1
|
Matsui S, Matsubayashi Y. An Activity-Based Proteomics with Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE) for Identifying Target Proteases in Arabidopsis Apoplastic Fluid. Bio Protoc 2025; 15:e5226. [PMID: 40084074 PMCID: PMC11896777 DOI: 10.21769/bioprotoc.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025] Open
Abstract
Plant proteases participate in a wide variety of biological processes, including development, growth, and defense. To date, numerous proteases have been functionally identified through genetic studies. However, redundancy among certain proteases can obscure their roles, as single-gene loss-of-function mutants often exhibit no discernible phenotype, limiting identification through genetic approaches. Here, we describe an efficient system for the identification of target proteases that cleave specific substrates in the Arabidopsis apoplastic fluid. The method involves using Arabidopsis-submerged culture medium, which contains apoplastic proteases, followed by native two-dimensional electrophoresis. Gel fractionation and an in-gel peptide cleavage assay with a fluorescence-quenching peptide substrate are then used to detect specific proteolytic activity. The active fraction is then subjected to mass spectrometry-based proteomics to identify the protease of interest. This method allows for the efficient and comprehensive identification of proteases with specific substrate cleavage activities in the apoplast. Key features • Targets Arabidopsis thaliana secreted protease but may be applicable to other plant species and intracellular proteases if protease-enriched samples are available. • The protocol involves an in-gel peptide cleavage assay of native two-dimensional gels diced with SAINOME plates, using a fluorescence-quenching substrate. • Facilitates the efficient identification of proteases with the desired activity from the entire sample, without restricting the analysis to a specific class of proteases.
Collapse
Affiliation(s)
- Sayaka Matsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Li F, Sieben L, Büchler J, Strahm M, Poc P, Vizovišek M, Christiansen MG, Schuerle S. A fluidic device for continuous on-line inductive sensing of proteolytic cleavages. LAB ON A CHIP 2025; 25:500-511. [PMID: 39780727 DOI: 10.1039/d4lc00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample. Bioassays based on giant magnetoresistance sensors that detect the binding or release of magnetic materials have been widely explored for these reasons, but they typically require expensive consumables. Here, we develop a simpler protease sensor based on inductive detection of particle release with pulsed magnetic fields, leveraging a design that incorporates both the pulse coil and gradiometer coils into a printed circuit board. Our fluidic chips are formed from casts of 3D printed molds, such that both the sensor and the consumable components could be relatively easy to mass produce. Using pulses ranging up to 10 s of mT, we show that our device has a limit of detection below 1 μg of iron and that its duty cycle can be varied to control temperature through Joule heating. By chemically functionalizing the glass surface of our fluidic chips with zwitterionic polymer and incorporating a PEG block co-polymer into the PDMS component, we are able to suppress the nonspecific binding of albumin by 7.8 times inside the chips. We demonstrate a layer-by-layer approach for covalently linking magnetic nanoparticles to the chips via cleavable peptide substrates. Finally, we observe the release of the magnetic particles from the chips under conditions of proteolytic cleavage and measure resulting changes in inductive signals, demonstrating a detection sensitivity for chymotrypsin in the hundreds of nM. The methods we establish here have the potential to aid progress toward sensors comprised of disposable fluidic chips measured by inexpensive detection devices that may one day facilitate ubiquitous protease activity monitoring.
Collapse
Affiliation(s)
- Fan Li
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Leif Sieben
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Johannes Büchler
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Manuel Strahm
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Pascal Poc
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Matej Vizovišek
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Michael G Christiansen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Simone Schuerle
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
3
|
Hirayama H, Fujihira H, Suzuki T. Development of new NGLY1 assay systems - toward developing an early screening method for NGLY1 deficiency. Glycobiology 2024; 34:cwae067. [PMID: 39206713 PMCID: PMC11442003 DOI: 10.1093/glycob/cwae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| |
Collapse
|
4
|
Matsui S, Noda S, Kuwata K, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y. Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin. Nat Commun 2024; 15:3762. [PMID: 38704378 PMCID: PMC11069567 DOI: 10.1038/s41467-024-48108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.
Collapse
Affiliation(s)
- Sayaka Matsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hidefumi Shinohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, 910-1195, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
5
|
Shoari A, Khalili S, Rasaee MJ, Löwik DWPM. A Phage Display Derived Cyclized Peptide Inhibits Fibrosarcoma Cells Invasion via Suppression of MMP-9 Activity. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Kaushik BK, Singh L, Singh R, Zhu G, Zhang B, Wang Q, Kumar S. Detection of Collagen-IV Using Highly Reflective Metal Nanoparticles-Immobilized Photosensitive Optical Fiber-Based MZI Structure. IEEE Trans Nanobioscience 2021; 19:477-484. [PMID: 32603296 DOI: 10.1109/tnb.2020.2998520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, a photosensitive (PS) optical fiber-based Mach-Zehnder interferometer (MZI) structure is developed to diagnose the presence of collagen-IV in human bodies. The MZI is fabricated by sequentially splicing the single mode-multimode-photosensitive-multimode-single mode (SMPMS) fiber segments. The sensing region in MZI structure is created by partially removing the cladding of photosensitive fiber by using 40% hydrofluoric (HF) acid and depositing the layers of highly reflective metal nanoparticles (NPs) over it. The used NPs are polyvinyl alcohol stabilized silver nanoparticles (PVA-AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnO-NPs). The size of AuNPs, PVA-AgNPs, and ZnO-NPs are 10 ± 0.2 nm, ∼ 4 -5 nm, and < 50 nm, respectively. In order to avoid the interference of other biomolecules in the detection of collagen-IV, the sensing region is functionalized with a collagenase enzyme. The sensing ability of the probe is ascertained by sensing a wide concentration of collagen solution ranging from 0 ng/ml to [Formula: see text]/ml. It is observed that sensing performance of probe is much better on immobilizing it with PVA-AgNPs and ZnO-NPs.
Collapse
|
7
|
Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments. Biosens Bioelectron 2020; 155:112113. [DOI: 10.1016/j.bios.2020.112113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
8
|
Ishii N, Sunaga C, Sano K, Huang C, Iino K, Matsuzaki Y, Suzuki T, Matsuo I. A New Fluorogenic Probe for the Detection of endo-β-N-Acetylglucosaminidase. Chembiochem 2018; 19:660-663. [PMID: 29323460 DOI: 10.1002/cbic.201700662] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 01/31/2023]
Abstract
We developed a fluorescence-quenching-based assay system to determine the hydrolysis activity of endo-β-N-acetylglucosaminidases (ENGases). The pentasaccharide derivative 1 was labeled with an N-methylanthraniloyl group as a reporter dye at the non-reducing end and with a 2,4-dinitrophenyl group as a quencher molecule at the reducing end. This derivative is hydrolyzed by ENGase, resulting in an increase in fluorescence intensity. Thus, the fluorescence signal is directly proportional to the amount of the tetrasaccharide derivative, hence allowing ENGase activity to be evaluated easily and quantitatively. Using this system, we succeeded in measuring the hydrolysis activities of ENGases and thus the inhibitory activities of known inhibitors. We confirmed that this assay system is suitable for high-throughput screening for potential inhibitors of human ENGase that might serve as therapeutic agents for the treatment of N-glycanase 1 (NGLY1) deficiency.
Collapse
Affiliation(s)
- Nozomi Ishii
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Chie Sunaga
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kanae Sano
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Chengcheng Huang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Kenta Iino
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Yuji Matsuzaki
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Ichiro Matsuo
- Department Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
9
|
Determining the Substrate Specificity of Matrix Metalloproteases using Fluorogenic Peptide Substrates. Methods Mol Biol 2018. [PMID: 28299736 DOI: 10.1007/978-1-4939-6863-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
A continuous assay method, such as the one that utilizes an increase in fluorescence upon hydrolysis, allows for rapid and convenient kinetic evaluation of proteases. To better understand MMP behaviors toward native substrates, a variety of fluorescence resonance energy transfer (FRET)/intramolecular fluorescence energy transfer (IFET) triple-helical substrates have been constructed to examine the collagenolytic activity of MMP family members. Results of these studies have been valuable for providing insights into (a) the relative triple-helical peptidase activities of the various collagenolytic MMPs, (b) the collagen preferences of these MMPs, and (c) the relative roles of MMP domains and specific residues in efficient collagenolysis. The present chapter provides an overview of MMP FRET triple-helical substrates and describes how to construct and utilize these substrates.
Collapse
|
10
|
Dong ZM, Jin X, Zhao GC. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide. Biosens Bioelectron 2018; 106:111-116. [PMID: 29414076 DOI: 10.1016/j.bios.2018.01.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL-1, yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix.
Collapse
Affiliation(s)
- Zong-Mu Dong
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, PR China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, PR China.
| | - Xin Jin
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, PR China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, PR China
| | - Guang-Chao Zhao
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, PR China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, PR China
| |
Collapse
|
11
|
Li Y, Voorhees JJ, Fisher GJ. Identification of dihydrogambogic acid as a matrix metalloproteinase 1 inhibitor by high-throughput screening. Clin Cosmet Investig Dermatol 2017; 10:499-502. [PMID: 29270028 PMCID: PMC5720033 DOI: 10.2147/ccid.s148203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yong Li
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Gary J Fisher
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Jain M, Harburn JJ, Gill JH, Loadman PM, Falconer RA, Mooney CA, Cobb SL, Berry DJ. Rationalized Computer-Aided Design of Matrix-Metalloprotease-Selective Prodrugs. J Med Chem 2017; 60:4496-4502. [PMID: 28471664 DOI: 10.1021/acs.jmedchem.6b01472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Matrix metalloproteinases (MMPs) are central to cancer development and metastasis. They are highly active in the tumor environment and absent or inactive in normal tissues; therefore they represent viable targets for cancer drug discovery. In this study we evaluated in silico docking to develop MMP-subtype-selective tumor-activated prodrugs. Proof of principle for this therapeutic approach was demonstrated in vitro against an aggressive human glioma model, with involvement of MMPs confirmed using pharmacological inhibition.
Collapse
Affiliation(s)
- Mohit Jain
- School of Medicine, Pharmacy and Health, Durham University , Queen's Campus, Stockton on Tees, TS17 6BH, U.K
| | - J Jonathan Harburn
- School of Medicine, Pharmacy and Health, Durham University , Queen's Campus, Stockton on Tees, TS17 6BH, U.K
| | - Jason H Gill
- School of Medicine, Pharmacy and Health, Durham University , Queen's Campus, Stockton on Tees, TS17 6BH, U.K
| | - Paul M Loadman
- Institute of Cancer Therapeutics, ICT Building, University of Bradford , Bradford, BD7 1DP, U.K
| | - Robert A Falconer
- Institute of Cancer Therapeutics, ICT Building, University of Bradford , Bradford, BD7 1DP, U.K
| | - Caitlin A Mooney
- Department of Chemistry, Durham University , Lower Mountjoy, South Road, Durham, DH1 3LE, U.K
| | - Steven L Cobb
- Department of Chemistry, Durham University , Lower Mountjoy, South Road, Durham, DH1 3LE, U.K
| | - David J Berry
- School of Medicine, Pharmacy and Health, Durham University , Queen's Campus, Stockton on Tees, TS17 6BH, U.K
| |
Collapse
|
13
|
Dentin Sialoprotein is a Novel Substrate of Matrix Metalloproteinase 9 in vitro and in vivo. Sci Rep 2017; 7:42449. [PMID: 28195206 PMCID: PMC5307955 DOI: 10.1038/srep42449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Dentin sialoprotein (DSP) is essential for dentinogenesis and processed into fragments in the odontoblast-like cells and the tooth compartments. Matrix metalloproteinase 9 (MMP9) is expressed in teeth from early embryonic to adult stage. Although MMP9 has been reported to be involved in some physiological and pathological conditions through processing substrates, its role in tooth development and whether DSP is a substrate of MMP9 remain unknown. In this study, the function of MMP9 in the tooth development was examined by observation of Mmp9 knockout (Mmp9−/−) mouse phenotype, and whether DSP is a substrate of MMP9 was explored by in vitro and in vivo experiments. The results showed that Mmp9−/− teeth displayed a phenotype similar to dentinogenesis imperfecta, including decreased dentin mineral density, abnormal dentin architecture, widened predentin and irregular predentin-dentin boundary. The distribution of MMP9 and DSP overlapped in the odontoblasts, the predentin, and the mineralized dentin, and MMP9 was able to specifically bind to DSP. MMP9 highly efficiently cleaved DSP into distinct fragments in vitro, and the deletion of Mmp9 caused improper processing of DSP in natural teeth. Therefore, our findings demonstrate that MMP9 is important for tooth development and DSP is a novel target of MMP9 during dentinogenesis.
Collapse
|
14
|
Chen YC, Cheng YH, Ingram P, Yoon E. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme. Sci Rep 2016; 6:27154. [PMID: 27283981 PMCID: PMC4901291 DOI: 10.1038/srep27154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Patrick Ingram
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| |
Collapse
|
15
|
Ugarte-Berzal E, Vandooren J, Bailón E, Opdenakker G, García-Pardo A. Inhibition of MMP-9-dependent Degradation of Gelatin, but Not Other MMP-9 Substrates, by the MMP-9 Hemopexin Domain Blades 1 and 4. J Biol Chem 2016; 291:11751-60. [PMID: 27044750 DOI: 10.1074/jbc.m115.708438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
Degradation and remodeling of the extracellular matrix by matrix metalloproteinases (MMPs) plays important roles in normal development, inflammation, and cancer. MMP-9 efficiently degrades the extracellular matrix component gelatin, and the hemopexin domain of MMP-9 (PEX9) inhibits this degradation. To study the molecular basis of this inhibition, we generated GST fusion proteins containing PEX9 or truncated forms corresponding to specific structural blades (B1-B4) of PEX9. GST-PEX9 inhibited MMP-9-driven gelatin proteolysis, measured by gelatin zymography, FITC-gelatin conversion, and DQ-gelatin degradation assays. However, GST-PEX9 did not prevent the degradation of other MMP-9 substrates, such as a fluorogenic peptide, αB crystalline, or nonmuscular actin. Therefore, PEX9 may inhibit gelatin degradation by shielding gelatin and specifically preventing its binding to MMP-9. Accordingly, GST-PEX9 also abolished the degradation of gelatin by MMP-2, confirming that PEX9 is not an MMP-9 antagonist. Moreover, GST-B4 and, to a lesser extent, GST-B1 also inhibited gelatin degradation by MMP-9, indicating that these regions are responsible for the inhibitory activity of PEX9. Accordingly, ELISAs demonstrated that GST-B4 and GST-B1 specifically bound to gelatin. Our results establish new functions of PEX9 attributed to blades B4 and B1 and should help in designing specific inhibitors of gelatin degradation.
Collapse
Affiliation(s)
- Estefanía Ugarte-Berzal
- From the Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and the Department of Microbiology and Immunology, KULeuven-University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Jennifer Vandooren
- the Department of Microbiology and Immunology, KULeuven-University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Elvira Bailón
- From the Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - Ghislain Opdenakker
- the Department of Microbiology and Immunology, KULeuven-University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Angeles García-Pardo
- From the Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| |
Collapse
|
16
|
Kotzsch A, Skovgaard T, Buus U, Andersen S, Devkota K, Berthelsen J. A substrate-optimized electrophoretic mobility shift assay for ADAM12. Anal Biochem 2014; 452:34-42. [PMID: 24534253 DOI: 10.1016/j.ab.2014.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/31/2014] [Accepted: 02/02/2014] [Indexed: 11/17/2022]
Abstract
ADAM12 belongs to the A disintegrin and metalloprotease (ADAM) family of secreted sheddases activating extracellular growth factors such as epidermal growth factor receptor (EGFR) ligands and tumor necrosis factor-alpha (TNF-α). ADAM proteases, most notably ADAM17 (TNF-α-converting enzyme), have long been investigated as pharmaceutical drug targets; however, due to lack of potency and in vivo side effects, none of the small-molecule inhibitors discovered so far has made it beyond clinical testing. Ongoing research on novel selective inhibitors of ADAMs requires reliable biochemical assays to validate molecular probes from large-scale screening efforts. Here we describe an electrophoretic mobility shift assay for ADAM12 based on the identification of an optimized peptide substrate that is characterized by excellent performance and reproducibility.
Collapse
Affiliation(s)
- Alexander Kotzsch
- Facility for Protein Purification and Function at the Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Tine Skovgaard
- Facility for Protein Purification and Function at the Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Uwe Buus
- Facility for Protein Purification and Function at the Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Simon Andersen
- Facility for Protein Purification and Function at the Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kanchan Devkota
- Facility for Protein Purification and Function at the Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Berthelsen
- Facility for Protein Purification and Function at the Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Lu S, Wang Y. Single-cell imaging of mechanotransduction in endothelial cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:25-51. [PMID: 25081613 DOI: 10.1016/b978-0-12-394624-9.00002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) are constantly exposed to chemical and mechanical microenvironment in vivo. In mechanotransduction, cells can sense and translate the extracellular mechanical cues into intracellular biochemical signals, to regulate cellular processes. This regulation is crucial for many physiological functions, such as cell adhesion, migration, proliferation, and survival, as well as the progression of disease such as atherosclerosis. Here, we overview the current molecular understanding of mechanotransduction in ECs associated with atherosclerosis, especially those in response to physiological shear stress. The enabling technology of live-cell imaging has allowed the study of spatiotemporal molecular events and unprecedented understanding of intracellular signaling responses in mechanotransduction. Hence, we also introduce recent studies on mechanotransduction using single-cell imaging technologies.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Osathanunkul M, Buddhachat K, Chomdej S. A modified colorimetric method of gelatinolytic assay using bacterial collagenase type II as a model. Anal Biochem 2013; 433:168-70. [DOI: 10.1016/j.ab.2012.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
|
19
|
Design and Synthesis of a Peptidyl-FRET Substrate for Tumor Marker Enzyme human Matrix Metalloprotease-2 (hMMP-2). Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9293-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Alouini MA, Moustoifa EF, Rubio SA, Bartegi A, Berthelot T, Déléris G. Design, characterization, and evaluation of peptide arrays allowing the direct monitoring of MMP activities. Anal Bioanal Chem 2012; 403:185-94. [DOI: 10.1007/s00216-012-5760-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 12/20/2022]
|
21
|
Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor. Anal Biochem 2011; 419:53-60. [DOI: 10.1016/j.ab.2011.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022]
|
22
|
Vandooren J, Geurts N, Martens E, Van den Steen PE, Jonghe SD, Herdewijn P, Opdenakker G. Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World J Biol Chem 2011; 2:14-24. [PMID: 21537473 PMCID: PMC3083944 DOI: 10.4331/wjbc.v2.i1.14] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/18/2010] [Accepted: 11/25/2010] [Indexed: 02/05/2023] Open
Abstract
AIM: To establish a novel, sensitive and high-throughput gelatinolytic assay to define new inhibitors and compare domain deletion mutants of gelatinase B/matrix metalloproteinase (MMP)-9.
METHODS: Fluorogenic Dye-quenched (DQ)™-gelatin was used as a substrate and biochemical parameters (substrate and enzyme concentrations, DMSO solvent concentrations) were optimized to establish a high-throughput assay system. Various small-sized libraries (ChemDiv, InterBioScreen and ChemBridge) of heterocyclic, drug-like substances were tested and compared with prototypic inhibitors.
RESULTS: First, we designed a test system with gelatin as a natural substrate. Second, the assay was validated by selecting a novel pyrimidine-2,4,6-trione (barbiturate) inhibitor. Third, and in line with present structural data on collagenolysis, it was found that deletion of the O-glycosylated region significantly decreased gelatinolytic activity (kcat/kM± 40% less than full-length MMP-9).
CONCLUSION: The DQ™-gelatin assay is useful in high-throughput drug screening and exosite targeting. We demonstrate that flexibility between the catalytic and hemopexin domain is functionally critical for gelatinolysis.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Jennifer Vandooren, Nathalie Geurts, Erik Martens, Philippe E Van den Steen, Ghislain Opdenakker, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroederstraat 10, Leuven B-3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
A continuous assay method, such as the one that utilizes an increase in fluorescence upon hydrolysis, allows for rapid and convenient kinetic evaluation of proteases. To better understand MMP behaviors and to aid in the design of MMP inhibitors, a variety of sequence specificity, phage display, and combinatorial chemistry studies have been performed. Results of these studies have been valuable for defining the differences in MMPs and for creating quenched fluorescent substrates that utilize fluorescence resonance energy transfer (FRET)/intramolecular fluorescence energy transfer (IFET). FRET triple-helical substrates have been constructed to examine the collagenolytic activity of MMP family members. The present chapter provides an overview of MMP and related FRET substrates and describes how to construct and utilize these substrates.
Collapse
|
25
|
Starr AE, Overall CM. Chapter 13. Characterizing proteolytic processing of chemokines by mass spectrometry, biochemistry, neo-epitope antibodies and functional assays. Methods Enzymol 2009; 461:281-307. [PMID: 19480924 DOI: 10.1016/s0076-6879(09)05413-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nature, sequence, and length of the carboxy and amino termini of chemokines are important determinants of chemokine function, being essential for both efficient haptotactic gradient formation and cognate receptor activation events of these chemotactic cytokines. Chemokines are susceptible to proteolytic cleavage in both of these regions, which usually results in dramatic changes to the chemokine bioactivity. Herein we provide techniques to assess, detect, and characterize protease activity on chemokines and the biologic outcomes.
Collapse
Affiliation(s)
- Amanda E Starr
- Department of Biochemistry, University of British Columbia, Centre for Blood Research, Life Sciences Institute, Vancouver, British Columbia, Canada
| | | |
Collapse
|
26
|
Cheng XC, Fang H, Xu WF. Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors. J Enzyme Inhib Med Chem 2008; 23:154-67. [PMID: 18343899 DOI: 10.1080/14756360701511292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play an important role in many physiological and pathological processes. To assay the activities of MMPs is important in diagnosis and therapy of the MMPs associated diseases, such as neoplastic, rheumatic and cardiovascular diseases. Several assay systems have been developed, which include bioassay, zymography assay, immunoassay, fluorimetric assay, radio isotopic assay, phage-displayed assay, multiple-enzyme/multiple-reagent assay and activity-based profiling assay. The principle, application, advantage and disadvantage of these assays have been reviewed in this article.
Collapse
Affiliation(s)
- Xian-Chao Cheng
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | |
Collapse
|
27
|
Furusawa H, Takano H, Okahata Y. Transient Kinetic Studies of pH-Dependent Hydrolyses by Exo-type Carboxypeptidase P on a 27-MHz Quartz Crystal Microbalance. Anal Chem 2008; 80:1005-11. [DOI: 10.1021/ac702290z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Furusawa
- Frontier Collaborative Research Center, Department of Biomolecular Engineering, Tokyo Institute of Technology and CREST, JST, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroki Takano
- Frontier Collaborative Research Center, Department of Biomolecular Engineering, Tokyo Institute of Technology and CREST, JST, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Okahata
- Frontier Collaborative Research Center, Department of Biomolecular Engineering, Tokyo Institute of Technology and CREST, JST, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
28
|
Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 2007; 74:172-83. [PMID: 17631914 PMCID: PMC2692317 DOI: 10.1016/j.mvr.2007.05.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 12/27/2022]
Abstract
Blood vessels, either in insufficient numbers or in excess, contribute to the pathogenesis of many diseases. Agents that stimulate angiogenesis can improve blood flow in patients with ischemic diseases, whereas anti-angiogenic agents are used to treat disorders ranging from macular degeneration to cancer. In this review I describe in vitro assays that can be used to assess the activity of agents that affect angiogenesis. Means of quantifying endothelial cell matrix degradation, migration, proliferation, apoptosis and morphogenesis are discussed, as are embryoid body, aortic ring and metatarsal assays of vessel outgrowth. Strengths and limitations of these techniques are also addressed.
Collapse
Affiliation(s)
- Anne M Goodwin
- Department of Biology, Massachusetts College of Liberal Arts, 375 Church St., North Adams, MA 01247, USA.
| |
Collapse
|
29
|
Moss ML, Rasmussen FH. Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening. Anal Biochem 2007; 366:144-8. [PMID: 17548045 DOI: 10.1016/j.ab.2007.04.043] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/05/2007] [Accepted: 04/26/2007] [Indexed: 11/19/2022]
Abstract
In this paper we describe novel fluorescent substrates for the human ADAM family members ADAM17, ADAM10, ADAM8, and ADAM12 that have good specificity constants and are useful for high-throughput screening of inhibitors. The fluorescence resonance energy transfer substrates contain a 4-(4-dimethylaminophenylazo)benzoyl and 5-carboxyfluorescein (Dabcyl/Fam) pair and are based on known cleavage sequences in precursor tumor necrosis factor-alpha (TNF-alpha) and CD23. The precursor TNF-alpha-based substrate, Dabcyl-Leu-Ala-Gln-Ala-Homophe-Arg-Ser-Lys(Fam)-NH2, is a good substrate for all the ADAMs tested, including ADAM12 for which there is no reported fluorescent substrate. The CD23-based substrate, Dabcyl-His-Gly-Asp-Gln-Met-Ala-Gln-Lys-Ser-Lys(Fam)-NH2, is more selective, being hydrolyzed efficiently only by ADAM8 and ADAM10. The substrates were used to obtain inhibition constants for four inhibitors that are commonly used in shedding assays: TMI-1, GM6001, GW9471, and TAPI-2. The Wyeth Aerst compound, TMI-1, is a potent inhibitor against all of the ADAMs tested and is slow binding against ADAM17.
Collapse
|
30
|
Vidal A, Sabatini M, Rolland-Valognes G, Renard P, Madelmont JC, Mounetou E. Synthesis and in vitro evaluation of targeted tetracycline derivatives: Effects on inhibition of matrix metalloproteinases. Bioorg Med Chem 2007; 15:2368-74. [PMID: 17267227 DOI: 10.1016/j.bmc.2007.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 12/22/2006] [Accepted: 01/17/2007] [Indexed: 11/19/2022]
Abstract
Among other non-antibiotic properties, tetracyclines inhibit matrix metalloproteinases and are currently under study for the treatment of osteoarthritis. Quaternary ammonium conjugates of tetracyclines were synthesized by direct alkylation of the amine function at the 4-position with methyl iodide. When tested in vitro, they inhibited cytokine-induced MMP expression to a lesser extent than parent tetracyclines. This was compensated by an improved inhibition of MMP catalytic activity. Since inhibition of collagen degradation was maintained these derivatives could be potent drug candidates for cartilage-targeted chondroprotective treatment.
Collapse
|
31
|
Zabad RK, Metz LM, Todoruk TR, Zhang Y, Mitchell JR, Yeung M, Patry DG, Bell RB, Yong VW. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult Scler 2007; 13:517-26. [PMID: 17463074 DOI: 10.1177/1352458506070319] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Minocycline has immunomodulatory and neuroprotective activities in vitro and in an animal model of multiple sclerosis (MS). We have previously reported that minocycline decreased gadolinium-enhancing activity over six months in a small trial of patients with active relapsing-remitting MS (RRMS). Here we report the impact of oral minocycline on clinical and magnetic resonance imaging (MRI) outcomes and serum immune molecules in this cohort over 24 months of open-label minocycline treatment. Despite a moderately high pretreatment annualized relapse rate (1.3/year pre-enrolment; 1.2/year during a three-month baseline period) prior to treatment, no relapses occurred between months 6 and 24. Also, despite very active MRI activity pretreatment (19/40 scans had gadolinium-enhancing activity during a three-month run-in), the only patient with gadolinium-enhancing lesions on MRI at 12 and 24 months was on half-dose minocycline. Levels of the p40 subunit of interleukin (IL)-12, which at high levels might antagonize the proinflammatory IL-12 receptor, were elevated over 18 months of treatment, as were levels of soluble vascular cell adhesion molecule-1. The activity of matrix metalloproteinase-9 was decreased by treatment. Thus, clinical and MRI outcomes are supported by systemic immunological changes and call for further investigation of minocycline in MS.
Collapse
Affiliation(s)
- R K Zabad
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zeng GZ, Tan NH, Hao XJ, Mu QZ, Li RT. Natural inhibitors targeting osteoclast-mediated bone resorption. Bioorg Med Chem Lett 2006; 16:6178-80. [PMID: 17027271 DOI: 10.1016/j.bmcl.2006.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/01/2006] [Accepted: 09/14/2006] [Indexed: 11/19/2022]
Abstract
Human cathepsin K, matrix metalloproteinase 9, and alpha(V)beta(3) integrin are the key regulators in osteoclast-mediated bone resorption. In this paper, we found natural inhibitors 1-10 for them by enzyme inhibition assays. Inhibitors 1-7, 8-9, and 10 are novel inhibitors of human cathepsin K, matrix metalloproteinase 9, and alpha(V)beta(3), respectively.
Collapse
Affiliation(s)
- Guang-Zhi Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | |
Collapse
|
33
|
Sprague JE, Li WP, Liang K, Achilefu S, Anderson CJ. In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models. Nucl Med Biol 2006; 33:227-37. [PMID: 16546677 DOI: 10.1016/j.nucmedbio.2005.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 10/17/2005] [Accepted: 10/20/2005] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Overexpression of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, has been correlated with poor prognosis in several cancer types including lung, colon and breast. Noninvasive detection of MMP expression might allow physicians to better determine when more aggressive cancer therapy is appropriate. The peptide CTT (CTTHWGFTLC) was identified as a selective inhibitor of MMP-2/9 that inhibits the growth of MDA-MB-435 human breast cancer xenografts. METHODS CTT was conjugated with the bifunctional chelator DOTA (1,4,7,10-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) for radiolabeling with (64)Cu (t(1/2)=12.7 h, 17.4% beta(+), 39% beta(-)), a radionuclide suitable for positron emission tomography (PET). In vitro affinity was determined in a fluorogenic substrate assay. Tumor gelatinase targeting was evaluated in both biodistribution and microPET imaging studies. RESULTS Cu(II)-DOTA-CTT inhibited hMMP-2 (EC(50)=8.7 microM) and mMMP-9 (EC(50)=18.2 microM) with similar affinity to CTT (hMMP-2 EC(50)=13.2 microM; mMMP-9 EC(50)=11.0 microM). In biodistribution and microPET imaging studies, (64)Cu-DOTA-CTT was taken up by MMP-2/9-positive B16F10 murine melanoma tumors. Subsequently, imaging studies using (64)Cu-DOTA-CTT were performed on MDA-MB-435 tumor-bearing mice. With zymography, tumor MMP-2/9 expression in this model was shown to be inconsistent, resulting in microPET detection of the MDA-MB-435 tumor in only 1 of 24 imaged mice. Following limited imaging success, (64)Cu-DOTA-CTT was shown to have poor in vivo stability. CONCLUSIONS Despite some evidence for selective uptake of (64)Cu-DOTA-CTT by gelatinase-expressing tumors, the low affinity for MMP-2 and MMP-9 and in vivo instability make this an inadequate radioligand for in vivo tumor evaluation.
Collapse
Affiliation(s)
- Jennifer E Sprague
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
[structure: see text] A series of squaric acid-peptide conjugates were synthesized and evaluated as inhibitors of MMP-1. The cyclobut-3-enedione core was substituted at the 3-position with several functional groups, such as -N(alkyl)OH, -NHOH, and -OH, that are designed to bind to the zinc atom in the active site of the metalloprotease. The 4-position of the cyclobut-3-enedione was derivatized with mono- or dipeptides that are designed to bind in the S1' and S2' subsites of the enzyme, and position the metal chelating group appropriately in the active site for binding to zinc. Positional scanning revealed that -N(Me)OH provided the highest level of inhibition among the chelating groups that were tested, and Leu-Tle-NHMe was the preferred amino acid sequence. A combination of these groups yielded an inhibitor with an IC50 value of 95 microM. For one inhibitor, conversion of one of the carbonyl groups on the cyclobut-3-enedione core to a thiocarbonyl group resulted in a 18-fold increase in potency, and yielded a compound with an IC50 value of 15 microM.
Collapse
|
35
|
Albright CF, Graciani N, Han W, Yue E, Stein R, Lai Z, Diamond M, Dowling R, Grimminger L, Zhang SY, Behrens D, Musselman A, Bruckner R, Zhang M, Jiang X, Hu D, Higley A, Dimeo S, Rafalski M, Mandlekar S, Car B, Yeleswaram S, Stern A, Copeland RA, Combs A, Seitz SP, Trainor GL, Taub R, Huang P, Oliff A. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Mol Cancer Ther 2005; 4:751-60. [PMID: 15897239 DOI: 10.1158/1535-7163.mct-05-0006] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinase (MMP)-activated prodrugs were formed by coupling MMP-cleavable peptides to doxorubicin. The resulting conjugates were excellent in vitro substrates for MMP-2, -9, and -14. HT1080, a fibrosarcoma cell line, was used as a model system to test these prodrugs because these cells, like tumor stromal fibroblasts, expressed several MMPs. In cultured HT1080 cells, simple MMP-cleavable peptides were primarily metabolized by neprilysin, a membrane-bound metalloproteinase. MMP-selective metabolism in cultured HT1080 cells was obtained by designing conjugates that were good MMP substrates but poor neprilysin substrates. To determine how conjugates were metabolized in animals, MMP-selective conjugates were given to mice with HT1080 xenografts and the distribution of doxorubicin was determined. These studies showed that MMP-selective conjugates were preferentially metabolized in HT1080 xenografts, relative to heart and plasma, leading to 10-fold increases in the tumor/heart ratio of doxorubicin. The doxorubicin deposited by a MMP-selective prodrug, compound 6, was more effective than doxorubicin at reducing HT1080 xenograft growth. In particular, compound 6 cured 8 of 10 mice with HT1080 xenografts at doses below the maximum tolerated dose, whereas doxorubicin cured 2 of 20 mice at its maximum tolerated dose. Compound 6 was less toxic than doxorubicin at this efficacious dose because mice treated with compound 6 had no detectable changes in body weight or reticulocytes, a marker for marrow toxicity. Hence, MMP-activated doxorubicin prodrugs have a much higher therapeutic index than doxorubicin using HT1080 xenografts as a preclinical model.
Collapse
Affiliation(s)
- Charles F Albright
- Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lombard C, Saulnier J, Wallach J. Assays of matrix metalloproteinases (MMPs) activities: a review. Biochimie 2005; 87:265-72. [PMID: 15781313 DOI: 10.1016/j.biochi.2005.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/13/2005] [Indexed: 11/22/2022]
Abstract
Measurement of matrix metalloproteinase (MMP) activity often remains a challenge, mainly in complex media. Two sets of methods are currently used. The first one measures the hydrolysis of natural protein substrates (labeled or not) and includes the popular zymography. These techniques which are quite sensitive, cannot generally be carried out on a continuous basis. The second one takes mainly advantage of the increase of fluorescence, which is associated to the hydrolysis of initially quenched fluorogenic peptide substrates. Quite recently, another group, which is a compromise between the other two, has been developed. It measures the hydrolysis of synthetic triple-helical peptide substrates. These different methods are described and discussed.
Collapse
Affiliation(s)
- Carine Lombard
- Laboratoire de biochimie analytique et synthèse bioorganique, UFR Chimie-Biochimie, Université Claude-Bernard Lyon 1, 69622 Villeurbanne cedex, France
| | | | | |
Collapse
|
37
|
Blagg JA, Noe MC, Wolf-Gouveia LA, Reiter LA, Laird ER, Chang SPP, Danley DE, Downs JT, Elliott NC, Eskra JD, Griffiths RJ, Hardink JR, Haugeto AI, Jones CS, Liras JL, Lopresti-Morrow LL, Mitchell PG, Pandit J, Robinson RP, Subramanyam C, Vaughn-Bowser ML, Yocum SA. Potent pyrimidinetrione-based inhibitors of MMP-13 with enhanced selectivity over MMP-14. Bioorg Med Chem Lett 2005; 15:1807-10. [PMID: 15780611 DOI: 10.1016/j.bmcl.2005.02.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/09/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022]
Abstract
Through the use of computational modeling, a series of pyrimidinetrione-based inhibitors of MMP-13 was designed based on a lead inhibitor identified through file screening. Incorporation of a biaryl ether moiety at the C-5 position of the pyrimidinetrione ring resulted in a dramatic enhancement of MMP-13 potency. Protein crystallography revealed that this moiety binds in the S(1)(') pocket of the enzyme. Optimization of the C-4 substituent of the terminal aromatic ring led to incorporation of selectivity versus MMP-14 (MT-1 MMP). Structure activity relationships of the biaryl ether substituent are presented as is pharmacokinetic data for a compound that meets our in vitro potency and selectivity goals.
Collapse
Affiliation(s)
- Julian A Blagg
- Pfizer Global Research and Development, Groton Laboratories, MS8220-2471, Eastern Point Road, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clermont A, Wedde M, Seitz V, Podsiadlowski L, Lenze D, Hummel M, Vilcinskas A. Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity. Biochem J 2005; 382:315-22. [PMID: 15115439 PMCID: PMC1133944 DOI: 10.1042/bj20031923] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/22/2004] [Accepted: 04/28/2004] [Indexed: 11/17/2022]
Abstract
The first IMPI (inhibitor of metalloproteinases from insects) was identified in the greater wax moth, Galleria mellonella [Wedde, Weise, Kopacek, Franke and Vilcinskas (1998) Eur. J. Biochem. 255, 535-543]. Here we report cloning and expression of a cDNA coding for this IMPI. The IMPI mRNA was identified among the induced transcripts from a subtractive and suppressive PCR analysis after bacterial challenge of G. mellonella larvae. Induced expression of the IMPI during a humoral immune response was confirmed by real-time PCR, which documented up to 500 times higher amounts of IMPI mRNA in immunized larvae in comparison with untreated ones. The IMPI sequence shares no similarity with those of tissue inhibitors of metalloproteinases or other natural inhibitors of metalloproteinases, and the recombinant IMPI specifically inhibits thermolysin-like metalloproteinases, but not matrix metalloproteinases. These results support the hypothesis that the IMPI represents a novel type of immune-related protein which is induced and processed during the G. mellonella humoral immune response to inactivate pathogen-associated thermolysin-like metalloproteinases.
Collapse
Affiliation(s)
- Anja Clermont
- Institute of Pathology, Benjamin-Franklin-Hospital, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nishikawa M, Ogawa K. Occurrence of D-histidine residues in antimicrobial poly(arginyl-histidine), conferring resistance to enzymatic hydrolysis. FEMS Microbiol Lett 2005; 239:255-9. [PMID: 15476974 DOI: 10.1016/j.femsle.2004.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022] Open
Abstract
The antimicrobial peptide poly(arginyl-histidine) is secreted by the ergot fungus Verticillium kibiense. We previously showed that poly(arginyl-histidine) from the fungus inhibits the growth of certain microorganisms more effectively than that chemically synthesized from the L-form of arginine and histidine, implying some substantial differences between the fungal and synthetic peptides. To elucidate what causes such differences, we here investigated the structural features of the fungal peptides. The acid hydrolysates of the fungal peptide contained d-histidine. When synthetic poly(L-arginyl-D-histidine) mimicking the fungal peptide was added to the culture of Salmonella typhimurium together with poly(L-arginyl-L-histidine), poly(L-arginyl-D-histidine) was not easily degraded during the incubation compared with poly(L-arginyl-L-histidine). We concluded that the d-form of histidine residues in the fungal peptide prolongs the life of the peptide leading to the enhancement of antimicrobial activity.
Collapse
Affiliation(s)
- Masanobu Nishikawa
- Research Institute for Biological Sciences Okayama (RIBS), 7549-1 Kayo-cho, Okayama 716-1241, Japan.
| | | |
Collapse
|
40
|
Hatanaka T, Yoshiko Uesugi JA, Iwabuchi M. Purification, characterization cloning, and sequencing of metalloendopeptidase from Streptomyces septatus TH-2. Arch Biochem Biophys 2005; 434:289-98. [PMID: 15639229 DOI: 10.1016/j.abb.2004.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/15/2004] [Indexed: 11/29/2022]
Abstract
Streptomyces septatus TH-2 secretes a large amount of a protease when cultured on a medium containing K(2)HPO(4) and glucose. The enzyme was purified to homogeneity by a three-step procedure. This enzyme had a molecular mass of approximately 35kDa, and was particularly inhibited by EDTA and phosphoramidon. Its substrate specificity was investigated using novel fluorescence energy transfer combinatorial libraries. The protease was found to prefer Phe and Tyr at the P(1) position, a hydrophobic or basic residue at the P(2) position, and a basic or small residue at the P(3) position. Its gene was cloned and sequenced, and its deduced amino acid sequence contained an HEXXH consensus sequence for zinc binding, confirming that it encodes metalloendopeptidase. The primary structure of the enzyme showed 40 and 69% identities with that of thermolysin from Bacillus thermoproteolyticus and that of a metalloendopeptidase from Streptomyces griseus, respectively.
Collapse
Affiliation(s)
- Tadashi Hatanaka
- Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan.
| | | | | |
Collapse
|
41
|
Malan SF, van Marle A, Menge WM, Zuliani V, Zuliana V, Hoffman M, Timmerman H, Leurs R. Fluorescent ligands for the histamine H2 receptor: synthesis and preliminary characterization. Bioorg Med Chem 2004; 12:6495-503. [PMID: 15556766 DOI: 10.1016/j.bmc.2004.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/10/2004] [Accepted: 09/14/2004] [Indexed: 12/01/2022]
Abstract
3-[3-(Piperidinomethyl)phenoxy]alkyl, N-cyano-N'-[omega-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidine and 2-(5-methyl-4-imidazolyl)methyl thioethyl derivatives containing fluorescent functionalities were synthesized and the histamine H2 receptor affinity was evaluated using the H2 antagonist [125I]-aminopotentidine. The compounds exhibited weak to potent H2 receptor affinity with pKi values ranging from <4 to 8.85. The highest H2 receptor affinity was observed for N-cyano-N'-[omega-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidines substituted with methylanthranilate (13), cyanoindolizine (6) and cyanoisoindole (11) moieties via an ethyl or propyl linker.
Collapse
Affiliation(s)
- Sarel F Malan
- Pharmaceutical Chemistry, North-West University, Potchefstroom 2520, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Neumann U, Kubota H, Frei K, Ganu V, Leppert D. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal Biochem 2004; 328:166-73. [PMID: 15113693 DOI: 10.1016/j.ab.2003.12.035] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinases (MMPs) and the related tumor necrosis factor converting enzyme (TACE) are involved in tissue remodeling, cell migration, and processing of signaling molecules, such as cytokines and adhesion molecules. Fluorescence-quenched peptide substrates have been widely used to quantitate the actual enzymatic activity of MMPs. However, the various MMPs have very different specific activities toward these substrates. This restricts their value for the determination of composite proteolytic activity of mixtures of metalloproteinases in biological fluids. The N-terminal elongation of the most widely used MMP substrate (FS-1) with a Lys to the sequence Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH(2) (FS-6) yields a fluorogenic peptide with improved substrate properties. As compared to FS-1, the specificity constant (kcat/Km) of FS-6 for collagenases (MMP-1, MMP-8, MMP-13) and MT1-MMP (MMP-14) is increased two- to ninefold and threefold, respectively, while those for gelatinases and matrilysin remain equally high. Using high-performance liquid chromatography-fluorescence detection, MMP activity can be quantitated in the picomolar range. FS-6 shows up to twofold higher specificity constants (kcat/Km of 0.8x10(6)M(-1)s(-1)) for TACE, as compared to standard substrates Mca-PLAQAV-Dpa-RSSSAR-NH(2) and Dabcyl-LAQAVRSSSAR-EDANS. FS-6 is fully water soluble and thus allows measurement of metalloproteinase activity in tissue culture conditions, e.g., on the surface of viable cells in situ.
Collapse
Affiliation(s)
- Ulf Neumann
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Hu J, Van den Steen PE, Houde M, Ilenchuk TT, Opdenakker G. Inhibitors of gelatinase B/matrix metalloproteinase-9 activity. Biochem Pharmacol 2004; 67:1001-9. [PMID: 15104254 DOI: 10.1016/j.bcp.2003.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Matrix metalloproteinases form a proteinase family with at least 20 members, which are involved in several pathological conditions and which fulfill a large number of physiological functions. Gelatinase A/MMP-2 is a constitutively produced homeostatic enzyme, whereas gelatinase B/MMP-9 is upregulated in acute and chronic inflammations and forms a target for the development of therapeutic inhibitors. We have used a recently developed assay with fluorescent gelatin to analyze gelatinase inhibitors. A peptidomimetic, based on the consensus sequence of the cleavage sites in type II collagen, and various derivatives of a neutralizing antibody were compared as gelatinase inhibitors. A single-chain variable fragment (scFv) derived from the gelatinase B-selective monoclonal antibody REGA-3G12 was tagged with oligohistidine and was also compared with the untagged scFv. Both scFv derivatives inhibited gelatinase B but the peptidomimetic was inefficient. As an extra control and serendipitously it was found that polyhistidine is an inhibitor of gelatinases, presumably by altering the active site by chelation of the catalytic Zn2+.
Collapse
Affiliation(s)
- Jialiang Hu
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | | | |
Collapse
|
44
|
Letavic MA, Barberia JT, Carty TJ, Hardink JR, Liras J, Lopresti-Morrow LL, Mitchell PG, Noe MC, Reeves LM, Snow SL, Stam EJ, Sweeney FJ, Vaughn ML, Yu CH. Synthesis and biological activity of piperazine-based dual MMP-13 and TNF-alpha converting enzyme inhibitors. Bioorg Med Chem Lett 2003; 13:3243-6. [PMID: 12951101 DOI: 10.1016/s0960-894x(03)00666-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of novel MMP-13 and TNF-alpha converting enzyme inhibitors based on piperazine 2-hydroxamic acid scaffolds are described. The TACE, MMP-1 and MMP-13 activity of these inhibitors as well as the effect of substitution of the piperazine nitrogen and the P-1' benzyloxy tailpiece is discussed. Moderate in vivo activity is observed with several members of this group.
Collapse
Affiliation(s)
- Michael A Letavic
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lauer-Fields JL, Kele P, Sui G, Nagase H, Leblanc RM, Fields GB. Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids. Anal Biochem 2003; 321:105-15. [PMID: 12963061 DOI: 10.1016/s0003-2697(03)00460-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The consequences of improper regulation of collagen turnover include diseases such as tumor cell metastasis and arthritis. Several fluorogenic triple-helical peptide (fTHP) substrates have been constructed presently to examine collagenolytic behavior. These substrates incorporate L- or D-2-amino-3-(7-methoxy-4-coumaryl)propionic acid (Amp) or L- or D-2-amino-3-(6,7-dimethoxy-4-coumaryl)propionic acid (Adp) as the fluorophore and N-2,4-dinitrophenyl (Dnp) as the quencher. The desired sequences were C6-(Gly-Pro-Hyp)5-Gly-Pro-[Amp/Adp]-Gly-Pro-Gln-Gly approximately Leu-Arg-Gly-Gln-Lys(Dnp)-Gly-Val-Arg-(Gly-Pro-Hyp)5-NH2. All four fTHPs formed stable triple-helices. Matrix metalloproteinase-2 (MMP-2) rates of hydrolysis for all fTHPs were considerably more rapid than corresponding MMP-1 rates. Evaluation of individual kinetic parameters indicated that MMP-2 bound to the fTHPs more efficiently than MMP-1. Comparison to a triple-helical substrate incorporating the same sequence but with a different fluorophore [Lys((7-methoxycoumarin-4-yl)acetyl); Lys(Mca)] demonstrated that the shorter side chain of Amp or Adp was better tolerated by MMP-1 and MMP-2. Adp may well be the fluorophore of choice for fTHPs, as (a) fTHPs incorporating Adp were obtained in significantly higher yields than the Amp-containing fTHPs, (b) Adp has a larger Stokes shift than either Amp or Lys(Mca) and thus has less chance of self-quenching, (c) Adp has a relatively high quantum yield, (d) the Adp/Dnp pair is compatible with multiwell plate reader formats, and (e) MMPs better tolerate Adp than Lys(Mca).
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | |
Collapse
|
46
|
Le Diguarher T, Chollet AM, Bertrand M, Hennig P, Raimbaud E, Sabatini M, Guilbaud N, Pierré A, Tucker GC, Casara P. Stereospecific synthesis of 5-substituted 2-bisarylthiocyclopentane carboxylic acids as specific matrix metalloproteinase inhibitors. J Med Chem 2003; 46:3840-52. [PMID: 12930146 DOI: 10.1021/jm0307638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and structure-activity relationship (SAR) studies of a series of cyclopentane carboxylic acid matrix metalloproteinase (MMP) inhibitors are described. Potent and specific MMP-2, -3, -9, -13 inhibitors were obtained by regio- and stereoselective substitutions at positions 2 and 5 on the cyclopentane ring. Compounds 2a and 2e are active in the mouse B16-F10 metastasis model and display very good pharmacokinetic parameters.
Collapse
Affiliation(s)
- Thierry Le Diguarher
- Institut de Recherches Servier, 125 chemin de Ronde, 78290 Croissy sur Seine, France, and Technologie Servier, 25-27 rue E. Vignat, 45007 Orléans, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fray MJ, Dickinson RP, Huggins JP, Occleston NL. A potent, selective inhibitor of matrix metalloproteinase-3 for the topical treatment of chronic dermal ulcers. J Med Chem 2003; 46:3514-25. [PMID: 12877590 DOI: 10.1021/jm0308038] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix (required for cell migration) and growth factors and their receptors. The overexpression of MMP-3 (stromelysin-1) and MMP-13 (collagenase-3) is associated with nonhealing wounds, whereas active MMPs-1, -2, -9, and -14 are required for normal wound healing to occur. We describe the synthesis and enzyme inhibition profile of (3R)-3-[([(1S)-2,2-dimethyl-1-(([(1S)-2-methoxy-1-phenylethyl]amino)carbonyl)propyl]amino)carbonyl]-6-(3-methyl-4-phenylphenyl)hexanoic acid (UK-370,106, 7), which is a potent inhibitor of MMP-3 (IC(50) = 23 nM) with >1200-fold weaker potency vs MMP-1, -2, -9, and -14. MMP-13, which may also contribute to the pathology of chronic wounds, was inhibited about 100-fold less potently by compound 7. Compound 7 potently inhibited cleavage of [(3)H]-fibronectin by MMP-3 (IC(50) = 320 nM) but not cleavage of [(3)H]-gelatin by either MMP-2 or -9 (up to 100 microM). Compound 7 had little effect, at MMP-3 selective concentrations, on keratinocyte migration over a collagen matrix in vitro, which is a model of the re-epithelialization process. Following iv (rat) or topical administration to dermal wounds (rabbit), compound 7 was cleared rapidly (t(1/2) = 23 min) from plasma, but slowly (t(1/2) approximately 3 days) from dermal tissue. In a model of chronic dermal ulcers, topical administration of compound 7 for 6 days substantially inhibited MMP-3 ex vivo. These data suggest compound 7 is sufficiently potent to inhibit MMP-3-mediated matrix degradation while leaving unaffected cellular migration mediated by MMPs 1, 2, and 9. These properties make compound 7 a suitable candidate for progression to clinical trials in human chronic dermal wounds, such as venous ulcers.
Collapse
Affiliation(s)
- M Jonathan Fray
- Department of Discovery Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, U.K.
| | | | | | | |
Collapse
|
48
|
Reiter LA, Mitchell PG, Martinelli GJ, Lopresti-Morrow LL, Yocum SA, Eskra JD. Phosphinic acid-based MMP-13 inhibitors that spare MMP-1 and MMP-3. Bioorg Med Chem Lett 2003; 13:2331-6. [PMID: 12824028 DOI: 10.1016/s0960-894x(03)00413-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphinic acid-based inhibitors of MMP-13 have been investigated with the aim of identifying potent inhibitors with high selectivity versus MMP-1. Independent variation of the substituents on a P(1)' phenethyl group and a P(2) benzyl group improved potencies in both cases around 3-fold over the unsubstituted parent. Combining improved P(1)' and P(2) groups into a single molecule gave an inhibitor with a 4.5 nM IC(50) against MMP-13 and which is 270-fold selective over MMP-1.
Collapse
Affiliation(s)
- Lawrence A Reiter
- Pfizer Inc, Global Reseach & Development, Groton Laboratories, Eastern Point Rd., 06340, Groton, CT, USA.
| | | | | | | | | | | |
Collapse
|
49
|
George J, Teear ML, Norey CG, Burns DD. Evaluation of an imaging platform during the development of a FRET protease assay. JOURNAL OF BIOMOLECULAR SCREENING 2003; 8:72-80. [PMID: 12855000 DOI: 10.1177/1087057102239778] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthetic peptide substrates labeled with a fluorescent donor and quenching moiety flanking an enzyme cleavage site provide a reliable method for monitoring enzyme activity. The dye pair Mca/Dnp has been widely used for this purpose, but poor solubility characteristics, combined with fluorescence emission in the region of the spectrum associated with interference from biologicals and library compounds, can limit the usefulness of Mca/Dnp substrates in a high-throughput screening (HTS) environment. Peptide Mca-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys(Dnp)-NH(2) is a matrix-metalloproteinase 3 (MMP-3) enzyme substrate that the authors have labeled with a CyDye pair, Cy3/Cy5Q. The Mca/Dnp- and CyDye-labeled substrates were compared during the development of an MMP-3 inhibitor assay. The results obtained showed that although the peptide substrates behaved similarly throughout the development of the MMP-3 assay, during a test screen of 934 compounds randomly selected from a collection of more than 70000 compounds, the CyDye substrate was considerably more reliable. Screen Z factor values of 0.84 and 0.15 were obtained using the CyDye and Mca/Dnp peptides respectively, and the authors found that although < 1% of the test compounds were auto-fluorescent at Cy3 wavelengths, > 10% could not be screened using the Mca/Dnp substrate because of compound auto-fluorescence and interference. During this study, the authors used a PMT-based fluorescence plate reader and at the same time evaluated a charged couple device (CCD)-based imaging platform specifically optimized for use with CyDye reagents. The imaging platform gave improved read accuracy and faster plate processing times compared with the PMT reader. Overall, the results presented here highlight the potential benefit of employing the red-shifted CyDye reagents and imaging technology during the development and execution of HTS protease screens.
Collapse
|
50
|
Cunningham AC, Hasty KA, Enghild JJ, Mast AE. Structural and functional characterization of tissue factor pathway inhibitor following degradation by matrix metalloproteinase-8. Biochem J 2002; 367:451-8. [PMID: 12117418 PMCID: PMC1222898 DOI: 10.1042/bj20020696] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Revised: 06/18/2002] [Accepted: 07/12/2002] [Indexed: 11/17/2022]
Abstract
Vascular injury results in the activation of coagulation and the release of proteolytic enzymes from neutrophils and connective- tissue cells. High concentrations of these inflammatory proteinases may destroy blood coagulation proteins, contributing to coagulation and bleeding disorders associated with severe inflammation. Matrix metalloproteinase-8 (MMP-8) is released from neutrophils at sites of inflammation and vascular disease. We have investigated the effect of MMP-8 degradation on the anticoagulant function of tissue factor pathway inhibitor (TFPI) as a potential pathological mechanism contributing to coagulation disorders. MMP-8 cleaves TFPI following Ser(174) within the connecting region between the second and third Kunitz domains ( k (cat)/ K (m) approximately 75 M(-1).s(-1)) as well as following Lys(20) within the NH(2)-terminal region. MMP-8 cleavage of TFPI decreases the anticoagulant activity of TFPI in factor Xa initiated clotting assays as well as the ability of TFPI to inhibit factor Xa in amidolytic assays. Yet, MMP-8 cleavage does not alter the ability of TFPI to inhibit trypsin. Since the inhibition of both factor Xa and trypsin is mediated by binding to the second Kunitz domain, these results suggest that regions of TFPI other than the second Kunitz domain may directly interact with factor Xa. (125)I-factor Xa ligand blots of TFPI fragments generated following MMP-8 degradation were used for probing binding interactions between factor Xa and regions of TFPI, other than the second Kunitz domain. In experiments performed under reducing conditions that disrupt the Kunitz domain structure, (125)I-factor Xa binds to the C-terminal fragment of MMP-8-degraded TFPI. This fragment contains portions of TFPI distal to Ser(174), which include the third Kunitz domain and the basic C-terminal region. An altered form of TFPI lacking the third Kunitz domain, but containing the C-terminal region, was used to demonstrate that the C-terminal region directly interacts with factor Xa.
Collapse
Affiliation(s)
- Anna C Cunningham
- Department of Pathology, The University of Tennessee, Memphis, TN 38163, U.S.A
| | | | | | | |
Collapse
|