1
|
Gandullo J, Álvarez R, Feria AB, Monreal JA, Díaz I, Vidal J, Echevarría C. A conserved C-terminal peptide of sorghum phosphoenolpyruvate carboxylase promotes its proteolysis, which is prevented by Glc-6P or the phosphorylation state of the enzyme. PLANTA 2021; 254:43. [PMID: 34355288 PMCID: PMC8342391 DOI: 10.1007/s00425-021-03692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION A synthetic peptide from the C-terminal end of C4-phosphoenolpyruvate carboxylase is implicated in the proteolysis of the enzyme, and Glc-6P or phosphorylation of the enzyme modulate this effect. Phosphoenolpyruvate carboxylase (PEPC) is a cytosolic, homotetrameric enzyme that performs a variety of functions in plants. Among them, it is primarily responsible for CO2 fixation in the C4 photosynthesis pathway (C4-PEPC). Here we show that proteolysis of C4-PEPC by cathepsin proteases present in a semi-purified PEPC fraction was enhanced by the presence of a synthetic peptide containing the last 19 amino acids from the C-terminal end of the PEPC subunit (pC19). Threonine (Thr)944 and Thr948 in the peptide are important requirements for the pC19 effect. C4-PEPC proteolysis in the presence of pC19 was prevented by the PEPC allosteric effector glucose 6-phosphate (Glc-6P) and by phosphorylation of the enzyme. The role of these elements in the regulation of PEPC proteolysis is discussed in relation to the physiological context.
Collapse
Affiliation(s)
- Jacinto Gandullo
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Ana-Belén Feria
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - José-Antonio Monreal
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Autovía M40 (km 38), Pozuelo de Alarcón, 28034, Madrid, Spain
| | - Jean Vidal
- Institut de Biotechnologie des Plantes, UMR8618, Bâtiment 630, Université de Paris-Sud 11, 91405, Orsay, Cedex, France
| | - Cristina Echevarría
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain.
| |
Collapse
|
2
|
Minges A, Janßen D, Offermann S, Groth G. Efficient In Vivo Screening Method for the Identification of C 4 Photosynthesis Inhibitors Based on Cell Suspensions of the Single-Cell C 4 Plant Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2019; 10:1350. [PMID: 31736996 PMCID: PMC6831552 DOI: 10.3389/fpls.2019.01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/01/2019] [Indexed: 05/17/2023]
Abstract
The identification of novel herbicides is of crucial importance to modern agriculture. We developed an efficient in vivo assay based on oxygen evolution measurements using suspensions of chlorenchyma cells isolated from the single-cell C4 plant Bienertia sinuspersici to identify and characterize inhibitors of C4 photosynthesis. This novel approach fills the gap between conventional in vitro assays for inhibitors targeting C4 key enzymes and in vivo experiments on whole plants. The assay addresses inhibition of the target enzymes in a plant context thereby taking care of any reduced target inhibition due to metabolization or inadequate uptake of small molecule inhibitors across plant cell walls and membranes. Known small molecule inhibitors targeting C4 photosynthesis were used to validate the approach. To this end, we tested pyruvate phosphate dikinase inhibitor bisindolylmaleimide IV and phosphoenolpyruvate carboxylase inhibitor okanin. Both inhibitors show inhibition of plant photosynthesis at half-maximal inhibitory concentrations in the sub-mM range and confirm their potential to act as a new class of C4 selective inhibitors.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Dominik Janßen
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Georg Groth,
| |
Collapse
|
3
|
Cheng G, Wang L, Lan H. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microb Technol 2015; 83:57-67. [PMID: 26777251 DOI: 10.1016/j.enzmictec.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of C4 photosynthetic pathway and plays an important biochemical role in higher plants and micro organisms. To gain understanding of the role of PEPC in stress adaptation in plant, we cloned PEPC gene from Suaeda aralocaspica, a C4 species without Kranz anatomy, and performed a series of experiments with PEPC gene expressed in Escherichia coli under various abiotic stresses. Results showed that, based on the homology cloning and 5'-RACE technique, the full-length cDNA sequence of PEPC (2901 bp) from S. aralocaspica was obtained, which shares the typical conserved domains to documented PEPCs and was identified as PEPC-1 in accord to the reported partial sequence (ppc-1) in S. aralocaspica. qRT-PCR analysis revealed the expression patterns of PEPC-1 and PEPC-2 (known as ppc-2, another plant type of PEPC) in S. aralocaspica, suggesting that PEPC-1 was up-regulated during seed germination and under NaCl stress, and presented higher level in chlorenchyma than other tissues, which were significantly different with PEPC-2. Afterwards, PEPC-1 was recombinant in E. coli (pET-28a-PEPC) and expressed as an approximate 110 kDa protein. Under various abiotic stresses, the recombinant E. coli strain harboring with PEPC-1 showed significant advantage in growth at 400-800 mmol L(-1) NaCl, 10-20% PEG6000, 25 and 30 °C lower temperature, 50-200 μmol L(-1) methyl viologen, and pH 5.0 and 9.0 condition, compared to control. Further analysis of the enzymatic characteristics of the recombinant PEPC-1 suggests that it was the higher enzyme activity of PEPC-1 which might confer the stress tolerance to E. coli. We speculate that over expression of PEPC-1 is probably related to regulation of oxaloacetate (OAA) in tricarboxylic acid (TCA) cycle in E. coli, which may contribute to further understanding of the physiological function of PEPC in S. aralocaspica.
Collapse
Affiliation(s)
- Gang Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Lu Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Lin CF, Wei C, Jiang LZ, Li KG, Qian XY, Attia K, Yang JS. Isolation, Characterization and Expression Analysis of a Leaf-specific Phosphoenolpyruvate Carboxylase Gene inOryza sativa. ACTA ACUST UNITED AC 2009; 15:269-76. [PMID: 15620214 DOI: 10.1080/10425170412331279648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Suppression subtractive hybridization was carried out to enrich gene fragments over-expressed in rice leaves by subtraction to rice roots, from which two identical cDNA fragments were identified to encode putative phosphoenolpyruvate carboxylase. Then the corresponding full-length cDNA (Osppc) is isolated by RT-PCR and sequenced, which indicates an open reading frame of 2895bp is contained. Its deduced protein is encoded in 10 exons and shows high similarity to many other plant PEPCs. Comparing with maize and bacterial PEPCs, it is revealed that OSPPC shares many conserved domains and active sites that responsible for the structure, activity and regulation of this enzyme. Phylogenetic analysis demonstrates that OSPPC is grouped with C3 form PEPCs of wheat, maize and sorghum, which is consistent with the classification of rice. And a putative promoter element is predicted with DOF binding box, CAAT box and TATA box in the 5'-flanking sequence of Osppc gene. Moreover, Quantitative RT-PCR analyses are performed in hybrid rice and its parents, which show that Osppc is specifically expressed in leaf including leaf vein and sheath.
Collapse
Affiliation(s)
- Chang-Fa Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
5
|
Lara MV, Chuong SDX, Akhani H, Andreo CS, Edwards GE. Species having C4 single-cell-type photosynthesis in the Chenopodiaceae family evolved a photosynthetic phosphoenolpyruvate carboxylase like that of Kranz-type C4 species. PLANT PHYSIOLOGY 2006; 142:673-84. [PMID: 16920871 PMCID: PMC1586054 DOI: 10.1104/pp.106.085829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 08/13/2006] [Indexed: 05/05/2023]
Abstract
Spatial and temporal regulation of phosphoenolpyruvate carboxylase (PEPC) is critical to the function of C(4) photosynthesis. The photosynthetic isoform of PEPC in the cytosol of mesophyll cells in Kranz-type C(4) photosynthesis has distinctive kinetic and regulatory properties. Some species in the Chenopodiaceae family perform C(4) photosynthesis without Kranz anatomy by spatial separation of initial fixation of atmospheric CO(2) via PEPC from C(4) acid decarboxylation and CO(2) donation to Rubisco within individual chlorenchyma cells. We studied molecular and functional features of PEPC in two single-cell functioning C(4) species (Bienertia sinuspersici, Suaeda aralocaspica) as compared to Kranz type (Haloxylon persicum, Salsola richteri, Suaeda eltonica) and C(3) (Suaeda linifolia) chenopods. It was found that PEPC from both types of C(4) chenopods displays higher specific activity than that of the C(3) species and shows kinetic and regulatory characteristics similar to those of C(4) species in other families in that they are subject to light/dark regulation by phosphorylation and display differential malate sensitivity. Also, the deduced amino acid sequence from leaf cDNA indicates that the single-cell functioning C(4) species possesses a Kranz-type C(4) isoform with a Ser in the amino terminal. A phylogeny of PEPC shows that isoforms in the two single-cell functioning C(4) species are in a clade with the C(3) and Kranz C(4) Suaeda spp. with high sequence homology. Overall, this study indicates that B. sinuspersici and S. aralocaspica have a C(4)-type PEPC similar to that in Kranz C(4) plants, which likely is required for effective function of C(4) photosynthesis.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina
| | | | | | | | | |
Collapse
|
6
|
Matsumura H, Izui K, Mizuguchi K. A novel mechanism of allosteric regulation of archaeal phosphoenolpyruvate carboxylase: a combined approach to structure-based alignment and model assessment. Protein Eng Des Sel 2006; 19:409-19. [PMID: 16815866 DOI: 10.1093/protein/gzl025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) and plays a crucial role in fixing atmospheric CO(2) in C(4) and CAM plants. The enzyme is widespread in plants and bacteria and mostly regulated allosterically by both positive and negative effectors. Archaeal PEPCs (A-PEPCs) have unique characteristics in allosteric regulation and molecular mass, distinct from their bacterial and eukaryote homologues, and their amino acid sequences have become available only recently. In this paper, we generated a structure-based alignment of archaeal, bacterial and eukaryote PEPCs and built comparative models using a combination of fold recognition, sequence and structural analysis tools. Our comparative modeling analysis identified A-PEPC-specific strong interactions between the two loops involved in both allostery and catalysis, which explained why A-PEPC is not influenced by any allosteric activators. We also found that the side-chain located three residues before the C-terminus appears to play a key role in determining the sensitivity to allosteric inhibitors. In addition to these unique features, we revealed how archaeal, bacterial and eukaryote PEPCs would share a common catalytic mechanism and adopt a similar mode of tetramer formation, despite their divergent sequences. Our novel observations will help design more efficient molecules for ecological and industrial use.
Collapse
|
7
|
Xu W, Ahmed S, Moriyama H, Chollet R. The Importance of the Strictly Conserved, C-terminal Glycine Residue in Phosphoenolpyruvate Carboxylase for Overall Catalysis. J Biol Chem 2006; 281:17238-17245. [PMID: 16624802 DOI: 10.1074/jbc.m602299200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a "multifaceted," allosteric enzyme involved in C4 acid metabolism in green plants/microalgae and prokaryotes. Before the elucidation of the three-dimensional structures of maize C4 leaf and Escherichia coli PEPC, our truncation analysis of the sorghum C4 homologue revealed important roles for the enzyme's C-terminal alpha-helix and its appended QNTG961 tetrapeptide in polypeptide stability and overall catalysis, respectively. Collectively, these functional and structural observations implicate the importance of the PEPC C-terminal tetrapeptide for both catalysis and negative allosteric regulation. We have now more finely dissected this element of PEPC structure-function by modification of the absolutely conserved C-terminal glycine of the sorghum C4 isoform by site-specific mutagenesis (G961(A/V/D)) and truncation (DeltaC1/C4). Although the C4 polypeptide failed to accumulate in a PEPC- strain (XH11) of E. coli transformed with the Asp mutant, the other variants were produced at wild-type levels. Although neither of these four mutants displayed an apparent destabilization of the purified PEPC homotetramer, all were compromised catalytically in vivo and in vitro. Functional complementation of XH11 cells under selective growth conditions was restricted progressively by the Ala, DeltaC1 and Val, and DeltaC4 modifications. Likewise, steady-state kinetic analysis of the purified mutant enzymes revealed corresponding negative trends in kcat and kcat/K0.5 (phosphoenolpyruvate) but not in K0.5 or the Hill coefficient. Homology modeling of these sorghum C-terminal variants against the structure of the closely related maize C4 isoform predicted perturbations in active-site molecular cavities and/or ion-pairing with essential, invariant Arg-638. These collective observations reveal that even a modest, neutral alteration of the PEPC C-terminal hydrogen atom side chain is detrimental to enzyme function.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Biochemistry, Lincoln, Nebraska 68588-0664
| | - Shaheen Ahmed
- Department of Biochemistry, Lincoln, Nebraska 68588-0664
| | | | - Raymond Chollet
- Department of Biochemistry, Lincoln, Nebraska 68588-0664; Plant Science Initiative, University of Nebraska, Lincoln, Nebraska 68588-0664.
| |
Collapse
|
8
|
Mamedov TG, Moellering ER, Chollet R. Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:832-43. [PMID: 15941397 DOI: 10.1111/j.1365-313x.2005.02416.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC [Ppc]) has been previously purified and characterized in biochemical and immunological terms from two green microalgae, Chlamydomonas reinhardtii and Selenastrum minutum. The findings indicate that these algae possess at least two distinct PEPC enzyme-forms, homotetrameric Class-1 and heteromeric Class-2, that differ significantly from each other and their plant and prokaryotic counterparts. Surprisingly, however, green-algal PEPC has been unexplored to date in molecular terms. This study reports the molecular cloning of the two Ppc genes in C. reinhardtii (CrPpc1, CrPpc2), each of which is transcribed in vivo and encodes a fully active, recombinant PEPC that lacks the regulatory, N-terminal seryl-phosphorylation domain that typifies the vascular-plant enzyme. These distinct catalytic subunit-types differ with respect to their (i) predicted molecular mass ( approximately 108.9 [CrPpc1] versus approximately 131.2 kDa [CrPpc2]) and critical C-terminal tetrapeptide; and (ii) immunoreactivity with antisera against the p102 and p130 polypeptides of S. minutum PEPC1/PEPC2 and PEPC2, respectively. Only the Ppc1 transcript encodes the p102 catalytic subunits common to both Class-1 and Class-2 enzyme-forms in C. reinhardtii. The steady-state transcript levels of both CrPpc1/2 are coordinately up-/down-regulated by changes in [CO2] or [NH] during growth, and generally mirror the response of cytoplasmic glutamine synthetase (Gs1) transcript abundance to changes in inorganic [N] at 5% CO2. These collective findings provide key molecular insight into the Ppc genes and corresponding PEPC catalytic subunits in the eukaryotic algae.
Collapse
Affiliation(s)
- Tarlan G Mamedov
- Department of Biochemistry, University of Nebraska-Lincoln, George W. Beadle Center, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
9
|
Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:69-84. [PMID: 15725057 DOI: 10.1146/annurev.arplant.55.031903.141619] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There have been remarkable advances in our knowledge of this important enzyme in the last decade. This review focuses on three recent topics: the three-dimensional structure of the protein, molecular mechanisms of catalytic and regulatory functions, and the molecular cloning and characterization of PEPC kinases, which are Ser/Thr kinases involved specifically in regulatory phosphorylation of vascular plant PEPC. Analysis by X-ray crystallography and site-directed mutagenesis for E. coli and maize PEPC identified the catalytic site and allosteric effector binding sites, and revealed the functional importance of mobile loops. We present the reaction mechanism of PEPC in which we assign the roles of individual amino acid residues. We discuss the unique molecular property of PEPC kinase and its possible regulation at the post-translational level.
Collapse
Affiliation(s)
- Katsura Izui
- Laboratory of Plant Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
10
|
Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 2003; 414:170-9. [PMID: 12781768 DOI: 10.1016/s0003-9861(03)00170-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) to form oxaloacetate and Pi using Mg2+ or Mn2+ as a cofactor. PEPC plays a key role in photosynthesis by C4 and Crassulacean acid metabolism plants, in addition to its many anaplerotic functions. Recently, three-dimensional structures of PEPC from Escherichia coli and the C4 plant maize (Zea mays) were elucidated by X-ray crystallographic analysis. These structures reveal an overall square arrangement of the four identical subunits, making up a "dimer-of-dimers" and an eight-stranded beta barrel structure. At the C-terminal region of the beta barrel, the Mn2+ and a PEP analog interact with catalytically essential residues, confirmed by site-directed mutagenesis studies. At about 20A from the beta barrel, an allosteric inhibitor (aspartate) was found to be tightly bound to down-regulate the activity of the E. coli enzyme. In the case of maize C4-PEPC, the putative binding site for an allosteric activator (glucose 6-phosphate) was also revealed. Detailed comparison of the various structures of E. coli PEPC in its inactive state with maize PEPC in its active state shows that the relative orientations of the two subunits in the basal "dimer" are different, implicating an allosteric transition. Dynamic movements were observed for several loops due to the binding of either an allosteric inhibitor, a metal cofactor, a PEP analog, or a sulfate anion, indicating the functional significance of these mobile loops in catalysis and regulation. Information derived from these three-dimensional structures, combined with related biochemical studies, has established models for the reaction mechanism and allosteric regulation of this important C-fixing enzyme.
Collapse
|
11
|
Alvarez R, García-Mauriño S, Feria AB, Vidal J, Echevarría C. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. PLANT PHYSIOLOGY 2003; 132:1097-1106. [PMID: 12805637 PMCID: PMC167047 DOI: 10.1104/pp.103.023937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 03/25/2003] [Accepted: 03/25/2003] [Indexed: 05/24/2023]
Abstract
Higher plant phosphoenolpyruvate carboxylase (PEPC) is subject to in vivo phosphorylation of a regulatory serine located in the N-terminal domain of the protein. Studies using synthetic peptide substrates and mutated phosphorylation domain photosynthetic PEPC (C4 PEPC) suggested that the interaction of phosphoenolpyruvate carboxylase kinase (PEPCk) with its target was not restricted to this domain. However, no further information was available as to where PEPCk-C4 PEPC interactions take place. In this work, we have studied the possible interaction of the conserved 19-amino acid C-terminal sequence of sorghum (Sorghum vulgare Pers cv Tamaran) C4 PEPC with PEPCk. In reconstituted assays, a C-terminal synthetic peptide containing this sequence (peptide C19) was found to inhibit the phosphorylation reaction by the partially purified Ca2+-independent PEPCk (50% inhibition of initial activity = 230 microm). This effect was highly specific because peptide C19 did not alter C4 PEPC phosphorylation by either a partially purified sorghum leaf Ca2+-dependent protein kinase or the catalytic subunit of mammalian protein kinase A. In addition, the Ca2+-independent PEPCk was partially but significantly retained in affinity chromatography using a peptide C19 agarose column. Because peptide C15 (peptide C19 lacking the last four amino acids, QNTG) also inhibited C4 PEPC phosphorylation, it was concluded that the amino acid sequence downstream from the QNTG motif was responsible for the inhibitory effect. Specific antibodies raised against peptide C19 revealed that native C4 PEPC could be in two different conformational states. The results are discussed in relation with the reported crystal structure of the bacterial (Escherichia coli) and plant (maize [Zea mays]) enzymes.
Collapse
Affiliation(s)
- Rosario Alvarez
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Number 6, Spain
| | | | | | | | | |
Collapse
|
12
|
Ermolova NV, Ann Cushman M, Taybi T, Condon SA, Cushman JC, Chollet R. Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced Mesembryanthemum crystallinum with enhanced solubility in Escherichia coli. Protein Expr Purif 2003; 29:123-31. [PMID: 12729733 DOI: 10.1016/s1046-5928(03)00014-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant phosphoenolpyruvate-carboxylase kinase (PEPC-kinase [PpcK]) is the smallest Ser/Thr kinase identified to date, having a molecular mass of approximately 32,000. This novel, monomeric kinase is dedicated to the phosphorylation of plant PEPC, thereby regulating this target enzyme's activity and allosteric properties. Although several recombinant, non-fusion PpcK proteins have been produced recently in Escherichia coli, these are plagued by their high degree of insolubility. Here, we report the use of the native, E. coli NusA protein and a related E. coli expression vector (pET-43a(+) [Novagen]) for enhancing the solubility of this recalcitrant Ser/Thr kinase at least 10-fold by its production as a dual 6xHis-tagged NusA/McPpcK1 fusion protein, which accounts for approximately 10% of the soluble protein fraction from induced cells. Capture of this fusion protein from the centrifuged cell extract by immobilized metal (Ni(2+)) affinity-chromatography, its "on-bead" cleavage by thrombin, and subsequent elution yielded milligram quantities of a "free," approximately 36-kDa form of PpcK for further purification by fast-protein liquid chromatography on blue dextran-agarose or preparative SDS-PAGE. Steady-state kinetic analysis of the former, active preparation revealed that this dedicated kinase discriminates against neither various isoforms of plant PEPC nor certain mutant forms of recombinant C(4) PEPC. Alternatively, the latter, electrophoretically homogeneous sample of the approximately 36-kDa polypeptide was used as antigen for polyclonal-antibody production in rabbits. The antibodies against the recombinant McPpcK1 from Mesembryanthemum crystallinum cross-reacted on Western blots with an enriched preparation of the maize-leaf kinase, but not with the parent crude extract, thus directly documenting this protein's extremely low abundance in vivo. However, these antibodies were effective in immunoprecipitating 32P-based PpcK activity from crude, desalted extracts of maize leaves and soybean root-nodules.
Collapse
Affiliation(s)
- Natalia V Ermolova
- Department of Biochemistry, University of Nebraska-Lincoln, George W. Beadle Center, 68588-0664, Lincoln, NE, USA
| | | | | | | | | | | |
Collapse
|
13
|
Matsumura H, Xie Y, Shirakata S, Inoue T, Yoshinaga T, Ueno Y, Izui K, Kai Y. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Structure 2002; 10:1721-30. [PMID: 12467579 DOI: 10.1016/s0969-2126(02)00913-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) catalyzes the first step in the fixation of atmospheric CO(2) during C(4) photosynthesis. The crystal structure of C(4) form maize PEPC (ZmPEPC), the first structure of the plant PEPCs, has been determined at 3.0 A resolution. The structure includes a sulfate ion at the plausible binding site of an allosteric activator, glucose 6-phosphate. The crystal structure of E. coli PEPC (EcPEPC) complexed with Mn(2+), phosphoenolpyruvate analog (3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate), and an allosteric inhibitor, aspartate, has also been determined at 2.35 A resolution. Dynamic movements were found in the ZmPEPC structure, compared with the EcPEPC structure, around two loops near the active site. On the basis of these molecular structures, the mechanisms for the carboxylation reaction and for the allosteric regulation of PEPC are proposed.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rivoal J, Trzos S, Gage DA, Plaxton WC, Turpin DH. Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high molecular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum. J Biol Chem 2001; 276:12588-97. [PMID: 11278626 DOI: 10.1074/jbc.m010150200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the chlorophyte Selenastrum minutum, phosphoenolpyruvate carboxylase (PEPC) exists as two kinetically distinct classes of isoforms sharing the same 102-kDa catalytic subunit (p102). Class 1 PEPC is homotetrameric, whereas Class 2 PEPCs consist of three large protein complexes. The different Class 2 PEPCs contain p102 and 130-, 73-, and 65-kDa polypeptides in different stoichiometric combinations. Immunoblot, immunoprecipitation, and chemical cross-linking studies indicated that p102 physically interacts with the 130-kDa polypeptide (p130) in Class 2 PEPCs. Immunological data and mass spectrometric and sequence analyses revealed that p102 and p130 are not closely related even if a p130 tryptic peptide had significant similarity to a conserved PEPC C-terminal domain from several sources. Evidence supporting the hypothesis that p130 has PEPC activity includes the following. (i) Specific activity expressed relative to the amount of p102 was lower in Class 1 than in Class 2 PEPCs; (ii) reductive pyridoxylation of both p102 and p130 was inhibited by magnesium-phosphoenolpyruvate; and (iii) biphasic phosphoenolpyruvate binding kinetics were observed with Class 2 PEPCs. These data support the view that unicellular green algae uniquely express, regulate, and assemble divergent PEPC polypeptides. This probably serves an adaptive purpose by poising these organisms for survival in different environments varying in nutrient content.
Collapse
Affiliation(s)
- J Rivoal
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | | | | | | | | |
Collapse
|