1
|
Lee SH, Khwaja Rehman F, Tyler KC, Yu B, Zhang Z, Osuka S, Zerrouqi A, Kaluzova M, Hadjipanayis CG, Cummings RD, Olson JJ, Devi NS, Van Meir EG. A Chimeric Signal Peptide-Galectin-3 Conjugate Induces Glycosylation-Dependent Cancer Cell-Specific Apoptosis. Clin Cancer Res 2020; 26:2711-2724. [PMID: 31969339 PMCID: PMC7580863 DOI: 10.1158/1078-0432.ccr-18-3280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2019] [Accepted: 01/16/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Exploitation of altered glycosylation in cancer is a major goal for the design of new cancer therapy. Here, we designed a novel secreted chimeric signal peptide-Galectin-3 conjugate (sGal-3) and investigated its ability to induce cancer-specific cell death by targeting aberrantly N-glycosylated cell surface receptors on cancer cells. EXPERIMENTAL DESIGN sGal-3 was genetically engineered from Gal-3 by extending its N-terminus with a noncleavable signal peptide from tissue plasminogen activator. sGal-3 killing ability was tested on normal and tumor cells in vitro and its antitumor activity was evaluated in subcutaneous lung cancer and orthotopic malignant glioma models. The mechanism of killing was investigated through assays detecting sGal-3 interaction with specific glycans on the surface of tumor cells and the elicited downstream proapoptotic signaling. RESULTS We found sGal-3 preferentially binds to β1 integrin on the surface of tumor cells due to aberrant N-glycosylation resulting from cancer-associated upregulation of several glycosyltransferases. This interaction induces potent cancer-specific death by triggering an oncoglycan-β1/calpain/caspase-9 proapoptotic signaling cascade. sGal-3 could reduce the growth of subcutaneous lung cancers and malignant gliomas in brain, leading to increased animal survival. CONCLUSIONS We demonstrate that sGal-3 kills aberrantly glycosylated tumor cells and antagonizes tumor growth through a novel integrin β1-dependent cell-extrinsic apoptotic pathway. These findings provide proof-of-principle that aberrant N-oncoglycans represent valid cancer targets and support further translation of the chimeric sGal-3 peptide conjugate for cancer therapy.
Collapse
Affiliation(s)
- Sok-Hyong Lee
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | | | - Kari C Tyler
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Bing Yu
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Zhaobin Zhang
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Satoru Osuka
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | | | - Milota Kaluzova
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | | | - Richard D Cummings
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Narra S Devi
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Erwin G Van Meir
- Department of Neurosurgery, Emory University, Atlanta, Georgia.
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama
| |
Collapse
|
2
|
Larsen K, Thygesen MB, Guillaumie F, Willats WGT, Jensen KJ. Solid-phase chemical tools for glycobiology. Carbohydr Res 2006; 341:1209-34. [PMID: 16716275 DOI: 10.1016/j.carres.2006.04.045] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/25/2006] [Accepted: 04/28/2006] [Indexed: 11/16/2022]
Abstract
Techniques involving solid supports have played crucial roles in the development of genomics, proteomics, and in molecular biology in general. Similarly, methods for immobilization or attachment to surfaces and resins have become ubiquitous in sequencing, synthesis, analysis, and screening of oligonucleotides, peptides, and proteins. However, solid-phase tools have been employed to a much lesser extent in glycobiology and glycomics. This review provides a comprehensive overview of solid-phase chemical tools for glycobiology including methodologies and applications. We provide a broad perspective of different approaches, including some well-established ones, such as immobilization in microtiter plates and to cross-linked polymers. Emerging areas such as glycan microarrays and glycan sequencing, quantum dots, and gold nanoparticles for nanobioscience applications are also discussed. The applications reviewed here include enzymology, immunology, elucidation of biosynthesis, and systems biology, as well as first steps toward solid-supported sequencing. From these methods and applications emerge a general vision for the use of solid-phase chemical tools in glycobiology.
Collapse
Affiliation(s)
- Kim Larsen
- Department of Natural Sciences, Section for Bioorganic Chemistry, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
3
|
Ambrosi M, Cameron NR, Davis BG, Stolnik S. Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org Biomol Chem 2005; 3:1476-80. [PMID: 15827644 DOI: 10.1039/b411555b] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between synthetic glycoplymers bearing beta-D-galactose side groups and the lectin peanut agglutinin (PNA) was investigated by UV-difference spectroscopy and isothermal titration calorimetry (ITC). UV-difference spectroscopy indicated that the polymer-lectin interaction was stronger than that between PNA and either the corresponding monomer, D-galactose or D-lactose. The thermodynamics of binding (K, DeltaG, DeltaH, DeltaS and n) were determined from ITC data by fitting with a two-site, non-cooperative binding model. It was found that the glycopolymer displayed around a 50 times greater affinity for the lectin than the parent carbohydrate, and around 10 times greater than the monomer, on a valency-corrected basis. Binding was found to be entropically driven, and was accompanied by aggregation and precipitation of protein molecules. Furthermore, interesting differences between polymers prepared either from deacetylated monomers, or by deacetylation of pre-formed polymers, were found.
Collapse
Affiliation(s)
- Moira Ambrosi
- Department of Chemistry and Interdisciplinary Research Centre in Polymer Science and Technology, University of Durham, UK
| | | | | | | |
Collapse
|
4
|
Abdul-Rahman B, Ailor E, Jarvis D, Betenbaugh M, Lee YC. Beta-(1 --> 4)-galactosyltransferase activity in native and engineered insect cells measured with time-resolved europium fluorescence. Carbohydr Res 2002; 337:2181-6. [PMID: 12433481 DOI: 10.1016/s0008-6215(02)00260-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To evaluate the ability of insect cells to produce complex-type N-glycans, beta-(1 --> 4)-galactosyltransferase (beta4GalT) activity in several insect cell lines was analyzed. For this purpose, we developed a simple and highly sensitive assay for beta-(1 --> 4)-galactosyltransferase (beta4GalT) activity, which is based on time-resolved fluorometry of europium. Bovine serum albumin (BSA) modified with GlcNAc (GlcNAc(44)-BSA) was used as the acceptor. GlcNAc(44)-BSA was coated on a 96-well microplate, and after incubation with the enzyme sample in the presence of UDP-Gal, Eu-labeled RCA(120) (Ricinus communis aggutin I), was added. RCA(120) binds to the Galbeta(1 --> 4)GlcNAc structure in the product, and the bound Eu-RCA(120) was measured by the fluorescence of europium. When bovine beta4Gal-T-I was used as a standard reference enzyme, a linear relationship between enzyme activity and fluorescent signal was obtained over the range of 0-1000 microUnits (IU). Using this system, we were able to measure a low but significant level of beta4GalT activity in Trichoplusia ni cells ('High Five'). In contrast, no endogenous beta4GalT activity was detected in a Spodoptera frugiperda (Sf-9) cell line. However, Sf-9 cells stably transfected with the bovine beta4GalT-I gene and 'High Five' cells infected with a baculovirus containing the same gene produced activity levels that were comparable to or greater than those found in Chinese hamster ovary cells. We also showed that the beta4GalT activity level observed in the baculovirus-infected T. ni cells under the control of immediate early promoter was highly dependent on the post-infection time, suggesting that galactosylation level may also be variable during the infection period.
Collapse
|
5
|
Aqueous vinyl-insertion polymerization of lactamine-functionalized norbornene by palladium (II) chloride. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00098-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
|
7
|
Oubihi M, Kitajima K, Aoki N, Matsuda T. Spontaneous galactosylation of agalactoglycoproteins in colostrum. FEBS Lett 2000; 473:165-8. [PMID: 10812067 DOI: 10.1016/s0014-5793(00)01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have found that spontaneous galactosylation of GlcNAc residues occurs in bovine colostrum, but not in dialyzed colostrum, without adding UDP-Gal as a donor substrate. UDP-Gal was shown to be present in bovine colostrum at a level ranging from 200 to 600 microM. When a tracer UDP-[(14)C]Gal was added to the dialyzed colostrum together with a Gal beta1,4-specific beta-galactosidase, remarkable incorporation of radioactivity into 24-28 kDa and 33 kDa RCA1-positive glycoproteins was demonstrated by SDS-PAGE/autoradiography. Some 100-140 kDa agalactoglycoproteins of a CHO mutant cell line were also galactosylated on a blotted membrane by the incubation in the colostrum.
Collapse
Affiliation(s)
- M Oubihi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
8
|
Donovan RS, Datti A, Baek MG, Wu Q, Sas IJ, Korczak B, Berger EG, Roy R, Dennis JW. A solid-phase glycosyltransferase assay for high-throughput screening in drug discovery research. Glycoconj J 1999; 16:607-15. [PMID: 10972139 DOI: 10.1023/a:1007024916491] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37 degrees C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well beta-counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 beta1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewis(x) in O-glycans. A glycopolymer acceptor for beta1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5-6 fold increase in throughput compared to the corresponding solution-phase assay.
Collapse
|
9
|
Li J, Zacharek S, Chen X, Wang J, Zhang W, Janczuk A, Wang PG. Bacteria targeted by human natural antibodies using alpha-Gal conjugated receptor-specific glycopolymers. Bioorg Med Chem 1999; 7:1549-58. [PMID: 10482447 DOI: 10.1016/s0968-0896(99)00099-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synthesis of polymerizable beta-lactosyl, Galalpha1-->3Gal and alpha-mannosyl acrylamide derivatives with either a hydrophobic aromatic spacer or a hydrophilic biocompatible oligoethoxyl spacer was accomplished. Radical terpolymerizations of beta-lactosyl monomer. alpha-mannosyl monomer, and acrylamide were conducted in aqueous media with ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiators. The resulting water soluble glycopolymers were further transformed efficiently by a recombinant alpha1-->3 galactosyltransferase to afford mediators bearing Galalpha1-->3Gal termini as xenoactive antigens and alpha-mannosyl termini as specific ligands for bacterial cells. The binding of the resulting multivalent glycopolymer to bacteria was tested by its ability to inhibit agglutination of yeast to E. coli. The binding of human natural anti-Gal antibodies to the alpha-Gal containing glycopolymers and a monovalent alpha-Gal-Man glycoconjugate was demonstrated by an ELISA inhibition assay.
Collapse
Affiliation(s)
- J Li
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Matsuura K, Tsuchida A, Okahata Y, Akaike T, Kobayashi K. A Quartz-Crystal Microbalance Study of Adsorption Behaviors of Artificial Glycoconjugate Polymers onto Chemically Modified Gold Surfaces and Their Interactions with Lectins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1998. [DOI: 10.1246/bcsj.71.2973] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|