revealed that the expression levels of several adhesion molecules and TNFalpha are noticeably increased in tumors 2 to 6 hours after systemic ATO treatment. It is concluded that ATO is potentially useful to enhance the effect of hyperthermia on tumors at a clinically relevant temperature.
Collapse
Affiliation(s)
- R J Griffin
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Babich H, Reisbaum AG, Zuckerbraun HL. In vitro response of human gingival epithelial S-G cells to resveratrol. Toxicol Lett 2000; 114:143-53. [PMID: 10713479 DOI: 10.1016/s0378-4274(99)00288-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
WST-1 (mitochondrial dehydrogenase activities). Arrest of cell growth, due to inhibition of DNA synthesis, may explain the leveling of toxicity between day 2 and 3 for a 3-day continuous exposure to resveratrol. Irreversible damage to cell proliferation was noted in S-G cells exposed to 75-150 microM resveratrol for 2 days and then subsequently maintained for another 3 days in resveratrol-free medium. The cytotoxicity of resveratrol was neither potentiated nor ameliorated in the presence of an hepatic S9 microsomal fraction. The cytotoxicity of hydrogen peroxide to S-G cells was lessened by N-acetyl-L-cysteine and quercetin, but not by resveratrol. For nitric oxide, only N-acetyl-L-cysteine reduced toxicity. The ability of resveratrol to function as an antioxidant was, therefore, not noted under these test conditions.
Collapse
Affiliation(s)
- H Babich
- Stern College for Women, Yeshiva University, Department of Biology, 245 Lexington Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
30
|
Khadir A, Verreault J, Averill DA. Inhibition of antioxidants and hyperthermia enhance bleomycin-induced cytotoxicity and lipid peroxidation in Chinese hamster ovary cells. Arch Biochem Biophys 1999; 370:163-75. [PMID: 10510274 DOI: 10.1006/abbi.1999.1393] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. Heat enhances the cytotoxic effect of certain anticancer agents such as bleomycin, but the mechanisms involved in cell killing are currently unknown. Bleomycin generates reactive oxygen species. It is likely that hyperthermia itself also increases oxidative stress in cells. We evaluate whether oxidative stress has a role in the mechanism of cell death caused by bleomycin and heat in Chinese hamster ovary cells. Heat (41 to 44 degrees C) increased cytotoxicity of bleomycin, evaluated by clonogenic cell survival. Decreased levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus enhancing cytotoxic responses to heat and to oxidant-generating drugs. We determine the involvement of four major cellular antioxidant defenses, superoxide dismutase (SOD), the glutathione redox cycle (GSH cycle), catalase, and glutathione S-transferase (GST), in cellular sensitivity to bleomycin, alone or combined with hyperthermia. These cellular defenses were inhibited by diethyldithiocarbamate, l-buthionine sulfoximine, aminotriazole, and ethacrynic acid, respectively. We show that levels of antioxidants (SOD, GSH cycle, and GST) affect cellular cytotoxic responses to bleomycin, at normal and elevated temperatures (41 to 44 degrees C), suggesting the involvement of oxidative stress. Bleomycin and iron caused oxidative damage to membrane lipids in intact cells, at 37 and 43 degrees C. Lipid peroxidation was evaluated by fluorescence detection of thiobarbituric acid-reactive products. There was an increase in damage to membrane lipids when the antioxidant defenses, SOD and catalase, were inhibited. The differing effects of antioxidant inhibitors on bleomycin-induced cytotoxicity and membrane lipid damage suggest that different mechanisms are involved in these two processes. However, free radicals appear to be involved in both cases. The marked sensitization of cells by diethyldithiocarbamate, to both bleomycin-induced cytotoxicity and lipid peroxidation, suggests that superoxide could be involved in both of these processes.
Collapse
Affiliation(s)
- A Khadir
- Département de chimie et biochimie, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, Québec, H3C 3P8, Canada
| | | | | |
Collapse
|