1
|
Wang N, Zhang Y, Gedvilaite E, Loh JW, Lin T, Liu X, Liu CG, Kumar D, Donnelly R, Raymond K, Schuchman EH, Sleat DE, Lobel P, Xing J. Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology. Hum Mutat 2017; 38:1491-1499. [PMID: 28703315 DOI: 10.1002/humu.23291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 12/17/2022]
Abstract
Lysosomes are membrane-bound, acidic eukaryotic cellular organelles that play important roles in the degradation of macromolecules. Mutations that cause the loss of lysosomal protein function can lead to a group of disorders categorized as the lysosomal storage diseases (LSDs). Suspicion of LSD is frequently based on clinical and pathologic findings, but in some cases, the underlying genetic and biochemical defects remain unknown. Here, we performed whole-exome sequencing (WES) on 14 suspected LSD cases to evaluate the feasibility of using WES for identifying causal mutations. By examining 2,157 candidate genes potentially associated with lysosomal function, we identified eight variants in five genes as candidate disease-causing variants in four individuals. These included both known and novel mutations. Variants were corroborated by targeted sequencing and, when possible, functional assays. In addition, we identified nonsense mutations in two individuals in genes that are not known to have lysosomal function. However, mutations in these genes could have resulted in phenotypes that were diagnosed as LSDs. This study demonstrates that WES can be used to identify causal mutations in suspected LSD cases. We also demonstrate cases where a confounding clinical phenotype may potentially reflect more than one lysosomal protein defect.
Collapse
Affiliation(s)
- Nan Wang
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Yeting Zhang
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Erika Gedvilaite
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Jui Wan Loh
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Timothy Lin
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Xiuping Liu
- Sequencing and ncRNA Program, Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Chang-Gong Liu
- Sequencing and ncRNA Program, Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Robert Donnelly
- Molecular Resource Facility at Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Jinchuan Xing
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
2
|
Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H. Regulation of sphingomyelin metabolism. Pharmacol Rep 2016; 68:570-81. [PMID: 26940196 DOI: 10.1016/j.pharep.2015.12.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD).
Collapse
Affiliation(s)
- Kamil Bienias
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Anna Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland; Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Prokopiuk
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
3
|
A Hyphenated Technique based on High-Performance Thin Layer Chromatography for Determining Neutral Sphingolipids: A Proof of Concept. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Wang RY, Aminian A, McEntee MF, Kan SH, Simonaro CM, Lamanna WC, Lawrence R, Ellinwood NM, Guerra C, Le SQ, Dickson PI, Esko JD. Intra-articular enzyme replacement therapy with rhIDUA is safe, well-tolerated, and reduces articular GAG storage in the canine model of mucopolysaccharidosis type I. Mol Genet Metab 2014; 112:286-93. [PMID: 24951454 PMCID: PMC4122635 DOI: 10.1016/j.ymgme.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. METHODS Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for 6 months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and 1 month following the final injection. RESULTS All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints were 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was abolished in rhIDUA-treated joints only. CONCLUSIONS Intra-articular rhIDUA is well-tolerated and safe in the canine MPS I animal model. Qualitative and quantitative assessments indicate that IA-rhIDUA successfully reduces tissue and cellular GAG storage in synovium and articular cartilage, including cartilage deep to the articular surface, and eliminates inflammatory macrophages from synovial tissue. CLINICAL RELEVANCE The MPS I canine IA-rhIDUA results suggest that clinical studies should be performed to determine if IA-rhIDUA is a viable approach to ameliorating refractory orthopedic disease in human MPS I.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA.
| | | | - Michael F McEntee
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shih-Hsin Kan
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Calogera M Simonaro
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William C Lamanna
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | | | - Catalina Guerra
- Biological Resource Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Steven Q Le
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Patricia I Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Chuang WL, Pacheco J, Cooper S, McGovern MM, Cox GF, Keutzer J, Zhang XK. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab 2014; 111:209-11. [PMID: 24418695 DOI: 10.1016/j.ymgme.2013.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/25/2022]
Abstract
Niemann-Pick disease type B (NPD-B) is caused by a partial deficiency of acid sphingomyelinase activity and results in the accumulation of lysosomal sphingomyelin (SPM) predominantly in macrophages. Notably, SPM is not significantly elevated in the plasma, whole blood, or urine of NPD-B patients. Here, we show that the de-acylated form of sphingomyelin, lyso-SPM, is elevated approximately 5-fold in dried blood spots (DBS) from NPD-B patients and has no overlap with normal controls, making it a potentially useful biomarker.
Collapse
Affiliation(s)
- Wei-Lien Chuang
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Joshua Pacheco
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Samantha Cooper
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Margaret M McGovern
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York, NY 11794-8111, USA
| | - Gerald F Cox
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Joan Keutzer
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - X Kate Zhang
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA.
| |
Collapse
|
6
|
Li J, Hu C, Zhao X, Dai W, Chen S, Lu X, Xu G. Large-scaled human serum sphingolipid profiling by using reversed-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: Method development and application in hepatocellular carcinoma. J Chromatogr A 2013; 1320:103-10. [DOI: 10.1016/j.chroma.2013.10.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 11/29/2022]
|
7
|
Pereira NB, Campos PP, de Jesus Oviedo Socarrás T, Pimenta TS, Parreiras PM, Silva SS, Kalapothakis E, Andrade SP, Moro L. Sponge implant in Swiss mice as a model for studying loxoscelism. Toxicon 2012; 59:672-9. [DOI: 10.1016/j.toxicon.2012.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/07/2012] [Accepted: 02/21/2012] [Indexed: 11/28/2022]
|
8
|
Eliyahu E, Shtraizent N, He X, Chen D, Shalgi R, Schuchman EH. Identification of cystatin SA as a novel inhibitor of acid ceramidase. J Biol Chem 2011; 286:35624-35633. [PMID: 21846728 DOI: 10.1074/jbc.m111.260372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autoproteolytic cleavage of the inactive acid ceramidase (AC) precursor into the active heterodimer exposes a free cysteine residue, leading us to study whether AC could be regulated by one or more members of the cystatin family. Co-expression of the full-length AC and cystatin SA (cysSA) cDNAs led to significant reduction of AC activity in the transfected cells. Expression of cysSA also inhibited endogenous AC activity in cells and increased ceramide. Conversely, cysSA siRNA expression led to elevated AC activity and reduction in ceramide. The effects of cysSA siRNA expression could be reversed by the addition of recombinant cysSA into the culture media. These results were consistent with detection of a physical interaction between AC and cysSA, assessed by co-immunoprecipitation and nickel-nitrilotriacetic acid affinity chromatography, and further supported by co-localization of the endogenous proteins using confocal microscopy. In vitro kinetic analysis of purified, recombinant AC and cysSA confirmed the transfection results and suggested a non-competitive type of inhibition with a K(i) in the low micromolar range. Processing of the AC precursor into the active form was not affected by cysSA expression, suggesting that it likely inhibits AC by allosteric interference. Computer modeling and expression studies identified several potential inhibitory domains in cysSA, including a small "AC-like" domain (identical to the AC cleavage site, TICT). Small peptides, synthesized with combinations of this and a "cystatin-like" domain (QXVXG), exhibited significant AC inhibition as well. Such peptide-based AC inhibitors could potentially be used to regulate AC activity in cancer cells that are known to overexpress this enzyme alone and in combination with conventional anti-cancer drugs.
Collapse
Affiliation(s)
- Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Nataly Shtraizent
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029; Department of Developmental and Cell Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 69978
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Dafna Chen
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Ruth Shalgi
- Department of Developmental and Cell Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 69978
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029.
| |
Collapse
|
9
|
Delvolve AM, Colsch B, Woods AS. Highlighting anatomical sub-structures in rat brain tissue using lipid imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:1729-1736. [PMID: 21961026 PMCID: PMC3181089 DOI: 10.1039/c1ay05107e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cell membranes are made up of a mixture of glycerolipids, sphingolipids, gangliosides and cholesterol. Lipids play important roles in a cell's life. However many of their functions have still to be discovered. In the present work, we describe an efficient, easy and rapid methodology to accurately localize phosphatidylcholines and sphingomyelins from a single coronal rat brain section in the cerebrum area. Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to profile and image lipids. The best resolved structure was 25-50 μm in the hippocampus.
Collapse
Affiliation(s)
- Alice M. Delvolve
- Cellular Neurobiology, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, MD, 21224, USA
| | - Benoit Colsch
- Cellular Neurobiology, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, MD, 21224, USA
| | - Amina S. Woods
- Cellular Neurobiology, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, MD, 21224, USA
| |
Collapse
|
10
|
Sandbhor MS, Key JA, Strelkov IS, Cairo CW. A modular synthesis of alkynyl-phosphocholine headgroups for labeling sphingomyelin and phosphatidylcholine. J Org Chem 2010; 74:8669-74. [PMID: 19860392 DOI: 10.1021/jo901824h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A general route to phospho- and sphingolipids that incorporate an alkyne in the phosphocholine headgroup is described. The strategy preserves the ammonium functionality of the phosphocholine and can be easily modified to introduce desired functional groups at the N-acyl chain. The targets accessible with this strategy provide a bioorthogonal handle for postsynthetic introduction of fluorophores or other labeling agents with aqueous phase chemistry. We report the synthesis of sphingomyelin derivatives that incorporate a fluorophore and an alkyne. The modified sphingolipids retain activity as substrates for sphingomyelinase, making these compounds viable probes of enzymatic activity. Importantly, the strategy allows modification of the lipid across the phosphodiester, making the alkyne a potential probe of sphingomyelinase activity.
Collapse
Affiliation(s)
- Mahendra S Sandbhor
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | | | |
Collapse
|
11
|
Involvement of the Toll-like receptor 4 pathway and use of TNF-alpha antagonists for treatment of the mucopolysaccharidoses. Proc Natl Acad Sci U S A 2009; 107:222-7. [PMID: 20018674 DOI: 10.1073/pnas.0912937107] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Enzyme replacement therapy is currently available for three of the mucopolysaccharidoses (MPSs) but has limited effects on the skeletal lesions. We investigated the involvement of the Toll-like receptor 4 (TLR4) signaling pathway in the pathogenesis of MPS bone and joint disease, and the use of the anti-TNF-alpha drug, Remicade (Centocor, Inc.), for treatment. TLR4 KO (TLR4(lps-/-)) mice were interbred with MPS VII mice to produce double-KO (DKO) animals. The DKO mice had longer and thinner faces and longer femora as revealed by micro-computed tomography analysis compared with MPS VII mice. Histological analyses also revealed more organized and thinner growth plates. The serum levels of TNF-alpha were normalized in the DKO animals, and the levels of phosphorylated STAT1 and STAT3 in articular chondrocytes were corrected. These findings led us to evaluate the effects of Remicade in MPS VI rats. When initiated at 1 month of age, i.v. treatment prevented the elevation of TNF-alpha, receptor activator of NF-kappaB, and other inflammatory molecules not only in the blood but in articular chondrocytes and fibroblast-like synoviocytes (FLSs). Treatment of 6-month-old animals also reduced the levels of these molecules to normal. The number of apoptotic articular chondrocytes in MPS VI rats was similarly reduced, with less infiltration of synovial tissue into the underlying bone. These studies revealed the important role of TLR4 signaling in MPS bone and joint disease and suggest that targeting TNF-alpha may have positive therapeutic effects.
Collapse
|
12
|
Acid Sphingomyelinase Overexpression Enhances the Antineoplastic Effects of Irradiation In Vitro and In Vivo. Mol Ther 2008; 16:1565-71. [DOI: 10.1038/mt.2008.145] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
13
|
Zhang XK, Elbin CS, Chuang WL, Cooper SK, Marashio CA, Beauregard C, Keutzer JM. Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry. Clin Chem 2008; 54:1725-8. [PMID: 18719200 DOI: 10.1373/clinchem.2008.104711] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Reports of the use of multiplex enzyme assay screening for Pompe disease, Fabry disease, Gaucher disease, Niemann-Pick disease types A and B, and Krabbe disease have engendered interest in the use of this assay in newborn screening. We modified the assay for high-throughput use in screening laboratories. METHODS We optimized enzyme reaction conditions and procedures for the assay, including the concentrations of substrate (S) and internal standard (IS), assay cocktail compositions, sample clean-up procedures, and mass spectrometer operation. The S and IS for each enzyme were premixed and bottled at an optimized molar ratio to simplify assay cocktail preparation. Using the new S:IS ratio, we validated the modified assay according to CLSI guidelines. Stability of the S, IS, and assay cocktails were investigated. Dried blood spots from 149 healthy adults, 100 newborns, and 60 patients with a lysosomal storage disorder (LSD) were tested using the modified assay. RESULTS In our study, the median enzyme activity measured in adults was generally increased 2-3-fold compared to the original method, results indicating higher precision. In the multiplex format, each of the 5 modified enzyme assays enabled unambiguous differentiation between samples from healthy individuals (adults and newborns) and the corresponding disease-specific samples. CONCLUSIONS The modified multiplex enzyme assay with premixed S and IS is appropriate for use in high-throughput screening laboratories.
Collapse
|
14
|
He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer's disease. Neurobiol Aging 2008; 31:398-408. [PMID: 18547682 DOI: 10.1016/j.neurobiolaging.2008.05.010] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/07/2008] [Accepted: 05/06/2008] [Indexed: 12/14/2022]
Abstract
Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Abeta) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Abeta oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Abeta-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Abeta deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
15
|
Simonaro CM, D'Angelo M, He X, Eliyahu E, Shtraizent N, Haskins ME, Schuchman EH. Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:112-22. [PMID: 18079441 PMCID: PMC2189614 DOI: 10.2353/ajpath.2008.070564] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2007] [Indexed: 11/20/2022]
Abstract
We have previously shown that glycosaminoglycan (GAG) storage in animal models of the mucopolysaccharidoses (MPS) leads to inflammation and apoptosis within cartilage. We have now extended these findings to synovial tissue and further explored the mechanism underlying GAG-mediated disease. Analysis of MPS rats, cats, and/or dogs revealed that MPS synovial fibroblasts and fluid displayed elevated expression of numerous inflammatory molecules, including several proteins important for lipopolysaccharide signaling (eg, Toll-like receptor 4 and lipoprotein-binding protein). The expression of tumor necrosis factor, in particular, was elevated up to 50-fold, leading to up-regulation of the osteoclast survival factor, receptor activator of nuclear factor-kappaB ligand, and the appearance of multinucleated osteoclast-like cells in the MPS bone marrow. Treatment of normal synovial fibroblasts with GAGs also led to production of the prosurvival lipid sphingosine-1-phosphate, resulting in enhanced cell proliferation, consistent with the hyperplastic synovial tissue observed in MPS patients. In contrast, GAG treatment of normal chondrocytes led to production of the proapoptotic lipid ceramide, confirming the enhanced cell death we had previously observed in MPS cartilage. These findings have important implications for the pathogenesis and treatment of MPS and have further defined the mechanism of GAG-stimulated disease.
Collapse
Affiliation(s)
- Calogera M Simonaro
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Ave., New York, NY, 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
He X, Dagan A, Gatt S, Schuchman EH. Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2,3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase. Anal Biochem 2005; 340:113-22. [PMID: 15802137 DOI: 10.1016/j.ab.2005.01.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 11/17/2022]
Abstract
Ceramide and sphingosine are sphingolipids with important functional and structural roles in cells. In this paper we report a new enzyme-based method to simultaneously quantify the levels of ceramide and sphingosine in biological samples. This method utilizes purified human recombinant acid ceramidase to completely hydrolyze ceramide to sphingosine, followed by derivatization of the latter with naphthalene-2,3-dialdehyde (NDA) and quantification by reverse-phase high-performance liquid chromatography. The limits of detection for sphingosine-NDA and ceramidase-derived sphingosine-NDA were 9.6 and 12.3 fmol, respectively, and the limits of quantification were 34.2 and 45.7 fmol, respectively. The recovery of sphingosine and ceramide standards quantified by this assay were between 95.6 and 104.6%. The relative standard deviations for the intra- and interday sphingosine assay were 2.1 and 4.5%, respectively, and those for the ceramide assay were 3.3 and 4.1%, respectively. To validate this procedure, we quantified ceramide and sphingosine in mouse plasma, white blood cells, and hemoglobin, the first reported time that the amounts of these lipids have been documented in individual blood components. We also used this technique to evaluate the ability of a novel ceramide analog, AD2646, to inhibit the hydrolytic activity of acid ceramidase. The results demonstrate that this new procedure can provide sensitive, reproducible, and simultaneous ceramide and sphingosine quantification. The technique also may be used for determining the activity and inhibition of ceramidases and may be adapted for quantifying sphingomyelin and sphingosine-1-phosphate levels. In the future it could be an important tool for investigators studying the role of ceramide/sphingosine metabolism in signal transduction, cell growth and differentiation, and cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
17
|
Domingos MO, Barbaro KC, Tynan W, Penny J, Lewis DJM, New RRC. Influence of sphingomyelin and TNF-α release on lethality and local inflammatory reaction induced by Loxosceles gaucho spider venom in mice. Toxicon 2003; 42:471-9. [PMID: 14529728 DOI: 10.1016/s0041-0101(03)00200-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well known that Loxosceles venom induces local dermonecrosis in rabbits, guinea pigs and humans but not in mice, although, depending on the dose, Loxosceles venom can be lethal to mice. In this work we demonstrate that mice injected intradermally in the dorsal area of the back can survive a lethal dose of Loxosceles gaucho venom and also develop an inflammatory reaction (with infiltration of leukocytes shown by histological analysis) at the local injection site when the venom is co-administered with sphingomyelin. It was observed that more venom was retained for a longer period of time at the local injection site when venom was co-administered with sphingomyelin. The presence of exogenous sphingomyelin did not influence significantly the release of TNF-alpha induced by L. gaucho venom. These results suggest that the action of venom on sphingomyelin, producing ceramide phosphate, causes the development of an inflammatory reaction, which in turn traps the venom in the local area for a long period of time and does not allow it to disperse systemically in a dose sufficient to cause death. Our findings also indicate that the size and availability of the local sphingomyelin pool may be important in determining the outcome of Loxosceles envenoming in different mammalian species.
Collapse
Affiliation(s)
- M O Domingos
- St George's Medical School, Division of Infectious Diseases, Cranmer Terrace, London SW 17 ORE, UK.
| | | | | | | | | | | |
Collapse
|
18
|
He X, Chen F, McGovern MM, Schuchman EH. A fluorescence-based, high-throughput sphingomyelin assay for the analysis of Niemann-Pick disease and other disorders of sphingomyelin metabolism. Anal Biochem 2002; 306:115-23. [PMID: 12069422 DOI: 10.1006/abio.2002.5686] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingomyelin is an important lipid component of cell membranes and lipoproteins that can be hydrolyzed by sphingomyelinases into ceramide and phosphorylcholine. The Type A and B forms of Niemann-Pick disease (NPD) are lipid storage disorders due to the deficient activity of the enzyme acid sphingomyelinase and the resultant accumulation of sphingomyelin in cells, tissues, and fluids. In this paper we report a new, enzymatic method to quantify the levels of sphingomyelin in plasma, urine, or tissues from NPD patients and mice. In this assay, bacterial sphingomyelinase is first used to hydrolyze sphingomyelin to phosphorylcholine and ceramide. Alkaline phosphatase then generates choline from the phosphorylcholine, and the newly formed choline is then used to generate hydrogen peroxide in a reaction catalyzed by choline oxidase. Finally, with peroxidase as a catalyst, hydrogen peroxide reacts with the Amplex Red reagent to generate a highly fluorescent product, resorufin. These enzymatic reactions are carried out simultaneously in a single 100-microl reaction mixture for 20 min. Use of a 96-well microtiter plate permits automated and sensitive quantification using a plate reader and fluorescence detector. This procedure allowed quantification of sphingomyelin over a broad range from 0.02 to 10 nmol, similar in sensitivity to a recently described radioactive method using diacylglycerol kinase and 50 times more sensitive than a colorimetric, aminoantipyrine/phenol-based assay. To validate this new assay method, we quantified sphingomyelin in plasma, urine, and tissues from normal individuals and from NPD mice and patients. The sphingomyelin content in adult homozygous or heterozygous NPD mouse plasma and urine was significantly elevated compared to that of normal mice. Moreover, the accumulated sphingomyelin in the tissues of NPD mice was 4 to 15 times higher than that in normal mice depending on the tissue analyzed. The sphingomyelin levels in plasma from several Type B NPD patients also was significantly elevated compared to normal individuals of the same age. Based on these results, we propose that this new, fluorescence-based procedure can provide simple, fast, sensitive, and reproducible sphingomyelin quantification in tissues and fluids from normal individuals and NPD patients. It could also be a useful tool for the study of other sphingomyelin-related diseases and in a variety of research settings where sphingomyelin quantification is required.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|