1
|
Li D, Wang Y, Dong C, Chen T, Dong A, Ren J, Li W, Shu G, Yang J, Shen W, Qin L, Hu L, Zhou J. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene 2023; 42:83-98. [PMID: 36369321 PMCID: PMC9816059 DOI: 10.1038/s41388-022-02537-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Metastasis is an important factor contributing to poor prognosis in patients with gastric cancer; yet, the molecular mechanism leading to this cell behavior is still not well understood. In this study, we explored the role of cysteine protease inhibitor SN (Cystatin SN, CST1) in promoting gastric cancer metastasis. We hypothesized that CST1 could regulate gastric cancer progression by regulating GPX4 and ferroptosis. Whole transcriptome sequencing suggested that the expression of CST1 was significantly increased in metastatic cancer, and high CST1 expression was correlated with a worse prognosis. Our data further confirmed that the overexpression of CST1 may significantly promote the migration and invasion of gastric cancer cells in vitro and enhance liver, lung, and peritoneal metastasis of gastric cancer in nude mice. Meanwhile, high expression of CST1 promoted the epithelial-mesenchymal transition (EMT) of gastric cancer cells. Mechanistically, a co-immunoprecipitation experiment combined with mass spectrometry analysis confirmed that CST1 could interact with GPX4, a key protein regulating ferroptosis. CST1 relieves GPX4 ubiquitination modification by recruiting OTUB1, improving GPX4 protein stability and reducing intracellular reactive oxygen species (ROS), thereby inhibiting ferroptosis and, in turn, promoting gastric cancer metastasis. Moreover, clinical data suggested that CST1 is significantly increased in peripheral blood and ascites of gastric cancer patients with metastasis; multivariate Cox regression model analysis showed that CST1 was an independent risk factor for the prognosis of gastric cancer patients. Overall, our results elucidated a critical pathway through which high CST1 expression protects gastric cancer cells from undergoing ferroptosis, thus promoting its progression and metastasis. CST1 may be used as a new oncological marker and potential therapeutic target for gastric cancer metastasis.
Collapse
Affiliation(s)
- Dongbao Li
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Yuhong Wang
- grid.429222.d0000 0004 1798 0228Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Chao Dong
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Tao Chen
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Anqi Dong
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Jiayu Ren
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Weikang Li
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Gege Shu
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Jiaoyang Yang
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu China
| | - Wenhao Shen
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 Jiangsu China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
2
|
Kayabolen A, Akcan U, Özturan D, Ulbegi‐Polat H, Sahin GN, Pinarbasi‐Degirmenci N, Bayraktar C, Soyler G, Sarayloo E, Nurtop E, Ozer B, Guney‐Esken G, Barlas T, Yildirim IS, Dogan O, Karahuseyinoglu S, Lack NA, Kaya M, Albayrak C, Can F, Solaroglu I, Bagci‐Onder T. Protein Scaffold-Based Multimerization of Soluble ACE2 Efficiently Blocks SARS-CoV-2 Infection In Vitro and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201294. [PMID: 35896894 PMCID: PMC9353362 DOI: 10.1002/advs.202201294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Ugur Akcan
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Doğancan Özturan
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Hivda Ulbegi‐Polat
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research CenterKocaeli41470Turkey
| | - Gizem Nur Sahin
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | | | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Gizem Soyler
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Ehsan Sarayloo
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of BiotechnologyBeykoz Institute of Life Sciences and Biotechnology (BILSAB)Bezmialem Vakif UniversityIstanbul34820Turkey
| | - Elif Nurtop
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Berna Ozer
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Gulen Guney‐Esken
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Tayfun Barlas
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Ismail Selim Yildirim
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research CenterKocaeli41470Turkey
| | - Ozlem Dogan
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
- Koç University School of MedicineDepartment of Medical MicrobiologyIstanbul34010Turkey
| | - Sercin Karahuseyinoglu
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Koç University School of Medicine, Department of Histology and EmbryologyIstanbul34450Türkiye
| | - Nathan A. Lack
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Vancouver Prostate CentreUniversity of British ColumbiaVancouverBC V6H 3Z6Canada
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Cem Albayrak
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of BiotechnologyBeykoz Institute of Life Sciences and Biotechnology (BILSAB)Bezmialem Vakif UniversityIstanbul34820Turkey
| | - Fusun Can
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
- Koç University School of MedicineDepartment of Medical MicrobiologyIstanbul34010Turkey
| | - Ihsan Solaroglu
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of Basic SciencesLoma Linda UniversityLoma LindaCA92354USA
| | - Tugba Bagci‐Onder
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| |
Collapse
|
3
|
Abstract
Cystatin SN, belonging to the type 2 cystatin superfamily, is widely expressed and distributed in mammals. Cystatin SN is involved in inflammation, cell cycle, cellular senescence, tumorigenesis, and metastasis. Cystatin SN is also known to participate in signaling pathways like Wnt signaling pathway, GSK3 signaling pathway, AKT signaling pathway, and IL-6 signaling pathway. Cystatin SN was found to be highly expressed in peritumoral normal tissues in esophageal squamous cell carcinoma (ESCC); however, low cystatin SN expression was found in ESCC cancer tissues. Conversely, in other cancer types such as lung cancer, breast cancer, gastric cancer, pancreatic cancer, and colorectal cancer, high cystatin SN expression in cancer tissues but low cystatin SN expression in peritumoral normal tissues was found. Survival analyses showed that high cystatin SN expression benefited ESCC patients but did harm to other types of cancer patients. Univariate and multivariate analyses indicated that cystatin SN possibly acts as a marker for cancer prognosis. Here, we provide a brief introduction about the role of cystatin SN in cancer and discuss the different prognostic effects of cystatin SN on different tumors. Cystatin SN might be a potential marker for cancer prognosis and a target for cancer therapy.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of Oncology, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China,
| | - Jing Yao
- Department of Oncology, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China,
| |
Collapse
|
4
|
Human cystatin SN is an endogenous protease inhibitor that prevents allergic rhinitis. J Allergy Clin Immunol 2018; 143:1153-1162.e12. [PMID: 30012514 DOI: 10.1016/j.jaci.2018.06.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Protease allergens disrupt epithelial barriers to exert their allergenicity. Cystatin SN (encoded by CST1) is an endogenous cysteine protease inhibitor upregulated in nasal epithelia in patients with allergic rhinitis (AR). OBJECTIVE We sought to investigate the protective effect of human cystatin SN on AR symptoms using pollen-induced AR mouse models. METHODS We performed an in vitro protease activity assay to evaluate the effect of recombinant human cystatin SN (rhCystatin SN) on Japanese cedar (JC) or ragweed proteases. A human nasal epithelial cell line, RPMI 2650, was used to examine tight junction (TJ) disruption in vitro. Mice were sensitized and nasally challenged with JC or ragweed pollens with or without rhCystatin SN to examine the effect of rhCystatin SN on AR symptoms and the epithelial barrier in vivo. Because mice lack CST1, we generated transgenic (Tg) mice expressing human CST1 under control of its genomic control region (hCST1-Tg mice) to examine the role of cystatin SN in physiologically expressed conditions. RESULTS rhCystatin SN inhibited JC but not ragweed protease activities and prevented JC-induced but not ragweed-induced TJ disruption in vitro. Exogenous administration of rhCystatin SN ameliorated JC-induced but not ragweed-induced sneezing and nasal TJ disruption in vivo. Furthermore, hCST1-Tg mice showed decreased JC-induced but not ragweed-induced sneezing symptoms and nasal TJ disruption compared with wild-type mice. CONCLUSION Human cystatin SN suppresses AR symptoms through inhibiting allergen protease activities and protecting the nasal TJ barrier in an allergen-specific manner. We propose that upregulation of nasal endogenous protease inhibitors, including cystatin SN, is a novel therapeutic strategy for protease allergen-induced AR.
Collapse
|
5
|
Kim JT, Lee SJ, Kang MA, Park JE, Kim BY, Yoon DY, Yang Y, Lee CH, Yeom YI, Choe YK, Lee HG. Cystatin SN neutralizes the inhibitory effect of cystatin C on cathepsin B activity. Cell Death Dis 2013; 4:e974. [PMID: 24357805 PMCID: PMC3877556 DOI: 10.1038/cddis.2013.485] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 01/05/2023]
Abstract
Cystatin SN (CST1) is one of the several salivary cystatins that form tight equimolar complexes with cysteine proteases, such as the cathepsins. High expression of CST1 is correlated with advanced pTNM stage in gastric cancer. However, the functional role of CST1 in tumorigenesis has not been elucidated. In this study, we showed that CST1 was highly expressed in colon tumor tissues, compared with nontumor regions. Increased cell proliferation and invasiveness were observed in HCT116 cell lines stably transfected with CST1 cDNA (HCT116-CST1) but not in CST3-transfected cells. We also demonstrated that CST1-overexpressing cell lines exhibited increased tumor growth as well as metastasis in a xenograft nude mouse model. Interestingly, CST1 interacted with cystatin C (CST3), a potent cathepsin B (CTSB) inhibitor, with a higher affinity than the interaction between CST3 and CTSB in the extracellular space of HCT116 cells. CTSB-mediated cellular invasiveness and proteolytic activities were strongly inhibited by CST3, but in the presence of CST1 CTSB activities recovered significantly. Furthermore, domain mapping of CST1 showed that the disulfide-bonded conformation, or conserved folding, of CST1 is important for its secretion and for the neutralization of CST3 activity. These results suggest that CST1 upregulation might be involved in colorectal tumorigenesis and acts by neutralizing the inhibition of CTSB proteolytic activity by CST3.
Collapse
Affiliation(s)
- J-T Kim
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - S-J Lee
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - M A Kang
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - J E Park
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - B-Y Kim
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - D-Y Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Y Yang
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - C-H Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Y I Yeom
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Y-K Choe
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - H G Lee
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Imoto Y, Tokunaga T, Matsumoto Y, Hamada Y, Ono M, Yamada T, Ito Y, Arinami T, Okano M, Noguchi E, Fujieda S. Cystatin SN upregulation in patients with seasonal allergic rhinitis. PLoS One 2013; 8:e67057. [PMID: 23950865 PMCID: PMC3741298 DOI: 10.1371/journal.pone.0067057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Seasonal allergic rhinitis (SAR) to the Japanese cedar, Cryptomeria japonica (JC) pollen is an IgE-mediated type I allergy affecting nasal mucosa. However, the molecular events underlying its development remain unclear. We sought to identify SAR-associated altered gene expression in nasal epithelial cells during natural exposure to JC pollen. We recruited study participants in 2009 and 2010 and collected nasal epithelial cells between February and April, which is the period of natural pollen dispersion. Fifteen patients with SAR-JC and 13 control subjects were enrolled in 2009, and 17 SAR-JC patients, 13 sensitized asymptomatic subjects (Sensitized), and 15 control subjects were enrolled in 2010. Total RNA was extracted from nasal epithelial cells and 8 SAR-JC patients and 6 control subjects in 2009 were subjected to microarray analysis with the Illumina HumanRef-8 Expression BeadChip platform. Allergen-stimulated histamine release was examined in the peripheral blood basophils isolated from patients with SAR. We identified 32 genes with significantly altered expression during allergen exposure. One of these, CST1 encodes the cysteine protease inhibitor, cystatin SN. CST1 expression in nasal epithelial cells was significantly upregulated in both the 2009 and 2010 SAR-JC groups compared with the control groups. Immunohistochemical staining confirmed the increased expression of CST1 in the nasal epithelial cells of SAR patients. Addition of exogenous CST1 to basophils inhibited JC allergen-stimulated histamine release in vitro. We propose that CST1 may contribute to inactivation of protease allergens and help re-establish homeostasis of the nasal membranes.
Collapse
Affiliation(s)
- Yoshimasa Imoto
- Departments of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Tokunaga
- Departments of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuri Matsumoto
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Hamada
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mizuho Ono
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takechiyo Yamada
- Departments of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yumi Ito
- Departments of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tadao Arinami
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mitsuhiro Okano
- Departments of Otorhinolaryngology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, University of Okayama, Okayama, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
- * E-mail:
| | - Shigeharu Fujieda
- Departments of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
7
|
Keppler D, Zhang J, Bihani T, Lin AW. Novel Expression of CST1 as Candidate Senescence Marker. ACTA ACUST UNITED AC 2011; 66:723-31. [DOI: 10.1093/gerona/glr033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Choi EH, Kim JT, Kim JH, Kim SY, Song EY, Kim JW, Kim SY, Yeom YI, Kim IH, Lee HG. Upregulation of the cysteine protease inhibitor, cystatin SN, contributes to cell proliferation and cathepsin inhibition in gastric cancer. Clin Chim Acta 2009; 406:45-51. [PMID: 19463800 DOI: 10.1016/j.cca.2009.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/06/2009] [Accepted: 05/09/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cysteine proteases like cathepsins are widely distributed proteolytic enzymes and form tight equimolar complexes with cystatins at their active sites. Among cystatins, CST1, encoding cystatin SN, is a member of the type 2 salivary cystatin family found in a variety of fluids and secretions, including plasma, tears, and saliva. CST1 was identified as an upregulated gene in gastric cancer tissues compared to noncancerous regions using our Affymetrix GeneChip microarray. METHODS The upregulation of CST1 in gastric cancer was analyzed using RT-PCR (n=15), immnohistochemistry, and clinicopathological (n=77) analysis. CST1-siRNA was used for the suppression of CST1 gene expression and cathepsin proteolytic activity was assayed. RESULTS CST1 was upregulated in cancerous lesions of gastric cancer tissues compared to noncancerous regions and clinicopathological analysis showed a significant correlation between high expression of CST1 and pTNM stage (p=0.044). In CST1-siRNA transfected cells, cell proliferation was reduced and the proteolytic activity of cathepsins was increased. CONCLUSIONS CST1 might be highly involved in gastric tumorigenesis and regulate the proteolytic activity of cysteine proteases.
Collapse
Affiliation(s)
- Eun Hwa Choi
- Medical Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mori M, Takeuchi H, Sato M, Sumitomo S. Antimicrobial Peptides in Saliva and Salivary Glands: Their Roles in the Oral Defense System. ACTA ACUST UNITED AC 2006. [DOI: 10.3353/omp.11.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Masahiko Mori
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry
| | - Hiroshi Takeuchi
- Department of Oral Pathology, Asahi University School of Dentistry
| | - Masaru Sato
- Department of Oral Pathology, Asahi University School of Dentistry
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry
| |
Collapse
|
10
|
Diehl D, Lahm H, Wolf E, Bauersachs S. Transcriptome analysis of a human colorectal cancer cell line shows molecular targets of insulin-like growth factor-binding protein-4 overexpression. Int J Cancer 2004; 113:588-99. [PMID: 15455346 DOI: 10.1002/ijc.20580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor II (IGF-II) is expressed commonly in colorectal tumors. IGF-binding protein-4 (IGFBP-4) counteracts the tumor promoting activities of IGF-II by binding this growth factor. We have shown previously that in LS1034 cells, which highly express IGF-II, overexpression of IGFBP-4 led to a strong reduction in proliferation, colony formation and invasive capacity. To investigate the effects of IGFBP-4 at the molecular level we analyzed growth parameters of LS1034 human colon cancer cells vs. cells expressing the murine IGFBP-4 (mIGFBP-4) and used a subtractive cDNA library approach in combination with cDNA array hybridization to detect changes in the mRNA expression profiles. The mRNA levels for several proteins that are known to affect important biological properties of neoplastic cells, such as proteolysis, proliferation and differentiation were altered by overexpression of IGFBP-4. Transcript levels for tumor markers, like the carcinoembryonic antigen-related cell adhesion molecule (CEACAM), were reduced by elevated mIGFBP-4. Changes at the mRNA level were confirmed by Western blotting for CST1 (proteolysis or protease inhibitor), COX-2 (cell motility) and CEACAM5 (tumor marker). Furthermore, the effect of mIGFBP-4 on apoptosis was investigated and no increase of apoptosis could be detected in the IGFBP-4 overexpressing LS1034 cells. Our data indicate that IGFBP-4 is involved in the regulation of gene products that are known or supposed to be important for the pathogenesis of colon cancer cells.
Collapse
Affiliation(s)
- Daniela Diehl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University, Munich, Germany
| | | | | | | |
Collapse
|
11
|
Dickinson DP. Salivary (SD-type) cystatins: over one billion years in the making--but to what purpose? CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:485-508. [PMID: 12499242 DOI: 10.1177/154411130201300606] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human saliva contains relatively abundant proteins that are related ancestrally in sequence to the cystatin superfamily. Most, although not all, members of this superfamily are potent inhibitors of cysteine peptidases. Four related genes have been identified, CST1, 2, 4 and 5, encoding cystatins SN, SA, S, and D, respectively. CST1, 4, and probably CST5 are now known to be expressed in a limited number of other tissues in the body, primarily in exocrine epithelia, and the term SD-type cystatin is more appropriate than 'salivary cystatin'. These genes are co-ordinately regulated in the submandibular gland during post-natal development. The organization of these tissue-specifically-expressed genes in the genome, and their phylogeny, indicate that they evolved from an ancestral housekeeping gene encoding the ubiquitously expressed cystatin C, and are members of a larger protein family. Their relationship to rat cystatin S, a developmentally regulated rodent submandibular gland protein, remains to be established. In this review, the evolution of the SD-type cystatins in the cystatin superfamily, their genomics, expression, and structure-function relationships are examined and compared with known cystatin functions, with the goal of providing clues to their biological roles.
Collapse
Affiliation(s)
- D P Dickinson
- Medical College of Georgia, School of Dentistry, Department of Oral Biology and Maxillofacial Pathology, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
12
|
Affiliation(s)
- A V Nieuw Amerongen
- Department of Dental Basic Sciences, ACTA, Medical Faculty, Vrije Universiteit, Amsterdam, The Netherlands.
| | | |
Collapse
|