1
|
Soltani M, Hunt JP, Smith AK, Zhao EL, Knotts TA, Bundy BC. Assessing the predictive capabilities of design heuristics and coarse-grain simulation toward understanding and optimizing site-specific covalent immobilization of β-lactamase. Biotechnol J 2022; 17:e2100535. [PMID: 35189031 DOI: 10.1002/biot.202100535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/12/2022]
Abstract
For industrial applications, covalent immobilization of enzymes provides minimum leakage, recoverability, reusability, and high stability. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. Here, we investigate the reliability of design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of TEM-1 β-lactamase. We utilized E. coli-lysate-based cell-free protein synthesis (CFPS) to produce variants containing a site-specific incorporated unnatural amino acid with a unique moiety to facilitate site directed covalent immobilization. To constrain the number of potential immobilization sites, we investigated the predictive capability of several design heuristics. The suitability of immobilization sites was determined by analyzing expression yields, specific activity, immobilization efficiency, and stability of variants. These experimental findings are compared with coarse-grain simulation of TEM-1 domain stability and thermal stability and analyzed for a priori predictive capabilities. This work demonstrates that the design heuristics successfully identify a subset of locations for experimental validation. Specifically, the nucleotide following amber stop codon and domain stability correlate well with the expression yield and specific activity of the variants, respectively. Our approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to identify optimal enzyme immobilization sites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Addison K Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Emily Long Zhao
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
2
|
Troć A, Zimnicka M, Koliński M, Danikiewicz W. Structural Elucidation of β-Lactam Diastereoisomers through Ion Mobility Mass Spectrometry Studies and Theoretical Calculations. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:282-290. [PMID: 27041658 DOI: 10.1002/jms.3749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/10/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The ion mobility combined with mass spectrometry and theoretical calculations were used to characterize and separate six diastereoisomeric β-lactams. The influence of traveling wave height and wave velocity, size of the alkali metal ion (Li(+), Na(+) and K(+)) and drift gases with varying masses and polarizabilities (N2 and CO2) on separation efficacy was additionally examined. The best separation of diastereoisomers of β-lactams was observed for adducts with Na(+) and Li(+) ions, whereas other parameters had little impact on separation process. The isomeric β-lactams were characterized by both experimental and theoretical collision cross sections. The theoretically calculated values of collision cross sections obtained from extensive molecular dynamics and density functional theory calculations for model structures agreed well with those established experimentally. The relationship between separation efficacy and the configuration at the carbon atoms C5 and C6 of β-lactam ring was defined.
Collapse
Affiliation(s)
- Anna Troć
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Magdalena Zimnicka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał Koliński
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Bioinformatics Laboratory, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
3
|
Man C, Pang X, Xie K, Lu Y, Liu S, Yang S, Liu Y, Jiang Y. Use of a gel iodometric method for the rapid determination of β–lactamase in milk. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zhou S, Zhao Y, Mecklenburg M, Yang D, Xie B. A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk. Biosens Bioelectron 2013; 49:99-104. [PMID: 23722048 DOI: 10.1016/j.bios.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Regulatory restrictions on antibiotic residues in dairy products have resulted in the illegal addition of β-lactamase to lower antibiotic levels in milk in China. Here we demonstrate a fast, sensitive and convenient method based on enzyme thermistor (ET) for the surveillance of β-lactamase in milk. A fixed amount of penicillin G, which is a specific substrate of β-lactamase, was incubated with the milk sample, and an aliquot of the mixture was directly injected into the ET system to give a temperature change corresponding to the remained penicillin G. The amount of β-lactamase present in sample was deduced by the penicillin G consumed during incubation. This method was successfully applied to quantify β-lactamase in milk with the linear range of 1.1-20 UmL(-1) and the detection limit of 1.1 UmL(-1). The recoveries ranged from 93% to 105%, with relative standard deviations (RSDs) below 8%. The stability of the column equipped in ET was also studied, and only 5% decrease of activity was observed after 60 days of use. Compared with the conventional culture-based assay, the advantages of high throughput, timesaving and accurate quantification have made this method an ideal alternative for routine use.
Collapse
Affiliation(s)
- Shuang Zhou
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China.
| | | | | | | | | |
Collapse
|
5
|
Liang J, Kim JR, Boock JT, Mansell TJ, Ostermeier M. Ligand binding and allostery can emerge simultaneously. Protein Sci 2007; 16:929-37. [PMID: 17400921 PMCID: PMC2206642 DOI: 10.1110/ps.062706007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A heterotropic allosteric effect involves an effector molecule that is distinct from the substrate or ligand of the protein. How heterotropic allostery originates is an unanswered question. We have previously created several heterotropic allosteric enzymes by recombining the genes for TEM1 beta-lactamase (BLA) and maltose binding protein (MBP) to create BLAs that are positively or negatively regulated by maltose. We show here that one of these engineered enzymes has approximately 10(6) M(-1) affinity for Zn(2+), a property that neither of the parental proteins possesses. Furthermore, Zn(2+) is a negative effector that noncompetitively switches off beta-lactam hydrolysis activity. Mutagenesis experiments indicate that the Zn(2+)-binding site does not involve a histidine or a cysteine, which is atypical of natural Zn(2+)-binding sites. These studies also implicate helices 1 and 12 of the BLA domain in allosteric signal propagation. These results support a model for the evolution of heterotropic allostery in which effector affinity and allosteric signaling emerge simultaneously.
Collapse
Affiliation(s)
- Jing Liang
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
6
|
Eftekhar F, Rafiee R. An overlay gel method for identification and isolation of bacterial beta-lactamases. J Microbiol Methods 2005; 64:132-4. [PMID: 15927292 DOI: 10.1016/j.mimet.2005.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 04/07/2005] [Indexed: 11/28/2022]
Abstract
A modification of the iodometric technique using an overlay gel was employed for fast identification and isolation of beta-lactamase types TEM, SHV and AmpC from non-denaturing gels. Osmotic shock preparations of the three beta-lactamases were run on polyacrylamide gels without SDS and ampicillin containing overlay gels were flooded with the iodine solution before being placed on polyacrylamide gel strips. Distinct clear bands appeared in dark blue backgrounds indicating beta-lactamase activity.
Collapse
Affiliation(s)
- Fereshteh Eftekhar
- Department of Biology, Faculty of Sciences, Shahid Beheshti University, Evin, Tehran, Iran.
| | | |
Collapse
|
7
|
Zhen G, Eggli V, Vörös J, Zammaretti P, Textor M, Glockshuber R, Kuennemann E. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:10464-10473. [PMID: 15544374 DOI: 10.1021/la0482812] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Understanding the conformation, orientation, and specific activity of proteins bound to surfaces is crucial for the development and optimization of highly specific and sensitive biosensors. In this study, the very efficient enzyme beta-lactamase is used as a model protein. The wild-type form was genetically engineered by site-directed mutagenesis to introduce single cysteine residues on the surface of the enzyme. The cysteine thiol group is subsequently biotinylated with a dithiothreitol (DTT)-cleavable biotinylation reagent. beta-Lactamase is then immobilized site-specifically via the biotin group on neutral avidin-covered surfaces with the aim to control the orientation of the enzyme molecule at the surface and study its effect on enzymatic activity using Nitrocefin as the substrate. The DTT-cleavable spacer allows the release of the specifically bound enzyme from the surface. Immobilization of the enzyme is performed on a monolayer of the polycationic, biotinylated polymer PLL-g-PEG/PEG-biotin assembled on niobium oxide (Nb2O5) surfaces via neutral avidin as the docking site. Two different assembly protocols, the sequential adsorption of avidin and biotinylated beta-lactamase and the immobilization of preformed complexes of beta-lactamase and avidin, are compared in terms of immobilization efficiency. In situ optical waveguide lightmode spectroscopy and colorimetric analysis of enzymatic activity were used to distinguish between specific and unspecific enzyme adsorption, to sense quantitatively the amount of immobilized enzyme, and to determine Michaelis-Menten kinetics. All tested enzyme variants turned out to be active upon immobilization at the polymeric surface. However, the efficiency of immobilized enzymes relative to the soluble enzymes was reduced about sevenfold, mainly because of impaired substrate (Nitrocefin) diffusion or restricted accessibility of the active site. No significant effect of different enzyme orientations could be detected, probably because the enzymes were attached to the surface through long, flexible PEG chain linkers.
Collapse
Affiliation(s)
- Guoliang Zhen
- BiointerfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since immobilized metal ion affinity chromatography (IMAC) was first introduced, several variants of this method and many other metal affinity-based techniques have been devised. IMAC quickly established itself as a highly reliable purification procedure, showing rapid expansion in the number of preparative and analytical applications while not remaining confined to protein separation. It was soon applied to protein refolding (matrix-assisted refolding), evaluation of protein folding status, protein surface topography studies and biosensor development. In this review, applications in protein processing are described of IMAC as well as other metal affinity-based technologies.
Collapse
Affiliation(s)
- E K M Ueda
- Department of Biotechnology, Institute of Nuclear and Energy Research (IPEN-CNEN), Travessa R, 400, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|