1
|
TGF-β1 induces type I collagen deposition in granulosa cells via the AKT/GSK-3β signaling pathway-mediated MMP1 down-regulation. Reprod Biol 2022; 22:100705. [DOI: 10.1016/j.repbio.2022.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
2
|
Wang W, Tan S, Yang Y, Zhou T, Xing D, Su B, Wang J, Li S, Shang M, Gao D, Dunham R, Liu Z. Feminization of channel catfish with 17β-oestradiol involves methylation and expression of a specific set of genes independent of the sex determination region. Epigenetics 2022; 17:1820-1837. [PMID: 35703353 DOI: 10.1080/15592294.2022.2086725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exogenous oestrogen 17β-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish (Ictalurus punctatus) during early sex differentiation after E2 treatment. Overall, the levels of global DNA methylation after E2 treatment were not significantly different from those of controls. However, a specific set of genes were differentially methylated, which included many sex differentiation-related pathways, such as MARK signalling, adrenergic signalling, Wnt signalling, GnRH signalling, ErbB signalling, and ECM-receptor interactions. Many genes involved in these pathways were also differentially expressed after E2 treatment. Specifically, E2 treatments resulted in upregulation of female-related genes and downregulation of male-related genes in genetic males during sex reversal. However, E2-induced sex reversal did not cause sex-specific changes in methylation profiles or gene expression within the sex determination region (SDR) on chromosome 4, suggesting that E2-induced sex reversal was a downstream process independent of the sex determination process that was regulated by sex-specific methylation within the SDR.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
3
|
Changes in Transcriptomic Profiles in Different Reproductive Periods in Yaks. BIOLOGY 2021; 10:biology10121229. [PMID: 34943144 PMCID: PMC8698885 DOI: 10.3390/biology10121229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary The molecular regulation mechanism of yak ovarian activity has attracted extensive attention. This study investigated the global gene expression profiles in different reproductive stages (anestrus, estrus, and pregnancy) by RNA-seq technology. Enrichment analysis revealed that DEGs were involved in the process of follicular growth, ovulation, and hormone metabolism. This study explored the regulation mechanism of the yak ovary in the reproductive cycle and laid a theoretical foundation for further understanding the reproductive characteristics of yak. Abstract Yak reproductive characteristics have received extensive attention, though the molecular regulation mechanism of its ovarian activity remains to be explored. Therefore, this study initially conducted a comparative analysis of yak ovarian activities in anestrus, estrus, and pregnancy regarding their morphology and histology, followed by implementing RNA sequencing (RNA-seq) technology to detect the overall gene expression and biological mechanism in different reproductive stages. H&E staining showed that there were more growing follicles and mature follicles in ovarian tissue sections during estrus than ovarian tissues during non-estrus. The RNA-seq analysis of yak ovary tissues in three periods showed that DEGs related to follicular development and hormone metabolism were screened in the three comparison groups, such as COL1A2, NR4A1, THBS2, PTGS2, SCARB1, STAR, and WNT2B. Bioinformatics analysis showed that these DEGs are involved in ion binding, cell development, metabolic processes, enriched in ECM–receptor interactions, steroid biosynthesis, together with aldosterone generation/discharge and Wnt/PI3K-Akt signaling pathways. In addition, we speculate alternate splice development events to have important role/s in regulating ovarian functional genomic expression profiles. These results provide essential knowledge aimed at scrutinizing pivotal biomarkers for yak ovarian activity, together with paving the way for enhancing researchers’ focus on improving yak reproductive performance.
Collapse
|
4
|
Li H, Chang HM, Shi Z, Leung PCK. The p38 signaling pathway mediates the TGF-β1-induced increase in type I collagen deposition in human granulosa cells. FASEB J 2020; 34:15591-15604. [PMID: 32996643 DOI: 10.1096/fj.202001377r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Type I collagen, which is mainly composed of collagen type I alpha 1 chain (COL1A1), is the most abundant extracellular matrix (ECM) protein in the mammalian ovary; and the cyclical remodeling of the ECM plays an essential role in the regulation of corpus luteum formation. Our previous studies have demonstrated that TGF-β1 is a potent inhibitor of luteinization in human granulosa-lutein (hGL) cells. Whether TGF-β1 can regulate the expression of COL1A1 during the luteal phase remains to be elucidated. The aim of this study was to investigate the effect of TGF-β1 on the regulation of COL1A1 expression and the underlying molecular mechanisms using an immortalized hGL cell line (SVOG cells) and primary hGL cells (obtained from 20 consenting patients undergoing IVF treatment). The results showed that TGF-β1 significantly upregulated the expression of COL1A1. Using inhibition approaches, including pharmacological inhibition (a specific p38 inhibitor, SB203580, and a specific ERK1/2 inhibitor, U0126) and specific siRNA-mediated knockdown inhibition, we demonstrated that TGF-β1 promoted the expression and production of COL1A1 in hGL cells, most likely via the ALK5-mediated p38 signaling pathway. Our findings provide insights into the molecular mechanisms by which TGF-β1 promotes the deposition of type I collagen during the late follicular phase in humans.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Xiong J, Wu M, Zhang Q, Zhang C, Xiong G, Ma L, Lu Z, Wang S. Proteomic analysis of mouse ovaries during the prepubertal stages. Exp Cell Res 2019; 377:36-46. [PMID: 30797753 DOI: 10.1016/j.yexcr.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/01/2022]
Abstract
Postnatal folliculogenesis, primordial follicle activation and follicular development at early stage are important for normal ovarian function and fertility, and a comprehensive understanding of this process under physiological condition is necessary. To observe the regulation and mechanism of ovarian follicle development during the prepubertal stages, we collected the mouse ovaries from three time points, including 1 day, 7 days, and 4 weeks after birth. We then performed a proteomic analysis using tandem mass tags (TMT) labeling combined with a two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique. A total of 706 proteins were determined to be significant differential abundance (P-SDA). Sixty upregulated proteins and 12 downregulated proteins that were P-SDA and 3 significant KEGG pathways (P < 0.05) were found at 7 days vs. 1 day after birth, while 237 upregulated proteins, 271 downregulated proteins and 42 significant KEGG pathways were found for 4 weeks vs. 7 days after birth. Some vital genes (Figla, Ooep, Padi6, Zp3, Hsd3b1, cyp11a1), key pathways (ECM-receptor interaction, focal adhesion, ovarian steroidogenesis, complement and coagulation cascades, PI3K/Akt/mTOR), and metabolic regulation (energy metabolism, lipid metabolism, metal ion metabolism) were found to be related to the postnatal folliculogenesis, primordial follicle activation and follicular development. Finally, qRT-PCR and western blotting verified some vital genes and further elucidated the developmental process of follicles, and the results may contribute to the understanding of the formation and activation of primordial follicle and follicular development. Significance: This study offers the first proteomic insights into mechanisms of follicle development under physiological condition during the prepubertal stages. By comparing P-SDA of mouse ovaries during various period of age, our data reveals that the regulation of primordial follicle formation and activation is significantly different from that of follicular development. These findings demonstrate that many unique molecular mechanisms underlie ovarian development could be used for ovarian disease research.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoping Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, China,Centre for Reproductive Medicine, Puren Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Cells with stem cell characteristics in somatic compartments of the ovary. BIOMED RESEARCH INTERNATIONAL 2012; 2013:310859. [PMID: 23484108 PMCID: PMC3591217 DOI: 10.1155/2013/310859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF), it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology.
Collapse
|
7
|
Abstract
Regulation of ovarian follicle development depends on endocrine- and paracrine-acting hormones, the 3-dimensional architecture of the follicle, and the physical rigidity of the surrounding tissue. These 3 forces are integrated throughout the life cycle of the follicle to ensure appropriate hormone secretion, differentiation of the somatic cells, and maturation of the oocyte. The process of in-follicle maturation provides a new tool for understanding ovarian follicle development under the influence of these factors.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | |
Collapse
|
8
|
Nakagawa K, Ohgi S, Kojima R, Sugawara K, Horikawa T, Ito M, Irahara M, Saito H. Recombinant-follicle stimulating hormone is more effective than urinary human menopausal gonadotropin in ovarian hyperstimulation for assisted reproductive technology treatment. Reprod Med Biol 2007; 6:27-32. [PMID: 29657551 PMCID: PMC5891765 DOI: 10.1111/j.1447-0578.2007.00161.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: The aim of the present study was to establish a standard protocol for ovarian stimulation with gonadotropin-releasing hormone analog (GnRH-a) long protocol using recombinant-follicle stimulating hormone (rec-FSH) preparations for assisted reproductive technology (ART) treatment. Methods: In 86 patients who underwent ovarian stimulation with GnRH-a long protocol for ART treatment, 53 were stimulated by rec-FSH preparations (rec-FSH group) and the others were stimulated by urinary-hMG (u-hMG group) preparations. The subjects were randomly assigned to either of these preparations. Hormonal profiles, total doses of gonadotropins, duration of stimulation and ART results were compared in both groups. Results: The duration of stimulation was similar in both groups (9.2 ± 0.3 days and 9.2 ± 0.2 days, respectively). The total doses of gonadotropin in the rec-FSH group (1505.3 ± 29.2 IU) was significantly lower than those in the u-hMG group (2130.3 ± 54.6 IU, P < 0.0001). The FSH and LH values on the day of human chorionic gonadotropin (hCG) administration in the rec-FSH group were significantly lower than those in the u-hMG group. Pregnancy rates were 31.3% in the rec-FSH group and 33.3% in the u-hMG group, respectively. Conclusions: The present study showed that rec-FSH preparations were more potent than conventional u-hMG preparations and the protocol of the present study with rec-FSH was a new ovarian stimulation protocol with GnRH-a long protocol. (Reprod Med Biol 2007; 6: 27-32).
Collapse
Affiliation(s)
- Koji Nakagawa
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| | - Shirei Ohgi
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| | - Rieko Kojima
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| | - Kana Sugawara
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| | - Takashi Horikawa
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| | - Megumu Ito
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| | - Minoaru Irahara
- Department of Obstetrics and Gynecology, School of Medicine, the University of Tokushima, Tokushima, Japan
| | - Hidekazu Saito
- Division of Reproductive Medicine, Department of Perinetal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo, and
| |
Collapse
|
9
|
Nakagawa K, Iwasaki W, Sato M, Ito M, Kawachiya S, Murashima A, Kitagawa M, Natori M, Saito H. Successful pregnancy, achieved by ovulation induction using a human menopausal gonadotropin low-dose step-up protocol in an infertile patient with Kallmann's syndrome. J Obstet Gynaecol Res 2005; 31:140-3. [PMID: 15771640 DOI: 10.1111/j.1341-8076.2005.00260.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A 25-year-old woman, diagnosed with Kallmann's syndrome and wanting to become pregnant, visited our hospital. Because her serum gonadotropin levels indicated hypogonadotropic hypogonadism, a main symptom of Kallmann's syndrome, we attempted to induce ovulation using a low-dose human menopausal gonadotropin (hMG) step-up protocol. In this protocol, 75 IU of hMG was used as an initial dose and this was continued for the first 14 days because adequate follicular development was not achieved. The dose of hMG was subsequently increased to 150 IU for the next 7 days. After 22 days from the start of stimulation, two follicles had developed, and were ovulated using an injection of human chorionic gonadotropin. She became pregnant, and her pregnancy was uneventful during the first trimester; however, in the second trimester both uterine contractions and blood pressure could not be controlled, and at 27 weeks' gestation she delivered a male infant weighing 830 g by cesarean section.
Collapse
Affiliation(s)
- Koji Nakagawa
- Division of Reproductive Medicine, Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, Setagaya, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
NAKAYAMA M, MANABE N, YAMADA-UCHIO K, MIYAMOTO H. Changes in Localization of Type I, III and IV Collagens and Their mRNA Expression During Follicular Atresia in Bovine and Porcine Ovaries. J Reprod Dev 2001. [DOI: 10.1262/jrd.47.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mizuho NAKAYAMA
- Unit of Anatomy and Cell Biology, Department of Animal Sciences, Kyoto University
| | - Noboru MANABE
- Unit of Anatomy and Cell Biology, Department of Animal Sciences, Kyoto University
| | - Kozue YAMADA-UCHIO
- Unit of Anatomy and Cell Biology, Department of Animal Sciences, Kyoto University
| | - Hajime MIYAMOTO
- Unit of Anatomy and Cell Biology, Department of Animal Sciences, Kyoto University
| |
Collapse
|