1
|
Molecular Cloning and Characterization of a New Family VI Esterase from an Activated Sludge Metagenome. Microorganisms 2022; 10:microorganisms10122403. [PMID: 36557656 PMCID: PMC9786865 DOI: 10.3390/microorganisms10122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
A new esterase gene, est6, was discovered in an activated sludge metagenomic library. The 729-bp gene encodes a 242-amino acid protein (designated Est6) with a molecular mass of 26.1 kDa. Est6 shared only a moderate identity to a putative hydrolase with the highest BLASTP analysis score. Most of the closely related proteins are uncharacterized and are predicted from genome sequencing data of microorganisms or metagenomic DNA sequences. The phylogenetic analysis of Est6 showed that the protein was assigned to family VI esterases/lipases. The catalytic triad of Est6 was predicted to be Ser135, Asp188, and His219, with Ser135 in a typically conserved pentapeptide (GFSQG) of family VI members, which was further confirmed by site-directed mutagenesis. The est6 gene was overexpressed successfully in its soluble form in Escherichia coli and then purified to its tag-free form and homogeneity by affinity chromatography. The purified Est6 in pH 8.0 buffer was active as a monomer. The optimal conditions for Est6 activity were at a temperature of 45 °C and pH of 8.0 when using p-nitrophenyl acetate as a substrate. The enzyme was stable over wide temperature and pH ranges, and it exhibited activity in the presence of organic solvents, metal cations, or detergents. Furthermore, the enzyme showed significant regioselectivity in the spectrophotometric analysis. In conclusion, Est6 might have the potential for applications in biotechnological processes.
Collapse
|
2
|
Chow JY, Nguyen GKT. Rational Design of Lipase ROL to Increase Its Thermostability for Production of Structured Tags. Int J Mol Sci 2022; 23:ijms23179515. [PMID: 36076913 PMCID: PMC9455606 DOI: 10.3390/ijms23179515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/05/2022] Open
Abstract
1,3-regiospecific lipases are important enzymes that are heavily utilized in the food industries to produce structured triacylglycerols (TAGs). The Rhizopus oryzae lipase (ROL) has recently gained interest because this enzyme possesses high selectivity and catalytic efficiency. However, its low thermostability limits its use towards reactions that work at lower temperature. Most importantly, the enzyme cannot be used for the production of 1,3-dioleoyl-2-palmitoylglycerol (OPO) and 1,3-stearoyl-2-oleoyl-glycerol (SOS) due to the high melting points of the substrates used for the reaction. Despite various engineering efforts used to improve the thermostability of ROL, the enzyme is unable to function at temperatures above 60 °C. Here, we describe the rational design of ROL to identify variants that can retain their activity at temperatures higher than 60 °C. After two rounds of mutagenesis and screening, we were able to identify a mutant ROL_10x that can retain most of its activity at 70 °C. We further demonstrated that this mutant is useful for the synthesis of SOS while minimal product formation was observed with ROL_WT. Our engineered enzyme provides a promising solution for the industrial synthesis of structured lipids at high temperature.
Collapse
|
3
|
Takenaka S, Ogawa C, Uemura M, Umeki T, Kimura Y, Yokota S, Doi M. Identification and characterization of extracellular enzymes secreted by Aspergillus spp. involved in lipolysis and lipid-antioxidation during katsuobushi fermentation and ripening. Int J Food Microbiol 2021; 353:109299. [PMID: 34153828 DOI: 10.1016/j.ijfoodmicro.2021.109299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
A mild-flavored soup stock made from katsuobushi is an important element of traditional Japanese cuisine and is the basic seasoning responsible for the taste. Fermented and ripened katsuobushi, known as karebushi, is manufactured by simmering skipjack tuna that is then smoke-dried, fermented, and ripened in a repeated molding process by five dominant Aspergillus species. Here, our aim was to characterize and identify the lipolytic enzymes secreted by the dominant Aspergillus species, especially A. chevalieri and A. pseudoglaucus, which are involved in hydrolyzing lipids during the molding process. The crude enzyme preparations from the five Aspergillus spp. cultivated on katsuobushi solid medium hydrolyzed triglycerides in fish oil, and more saturated and unsaturated fatty acids (C16:0, C16:1, C18:0, C18:1) were produced than major polyunsaturated fatty acids (C20:5, C22:6). On the basis of ion exchange chromatograms, the composition of the lipolytic enzymes was different in the five species. There was at least one active fraction with high hydrolytic activity toward fish oil in four of the Aspergillus spp., but not A. sydowii; the lipolytic enzyme secreted by A. sydowii had quite high activity toward the artificial substrate p-nitrophenyl butyrate, but low activity toward the natural oil. The lipolytic fractions from A. chevalieri and A. pseudoglaucus were further purified by hydrophobic interaction chromatography then gel-filtration chromatography; LC-MS-MS Mascot analysis identified a variety of lipolytic enzymes, including cutinase, esterase, phospholipase, and carboxyl esterase in the lipolytic fractions from these species. The identified enzymes had 30%-70% identity to previously reported or manually annotated lipases or esterases from taxa other than Aspergillus. The different lipolytic enzymes likely acted on triglycerides in the katsuobushi fish oil. Furthermore, catalase B and Cu/Zn superoxide dismutase, which limit oxidative damage of lipids, were also identified. These antioxidant enzymes may prevent lipid oxidation and rancidity as the lipolytic enzymes hydrolyze lipids during the long fermentation and ripening process. Umami and richness tastes tended to increase in extracts from culture of protease- and peptidase-producing A. sydowii. Our results will aid in the selection and application of desirable strains of Aspergillus species as starter cultures to improve the storage and quality of fermented and ripened karebushi.
Collapse
Affiliation(s)
- Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | - Chiaki Ogawa
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Mariko Uemura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoya Umeki
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Satoko Yokota
- Marutomo Co., Ltd., 1696 Kominato, Iyo, Ehime 799-3192, Japan
| | - Mikiharu Doi
- Marutomo Co., Ltd., 1696 Kominato, Iyo, Ehime 799-3192, Japan
| |
Collapse
|
4
|
Torregrosa R, Yara-Varón E, Balcells M, Torres M, Canela-Garayoa R. Entirely solvent-free biocatalytic synthesis of solketal fatty esters from soybean seeds. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Vaquero ME, de Eugenio LI, Martínez MJ, Barriuso J. A novel calb-type lipase discovered by fungal genomes mining. PLoS One 2015; 10:e0124882. [PMID: 25898146 PMCID: PMC4405274 DOI: 10.1371/journal.pone.0124882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/18/2015] [Indexed: 01/20/2023] Open
Abstract
The fungus Pseudozyma antarctica produces a lipase (CalB) with broad substrate specificity, stability, high regio- and enantio-selectivity. It is active in non-aqueous organic solvents and at elevated temperatures. Hence, CalB is a robust biocatalyst for chemical conversions on an industrial scale. Here we report the in silico mining of public metagenomes and fungal genomes to discover novel lipases with high homology to CalB. The candidates were selected taking into account homology and conserved motifs criteria, as well as, phylogeny and 3D model analyses. The most promising candidate (PlicB) presented interesting structural properties. PlicB was expressed in a heterologous host, purified and partially characterized. Further experiments will allow finding novel catalytic properties with biotechnological interest.
Collapse
Affiliation(s)
- Maria E. Vaquero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I. de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria J. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
7
|
Lee MH, Lee CH, Oh TK, Song JK, Yoon JH. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 2006; 72:7406-9. [PMID: 16950897 PMCID: PMC1636159 DOI: 10.1128/aem.01157-06] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned lipG, which encoded a lipolytic enzyme, from a Korean tidal flat metagenomic library. LipG was related to six putative lipases previously identified only in bacterial genome sequences. These enzymes comprise a new family. We partially characterized LipG, providing the first experimental data for a member of this family.
Collapse
Affiliation(s)
- Mi-Hwa Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Rahman RNZRA, Baharum SN, Basri M, Salleh AB. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 2005; 341:267-74. [PMID: 15907872 DOI: 10.1016/j.ab.2005.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Indexed: 11/23/2022]
Abstract
An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
Collapse
|
9
|
Choi SJ, Hwang JM, Kim SI. A colorimetric microplate assay method for high throughput analysis of lipase activity. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:417-20. [PMID: 12895302 DOI: 10.5483/bmbrep.2003.36.4.417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present work describes a colorimetric microplate assay for lipase activity based on the reaction between 5,5'-dithiobis(2-nitro benzoic acid) (DTNB) and the hydrolysis product of 2,3-dimercapto-1-propanol tributyrate (DMPTB). Reaction mixtures containing DTNB, DMPTB, and lipase were prepared in microplate wells, and the absorbance at 405nm was recorded after incubation at 37 degrees C for 30 min. A linear relationship was obtained in the range of 0.1-1 U of lipase activity by this method. The reaction conditions were also optimized for the range of 0.01-0.1 U or 1-10 U. When assaying crude tissue extracts, the reaction of DTNB with non-specific reducing agents created a major source of error. However, this error was corrected by the use of blank samples that did not contain DMPTB.
Collapse
Affiliation(s)
- Suk-Jung Choi
- Department of Chemistry, Kangnung National University, Gangneung 210-702, Korea.
| | | | | |
Collapse
|
10
|
Les̆c̆ić I, Vukelić B, Majerić-Elenkov M, Saenger W, Abramić M. Substrate specificity and effects of water-miscible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00433-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|