1
|
Poverennaya EV, Pyatnitskiy MA, Dolgalev GV, Arzumanian VA, Kiseleva OI, Kurbatov IY, Kurbatov LK, Vakhrushev IV, Romashin DD, Kim YS, Ponomarenko EA. Exploiting Multi-Omics Profiling and Systems Biology to Investigate Functions of TOMM34. BIOLOGY 2023; 12:198. [PMID: 36829477 PMCID: PMC9952762 DOI: 10.3390/biology12020198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Although modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated. Here, we report genes and pathways associated with TOMM34, Translocase of Outer Mitochondrial Membrane, which plays role in the mitochondrial protein import as a part of cytosolic complex together with Hsp70/Hsp90 and is upregulated in various cancers. We identified genes, proteins, and metabolites altered in TOMM34-/- HepG2 cells. To our knowledge, this is the first attempt to study the functional capacity of TOMM34 using a multi-omics strategy. We demonstrate that TOMM34 affects various processes including oxidative phosphorylation, citric acid cycle, metabolism of purine, and several amino acids. Besides the analysis of already known pathways, we utilized de novo network enrichment algorithm to extract novel perturbed subnetworks, thus obtaining evidence that TOMM34 potentially plays role in several other cellular processes, including NOTCH-, MAPK-, and STAT3-signaling. Collectively, our findings provide new insights into TOMM34's cellular functions.
Collapse
Affiliation(s)
| | - Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Faculty Of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | | | | | | | | | | | | | | | - Yan S. Kim
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | |
Collapse
|
2
|
Cai M, Tan R, Huang Y, Chen X, Kong Q, Guo K, Xu M. High Expression of Tomm34 and Its Correlations With Clinicopathology in Oral Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:641042. [PMID: 34257607 PMCID: PMC8262227 DOI: 10.3389/pore.2021.641042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Tomm34, as a member of the outer mitochondrial membrane proteins, is evenly distributed between the cytoplasm and the outer mitochondrial membrane. It is up-regulated in a variety of tumors and correlates with poor prognosis. This study aimed to investigate expression of Tomm34 and its correlations with clinicopathology in oral squamous cell carcinoma (OSCC). Oncomine database and UALCAN database were utilized to predict the expression and prognosis values of Tomm34 in head and neck squamous cell carcinoma (HNSCC). By immunohistochemistry, a retrospective study was performed to verify the bioinformatics results to evaluate the Tomm34 expression and clinicopathological variables in both HPV-positive OSCC and HPV-negative OSCC. Immunohistochemistry of our cohort revealed that 48 cases fulfilled the Tomm34 high expression judgment criteria, and the overall positive rate was 60% (48/80), and 27 cases fulfilled the p16 expression judgment criteria (33.75%, 27/80). The high expression of Tomm34 was closely related with the TNM classification of OSCC (p < 0.01) and tumor size (p < 0.01) both in HPV-negative OSCC and HPV-positive OSCC, while related with lymph node metastasis (p = 0.001) in HPV-negative OSCC and drinking history (p = 0.044) in HPV-positive OSCC. In addition, the Kaplan-Meier curves indicated that higher level of Tomm34 was correlated with poorer overall survival (OS) and disease-free survival (DFS) in HPV-negative OSCC (OS, p = 0.046; DFS, p = 0.020) but not in HPV-positive OSCC (OS, p = 0.824; DFS, p = 0.782). In conclusion, Tomm34 is highly expressed in OSCC and may be a useful factor to provide prognostic information, especially in HPV-negative OSCC group.
Collapse
Affiliation(s)
- Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Rukeng Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yunyi Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuanyi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kaixin Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Meng Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
3
|
Asad M, Wajid S, Katare DP, Mani RJ, Jain SK. Differential Expression of TOM34, AL1A1, PADI2 and KLRBA in NNK Induced Lung Cancer in Wistar Rats and their Implications. Curr Cancer Drug Targets 2020; 19:919-929. [PMID: 31544692 DOI: 10.2174/1871525717666190717162646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Lung cancer is the most common cancer with a high mortality rate. The diagnosis only at advanced stages and lack of effective treatment are the main factors responsible for high mortality. Tobacco smoke is the major responsible factor for inflammation and tumor development in lungs. OBJECTIVE The present study was carried out to identify differentially expressed proteins and elucidate their role in carcinogenesis. METHODS The lung cancer was developed in Wistar rats by using NNK as carcinogen and cancer development was confirmed by histopathological examination. The 2D SDS PAGE was used to analyse total proteins and find out differentially expressed proteins in NNK treated lung tissue vis-a-vis control tissue. The findings of proteomic analysis were further validated by quantification of corresponding transcripts using Real Time PCR. Finally, Cytoscape was used to find out protein-protein interaction. RESULTS The histopathological examinations showed neoplasia at 9th month after NNK treatment. The proteomic analysis revealed several differentially expressed proteins, four of which were selected for further studies. (TOM34, AL1A1, PADI2 and KLRBA) that were up regulated in NNK treated lung tissue. The real time analysis showed over expression of the genes coding for the selected proteins. Thus, the proteomic and transcriptomic data corroborate each other. Further, these proteins showed interaction with the members of NF-κB family and STAT3. CONCLUSION We conclude that these proteins play a substantial role in the induction of lung cancer through NF-κB and STAT3 pathway. Therefore, these may have the potential to be used as therapeutic targets and for early detection of lung cancer.
Collapse
Affiliation(s)
- Mohammad Asad
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| | - Deepshikha Pande Katare
- Proteomics & Translational Research Lab, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida- 201313, India
| | - Ruchi Jakhmola Mani
- Proteomics & Translational Research Lab, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida- 201313, India
| | - Swatantra Kumar Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
4
|
Durech M, Trcka F, Man P, Blackburn EA, Hernychova L, Dvorakova P, Coufalova D, Kavan D, Vojtesek B, Muller P. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities. Mol Cell Proteomics 2016; 15:1710-27. [PMID: 26944342 DOI: 10.1074/mcp.m116.058131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis.
Collapse
Affiliation(s)
- Michal Durech
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Trcka
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Petr Man
- ¶Institute of Microbiology, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; ‖Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Elizabeth A Blackburn
- **Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, University of Edinburgh, Max Born Crescent, The King's Buildings, Edinburgh EH9 3JR, United Kingdom
| | - Lenka Hernychova
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Petra Dvorakova
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Dominika Coufalova
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Daniel Kavan
- ¶Institute of Microbiology, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; ‖Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Borivoj Vojtesek
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic;
| | - Petr Muller
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic;
| |
Collapse
|
5
|
Zhong Q, Kowluru RA. Diabetic retinopathy and damage to mitochondrial structure and transport machinery. Invest Ophthalmol Vis Sci 2011; 52:8739-46. [PMID: 22003103 DOI: 10.1167/iovs.11-8045] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Mitochondrial function is controlled by membrane structure. In diabetes, retinal mitochondria are dysfunctional, and reversal of hyperglycemia fails to inhibit such changes. The goal of this study was to use anatomic and molecular biologic techniques to investigate the effect of diabetes on mitochondrial membrane structure. METHODS Wistar rats were maintained in poor glycemic control (PC; GHb 11.2%) or good glycemic control (GC; GHb 5.5%) for 12 months or in PC for 6 months, followed by GC for an additional 6 months. The structure of the retinal mitochondria in the microvascular region was evaluated by electron microscopy (TEM) and gene expressions of mitochondrial structure-related proteins by rat mitochondrial PCR array. Representative genes were validated by real-time PCR, and their protein expression by Western blot. The results were confirmed in the retina obtained from human donors with diabetic retinopathy. RESULTS TEM showed enlarged mitochondria with partial cristolysis in the retinal microvasculature from PC rats, compared with those from normal rats. Among 84 genes, 6 retinal genes were upregulated and 12 were downregulated. PCR confirmed alternations in the gene expressions of fusion (Mfn2), carrier (Timm44 and Slc25a21), Akt1, and fission proteins (Dnm1l). Protein levels of Mfn2 and Dnm1l were consistent with their mRNA levels, but their mitochondrial abundance was decreased. Reversal of hyperglycemia failed to normalize these changes. Retinas from donors with diabetic retinopathy also presented similar patterns of changes in the gene and protein expressions. CONCLUSIONS Mitochondrial structural and transport proteins play an important role in the development of diabetic retinopathy and also in the metabolic memory phenomenon associated with its continued progression.
Collapse
Affiliation(s)
- Qing Zhong
- Kresge Eye Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
6
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
7
|
Fan ACY, Kozlov G, Hoegl A, Marcellus RC, Wong MJH, Gehring K, Young JC. Interaction between the human mitochondrial import receptors Tom20 and Tom70 in vitro suggests a chaperone displacement mechanism. J Biol Chem 2011; 286:32208-19. [PMID: 21771790 DOI: 10.1074/jbc.m111.280446] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.
Collapse
Affiliation(s)
- Anna C Y Fan
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Tsaytler PA, Krijgsveld J, Goerdayal SS, Rüdiger S, Egmond MR. Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones 2009; 14:629-38. [PMID: 19396626 PMCID: PMC2866955 DOI: 10.1007/s12192-009-0115-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/27/2009] [Accepted: 04/07/2009] [Indexed: 01/05/2023] Open
Abstract
Hsp90 is an essential eukaryotic molecular chaperone that stabilizes a large set of client proteins, many of which are involved in various cellular signaling pathways. The current list of Hsp90 interactors comprises about 200 proteins and this number is growing steadily. In this paper, we report on the application of three complementary proteomic approaches directed towards identification of novel proteins that interact with Hsp90. These methods are coimmunoprecipitation, pull down with biotinylated geldanamycin, and immobilization of Hsp90beta on sepharose. In all, this study led to the identification of 42 proteins, including 18 proteins that had not been previously characterized as Hsp90 interactors. These novel Hsp90 partners not only represent abundant protein species, but several proteins were identified at low levels, among which signaling kinase Cdk3 and putative transcription factor tripartite motif-containing protein 29. Identification of tetratricopeptide-repeat-containing mitochondrial import receptor protein Tom34 suggests the involvement of Hsp90 in the early steps of translocation of mitochondrial preproteins. Taken together, our data expand the knowledge of the Hsp90 interactome and provide a further step in our understanding of the Hsp90 chaperone system.
Collapse
Affiliation(s)
- Pavel A Tsaytler
- Department of Membrane Enzymology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Blesa JR, Prieto-Ruiz JA, Abraham BA, Harrison BL, Hegde AA, Hernández-Yago J. NRF-1 is the major transcription factor regulating the expression of the human TOMM34 gene. Biochem Cell Biol 2009; 86:46-56. [PMID: 18364745 DOI: 10.1139/o07-151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human TOMM34 gene encodes a cytosolic protein with chaperone-like activity that helps import some preproteins to the mitochondria by keeping them in an unfolded, import-compatible state. TOMM34 was found to be upregulated frequently in colorectal tumors, suggesting that it also has a role in the growth of cancer cells. In this context, TOMM34 is a potential target for novel anticancer drugs, and it might also be used in the diagnosis of colorectal cancer. Nuclear respiratory factors (NRFs) play an important role in governing the nuclear-mitochondrial interactions implicated in mitochondrial biogenesis. Our previous studies revealed that NRFs promote the expression of the major members of the mitochondrial transport machinery, TOMM70 and TOMM20. Here we report the existence of binding sites for NRF-1, Sp1, and NRF-2 in the 5' region of the human TOMM34 gene. We determined the effects of mutations at these sites on promoter activity in HeLa S3 and A204 cells, in conjunction with chromatin immunoprecipitation experiments, electrophoretic mobility shift assays, and in vivo methylation analysis of the promoter region. We conclude that NRF-1 is the main transcription factor regulating the expression of TOMM34. Sp1 interacts with NRF-1 to stimulate the promoter's full activity.
Collapse
Affiliation(s)
- José R Blesa
- Fundacion Centro de Investigacion Principe Felipe, Av. Autopista del Saler 16-3, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Zhang YJ, Tian HF, Wen JF. The evolution of YidC/Oxa/Alb3 family in the three domains of life: a phylogenomic analysis. BMC Evol Biol 2009; 9:137. [PMID: 19534824 PMCID: PMC2706819 DOI: 10.1186/1471-2148-9-137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 06/18/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life. RESULTS Our comprehensive analyses of the phylogenetic distribution and phylogeny of the YidC/Oxa/Alb3 family lead to the following findings: 1) In archaea, YidC homologs are only sporadically distributed in Euryarchaeota; 2) Most bacteria contain only one YidC gene copy; some species in a few taxa (Bacillus, Lactobacillales, Actinobacteria and Clostridia) have two gene copies; 3) Eukaryotic Oxa and Alb3 have two separate prokaryotic origins, but they might not arise directly from the YidC of proteobacteria and cyanobacteria through the endosymbiosis origins of mitochondrium and chloroplast, respectively; 4) An ancient duplication occurred on both Oxa and Alb3 immediately after their origins, and thus most eukaryotes generally bear two Oxa and two Alb3. However, secondary loss, duplication or acquisition of new domain also occurred on the two genes in some lineages, especially in protists, resulting in a rich diversity or adaptive differentiation of the two translocases in these lineages. CONCLUSION YidC is distributed in bacteria and some Euryarchaeota. Although mitochondrial Oxa and chloroplastic Alb3 are derived from the prokaryotic YidC, their origin might be not related to the endosymbiosis events of the two organelles. In some eukaryotic lineages, especially in protists, Oxa and Alb3 have diverse evolutionary histories. Finally, a model for the evolutionary history of the entire YidC/Oxa/Alb3 family in the three domains of life is proposed.
Collapse
Affiliation(s)
- Yu-Juan Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province 650223, PR China.
| | | | | |
Collapse
|
11
|
Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. J Mol Model 2009; 15:971-82. [DOI: 10.1007/s00894-008-0449-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
12
|
Prince T, Shao J, Matts RL, Hartson SD. Evidence for chaperone heterocomplexes containing both Hsp90 and VCP. Biochem Biophys Res Commun 2005; 331:1331-7. [PMID: 15883021 DOI: 10.1016/j.bbrc.2005.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Indexed: 12/27/2022]
Abstract
With assistance from co-chaperone partner proteins, Hsp90 plays an essential positive role in supporting the structure and function of numerous client proteins in vivo. Hsp90's co-chaperone partnerships are believed to regulate and/or target its function. Here we describe associations between Hsp90 chaperone machinery and another chaperone, the 97-kDa valosin-containing protein VCP. Coimmunoadsorption assays indicate that VCP occurs in one or more native heterocomplexes containing Hsp90 and the Hsp90 partner proteins Cdc37, FKBP52, and p23. Functional characterizations indicate that VCP is not an Hsp90 substrate, but rather demonstrate the biochemical hallmarks of an Hsp90 co-chaperone. Potential roles for a collaboration between for Hsp90 and VCP are discussed.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The protein import process of mitochondria is vital for the assembly of the hundreds of nuclear-derived proteins into an expanding organelle reticulum. Most of our knowledge of this complex multisubunit network comes from studies of yeast and fungal systems, with little information known about the protein import process in mammalian cells, particularly skeletal muscle. However, growing evidence indicates that the protein import machinery can respond to changes in the energy status of the cell. In particular, contractile activity, a powerful inducer of mitochondrial biogenesis, has been shown to alter the stoichiometry of the protein import apparatus via changes in several protein import machinery components. These adaptations include the induction of cytosolic molecular chaperones that transport precursors to the matrix, the up-regulation of outer membrane import receptors, and the increase in matrix chaperonins that facilitate the import and proper folding of the protein for subsequent compartmentation in the matrix or inner membrane. The physiological importance of these changes is an increased capacity for import into the organelle at any given precursor concentration. Defects in the protein import machinery components have been associated with mitochondrial disorders. Thus, contractile activity may serve as a possible mechanism for up-regulation of mitochondrial protein import and compensation for mitochondrial phenotype alterations observed in diseased muscle.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|