2
|
Mizuno Y, Ninomiya Y, Nakachi Y, Iseki M, Iwasa H, Akita M, Tsukui T, Shimozawa N, Ito C, Toshimori K, Nishimukai M, Hara H, Maeba R, Okazaki T, Alodaib ANA, Amoudi MA, Jacob M, Alkuraya FS, Horai Y, Watanabe M, Motegi H, Wakana S, Noda T, Kurochkin IV, Mizuno Y, Schönbach C, Okazaki Y. Tysnd1 deficiency in mice interferes with the peroxisomal localization of PTS2 enzymes, causing lipid metabolic abnormalities and male infertility. PLoS Genet 2013; 9:e1003286. [PMID: 23459139 PMCID: PMC3573110 DOI: 10.1371/journal.pgen.1003286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/12/2012] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes are subcellular organelles involved in lipid metabolic processes, including those of very-long-chain fatty acids and branched-chain fatty acids, among others. Peroxisome matrix proteins are synthesized in the cytoplasm. Targeting signals (PTS or peroxisomal targeting signal) at the C-terminus (PTS1) or N-terminus (PTS2) of peroxisomal matrix proteins mediate their import into the organelle. In the case of PTS2-containing proteins, the PTS2 signal is cleaved from the protein when transported into peroxisomes. The functional mechanism of PTS2 processing, however, is poorly understood. Previously we identified Tysnd1 (Trypsin domain containing 1) and biochemically characterized it as a peroxisomal cysteine endopeptidase that directly processes PTS2-containing prethiolase Acaa1 and PTS1-containing Acox1, Hsd17b4, and ScpX. The latter three enzymes are crucial components of the very-long-chain fatty acids β-oxidation pathway. To clarify the in vivo functions and physiological role of Tysnd1, we analyzed the phenotype of Tysnd1(-/-) mice. Male Tysnd1(-/-) mice are infertile, and the epididymal sperms lack the acrosomal cap. These phenotypic features are most likely the result of changes in the molecular species composition of choline and ethanolamine plasmalogens. Tysnd1(-/-) mice also developed liver dysfunctions when the phytanic acid precursor phytol was orally administered. Phyh and Agps are known PTS2-containing proteins, but were identified as novel Tysnd1 substrates. Loss of Tysnd1 interferes with the peroxisomal localization of Acaa1, Phyh, and Agps, which might cause the mild Zellweger syndrome spectrum-resembling phenotypes. Our data established that peroxisomal processing protease Tysnd1 is necessary to mediate the physiological functions of PTS2-containing substrates.
Collapse
Affiliation(s)
- Yumi Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yuichi Ninomiya
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yutaka Nakachi
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Mioko Iseki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Hiroyasu Iwasa
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Masumi Akita
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Tohru Tsukui
- Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Chizuru Ito
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyotaka Toshimori
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Megumi Nishimukai
- Laboratory of Nutritional Biochemistry, Research Group of Food Science, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Hara
- Laboratory of Nutritional Biochemistry, Research Group of Food Science, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Ali Nasser Ali Alodaib
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- The National Newborn Screening Laboratory, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Al Amoudi
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- The National Newborn Screening Laboratory, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Minnie Jacob
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- The National Newborn Screening Laboratory, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Fowzan S. Alkuraya
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Yasushi Horai
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Mitsuhiro Watanabe
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- Graduate School of Media and Governance, Keio University, Tokyo, Japan
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Hiromi Motegi
- Team for Advanced Development and Evaluation of Human Disease Models, Japan Mouse Clinic, BioResource Center (BRC), Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- The Japan Mouse Clinic, RIKEN BioResource Center (BRC), Tsukuba, Ibaraki, Japan
| | - Tetsuo Noda
- Team for Advanced Development and Evaluation of Human Disease Models, Japan Mouse Clinic, BioResource Center (BRC), Tsukuba, Ibaraki, Japan
- The Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Igor V. Kurochkin
- Genome and Gene Expression Data Analysis Division, Bioinformatics Institute, A*STAR, Singapore, Republic of Singapore
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Christian Schönbach
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| |
Collapse
|