1
|
Domitin S, Puff N, Pilot-Storck F, Tiret L, Joubert F. Role of cardiolipin in proton transmembrane flux and localization. Biophys J 2024:S0006-3495(24)04076-1. [PMID: 39674891 DOI: 10.1016/j.bpj.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux. Increasing the CL content led to a net increase in proton efflux, which was also dependent on the magnitude of the membrane potential. The same increase in proton efflux was measured in the presence of the equally negatively charged phosphatidylglycerol, indicating that the charge of CL plays a more important role than its structure in this mechanism. When varying the proton membrane permeability (pH) using the protonophore CCCP, we observed that unlike PC liposomes, where a small amount of CCCP was sufficient to achieve maximum flux, a significantly larger amount of protonophore was required in the presence of CL. Conversely, increasing the buffer capacity increased proton flux, indicating that proton availability, rather than membrane permeability, may be the limiting factor for proton leak. Our findings demonstrated that a higher proton content associated with the membrane was correlated with an increasing leak in the presence of CL. Additionally, smaller liposome diameters appeared to favor proton leak. Taken together, our results suggest that the presence of negatively charged CL in a membrane traps protons and increases their leakage, potentially in a manner dependent on membrane curvature. We discuss the possible mechanisms and implications of these findings for mitochondrial respiration function.
Collapse
Affiliation(s)
- Sylvain Domitin
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, Paris, France; Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS, Université Paris Cité, Paris, France
| | - Fanny Pilot-Storck
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Laurent Tiret
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France.
| |
Collapse
|
2
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
3
|
Wilson BA, Ramanathan A, Lopez CF. Cardiolipin-Dependent Properties of Model Mitochondrial Membranes from Molecular Simulations. Biophys J 2019; 117:429-444. [PMID: 31349988 PMCID: PMC6697365 DOI: 10.1016/j.bpj.2019.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023] Open
Abstract
Cardiolipin is an anionic lipid found in the mitochondrial membranes of eukaryotes ranging from unicellular microorganisms to metazoans. This unique lipid contributes to various mitochondrial functions, including metabolism, mitochondrial membrane fusion and/or fission dynamics, and apoptosis. However, differences in cardiolipin content between the two mitochondrial membranes, as well as dynamic fluctuations in cardiolipin content in response to stimuli and cellular signaling events, raise questions about how cardiolipin concentration affects mitochondrial membrane structure and dynamics. Although cardiolipin’s structural and dynamic roles have been extensively studied in binary mixtures with other phospholipids, the biophysical properties of cardiolipin in higher number lipid mixtures are still not well resolved. Here, we used molecular dynamics simulations to investigate the cardiolipin-dependent properties of ternary lipid bilayer systems that mimic the major components of mitochondrial membranes. We found that changes to cardiolipin concentration only resulted in minor changes to bilayer structural features but that the lipid diffusion was significantly affected by those alterations. We also found that cardiolipin position along the bilayer surfaces correlated to negative curvature deflections, consistent with the induction of negative curvature stress in the membrane monolayers. This work contributes to a foundational understanding of the role of cardiolipin in altering the properties in ternary lipid mixtures composed of the major mitochondrial phospholipids, providing much-needed insights to help understand how cardiolipin concentration modulates the biophysical properties of mitochondrial membranes.
Collapse
Affiliation(s)
- Blake A Wilson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Arvind Ramanathan
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
4
|
Ryzhova O, Vus K, Trusova V, Kirilova E, Kirilov G, Gorbenko G, Kinnunen P. Novel benzanthrone probes for membrane and protein studies. Methods Appl Fluoresc 2016; 4:034007. [PMID: 28355153 DOI: 10.1088/2050-6120/4/3/034007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.
Collapse
Affiliation(s)
- Olga Ryzhova
- Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine. Author to whom any correspondence should be addressed: Department of Nuclear and Medical Physics, 12-191 Staroshyskivska Str., Kharkiv 61070, Ukraine
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhytniakivska O, Trusova V, Gorbenko G, Kirilova E, Kalnina I, Kirilov G, Molotkovsky J, Tulkki J, Kinnunen P. Location of Novel Benzanthrone Dyes in Model Membranes as Revealed by Resonance Energy Transfer. J Fluoresc 2014; 24:899-907. [DOI: 10.1007/s10895-014-1370-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/24/2014] [Indexed: 01/21/2023]
|
6
|
Trusova VM, Kirilova E, Kalnina I, Kirilov G, Zhytniakivska OA, Fedorov PV, Gorbenko GP. Novel Benzanthrone Aminoderivatives for Membrane Studies. J Fluoresc 2012; 22:953-9. [DOI: 10.1007/s10895-011-1035-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/28/2011] [Indexed: 01/05/2023]
|
7
|
Khalifat N, Fournier JB, Angelova MI, Puff N. Lipid packing variations induced by pH in cardiolipin-containing bilayers: The driving force for the cristae-like shape instability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2724-33. [DOI: 10.1016/j.bbamem.2011.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
|
8
|
Arcisio-Miranda M, Abdulkader F, Brunaldi K, Curi R, Procopio J. Proton flux induced by free fatty acids across phospholipid bilayers: New evidences based on short-circuit measurements in planar lipid membranes. Arch Biochem Biophys 2009; 484:63-9. [DOI: 10.1016/j.abb.2009.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/29/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
|
9
|
Lewis RNAH, McElhaney RN. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2069-79. [PMID: 19328771 DOI: 10.1016/j.bbamem.2009.03.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/19/2009] [Indexed: 12/01/2022]
Abstract
In this review article, we summarize the current state of biophysical knowledge concerning the phase behavior and organization of cardiolipin (CL) and CL-containing phospholipid bilayer model membranes. We first briefly consider the occurrence and distribution of CL in biological membranes and its probable biological functions therein. We next consider the unique chemical structure of the CL molecule and how this structure may determine its distinctive physical properties. We then consider in some detail the thermotropic phase behavior and organization of CL and CL-containing lipid model membranes as revealed by a variety of biophysical techniques. We also attempt to relate the chemical properties of CL to its function in the biological membranes in which it occurs. Finally, we point out the requirement for additional biophysical studies of both lipid model and biological membranes in order to increase our currently limited understanding of the relationship between CL structure and physical properties and CL function in biological membranes.
Collapse
Affiliation(s)
- Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
10
|
Charalambous K, Miller D, Curnow P, Booth PJ. Lipid bilayer composition influences small multidrug transporters. BMC BIOCHEMISTRY 2008; 9:31. [PMID: 19032749 PMCID: PMC2605743 DOI: 10.1186/1471-2091-9-31] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Membrane proteins are influenced by their surrounding lipids. We investigate the effect of bilayer composition on the membrane transport activity of two members of the small multidrug resistance family; the Escherichia coli transporter, EmrE and the Mycobacterium tuberculosis, TBsmr. In particular we address the influence of phosphatidylethanolamine and anionic lipids on the activity of these multidrug transporters. Phosphatidylethanolamine lipids are native to the membranes of both transporters and also alter the lateral pressure profile of a lipid bilayer. Lipid bilayer lateral pressures affect membrane protein insertion, folding and activity and have been shown to influence reconstitution, topology and activity of membrane transport proteins. RESULTS Both EmrE and TBsmr are found to exhibit a similar dependence on lipid composition, with phosphatidylethanolamine increasing methyl viologen transport. Anionic lipids also increase transport for both EmrE and TBsmr, with the proteins showing a preference for their most prevalent native anionic lipid headgroup; phosphatidylglycerol for EmrE and phosphatidylinositol for TBsmr. CONCLUSION These findings show that the physical state of the membrane modifies drug transport and that substrate translocation is dependent on in vitro lipid composition. Multidrug transport activity seems to respond to alterations in the lateral forces exerted upon the transport proteins by the bilayer.
Collapse
|
11
|
Dahlberg M, Maliniak A. Molecular dynamics simulations of cardiolipin bilayers. J Phys Chem B 2008; 112:11655-63. [PMID: 18712912 DOI: 10.1021/jp803414g] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiolipin is a key lipid component in the inner mitochondrial membrane, where the lipid is involved in energy production, cristae structure, and mechanisms in the apoptotic pathway. In this article we used molecular dynamics computer simulations to investigate cardiolipin and its effect on the structure of lipid bilayers. Three cardiolipin/POPC bilayers with different lipid compositions were simulated: 100, 9.2, and 0% cardiolipin. We found strong association of sodium counterions to the carbonyl groups of both lipid types, leaving in the case of 9.2% cardiolipin virtually no ions in the aqueous compartment. Although binding occurred primarily at the carbonyl position, there was a preference to bind to the carbonyl groups of cardiolipin. Ion binding and the small headgroup of cardiolipin gave a strong ordering of the hydrocarbon chains. We found significant effects in the water dipole orientation and water dipole potential which can compensate for the electrostatic repulsion that otherwise should force charged lipids apart. Several parameters relevant for the molecular structure of cardiolipin were calculated and compared with results from analyses of coarse-grained simulations and available X-ray structural data.
Collapse
Affiliation(s)
- Martin Dahlberg
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
12
|
Gensure R, Zeidel M, Hill W. Lipid raft components cholesterol and sphingomyelin increase H+/OH- permeability of phosphatidylcholine membranes. Biochem J 2006; 398:485-95. [PMID: 16706750 PMCID: PMC1559473 DOI: 10.1042/bj20051620] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H+/OH- permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH- and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH- permeability from a baseline of 2.4x10(-2) cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH- permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH- permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484-1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH- conductivity, (iii) H+/OH- fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH- permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results.
Collapse
Affiliation(s)
- Rebekah H. Gensure
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Mark L. Zeidel
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Warren G. Hill
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- To whom correspondence should be addressed, at the present address: Beth Israel Deaconess Medical Center, 840 Memorial Drive, Cambridge, MA 02139, U.S.A. (email )
| |
Collapse
|
13
|
Ali SM, Khan AR, Ahmad MU, Chen P, Sheikh S, Ahmad I. Synthesis and biological evaluation of gemcitabine-lipid conjugate (NEO6002). Bioorg Med Chem Lett 2005; 15:2571-4. [PMID: 15863318 DOI: 10.1016/j.bmcl.2005.03.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/08/2005] [Accepted: 03/14/2005] [Indexed: 01/22/2023]
Abstract
A novel gemcitabine-lipid conjugate 5 was synthesized and tested for its in vivo efficacy and toxicity. Compound 5 was tested in BxPC-3 human pancreatic tumor model in SCID mice and exhibited promising activity and lower toxicity when compared with Gemzar.
Collapse
Affiliation(s)
- Shoukath M Ali
- NeoPharm Inc., Research and Development Facility, 1850 Lakeside Drive, Waukegan, IL 60085, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lin Z, Ahmad MU, Ali SM, Ahmad I. An efficient and novel method for the synthesis of cardiolipin and its analogs. Lipids 2005; 39:285-90. [PMID: 15233408 DOI: 10.1007/s11745-004-1231-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A novel synthetic method has been developed for cardiolipin and its analog via a chlorophosphoramidite coupling reaction followed by oxidation. The reagent, N,N-diisopropylmethylphosphoramidic chloride, couples effectively with 1,2-O-dimyristoyl-sn-glycerol in the presence of an amidite activator to form a phosphoamidite intermediate, which then reacts with 2-O-benzylglycerol in the presence of a basic catalyst followed by in situ oxidation to give the corresponding protected cardiolipin. Deprotection of the protecting groups provides tetramyristoyl cardiolipin in good overall yield of 60%. The synthetic method is applicable to large-scale synthesis of cardiolipin and various analogs with or without unsaturation for liposomal drug delivery.
Collapse
Affiliation(s)
- Zhen Lin
- NeoPharm, Inc., Waukegan, Illinois 60085, USA
| | | | | | | |
Collapse
|
15
|
Ciani I, Burt DP, Daniele S, Unwin PR. Effect of Surface Pressure on Oxygen Transfer across Molecular Monolayers at the Air/Water Interface: Scanning Electrochemical Microscopy Investigations Using a Mercury Hemispherical Microelectrode Probe. J Phys Chem B 2004. [DOI: 10.1021/jp036286m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ilenia Ciani
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K., and Department of Physical Chemistry, University of Venice, Calle Larga S. Marta, 2137, 30123 Venice, Italy
| | - David P. Burt
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K., and Department of Physical Chemistry, University of Venice, Calle Larga S. Marta, 2137, 30123 Venice, Italy
| | - Salvatore Daniele
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K., and Department of Physical Chemistry, University of Venice, Calle Larga S. Marta, 2137, 30123 Venice, Italy
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K., and Department of Physical Chemistry, University of Venice, Calle Larga S. Marta, 2137, 30123 Venice, Italy
| |
Collapse
|