1
|
Sprigg C, Whitfield H, Burton E, Scholey D, Bedford MR, Brearley CA. Phytase dose-dependent response of kidney inositol phosphate levels in poultry. PLoS One 2022; 17:e0275742. [PMID: 36260560 PMCID: PMC9581429 DOI: 10.1371/journal.pone.0275742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Phytases, enzymes that degrade phytate present in feedstuffs, are widely added to the diets of monogastric animals. Many studies have correlated phytase addition with improved animal productivity and a subset of these have sought to correlate animal performance with phytase-mediated generation of inositol phosphates in different parts of the gastro-intestinal tract or with release of inositol or of phosphate, the absorbable products of phytate degradation. Remarkably, the effect of dietary phytase on tissue inositol phosphates has not been studied. The objective of this study was to determine effect of phytase supplementation on liver and kidney myo-inositol and myo-inositol phosphates in broiler chickens. For this, methods were developed to measure inositol phosphates in chicken tissues. The study comprised wheat/soy-based diets containing one of three levels of phytase (0, 500 and 6,000 FTU/kg of modified E. coli 6-phytase). Diets were provided to broilers for 21 D and on day 21 digesta were collected from the gizzard and ileum. Liver and kidney tissue were harvested. Myo-inositol and inositol phosphates were measured in diet, digesta, liver and kidney. Gizzard and ileal content inositol was increased progressively, and total inositol phosphates reduced progressively, by phytase supplementation. The predominant higher inositol phosphates detected in tissues, D-and/or L-Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5, differed from those (D-and/or L-Ins(1,2,3,4)P4, D-and/or L-Ins(1,2,5,6)P4, Ins(1,2,3,4,6)P5, D-and/or L-Ins(1,2,3,4,5)P5 and D-and/or L-Ins(1,2,4,5,6)P5) generated from phytate (InsP6) degradation by E. coli 6-phytase or endogenous feed phytase, suggesting tissue inositol phosphates are not the result of direct absorption. Kidney inositol phosphates were reduced progressively by phytase supplementation. These data suggest that tissue inositol phosphate concentrations can be influenced by dietary phytase inclusion rate and that such effects are tissue specific, though the consequences for physiology of such changes have yet to be elucidated.
Collapse
Affiliation(s)
- Colleen Sprigg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | | | - Charles A. Brearley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Whitfield H, Laurendon C, Rochell S, Dridi S, Lee S, Dale T, York T, Kuehn I, Bedford M, Brearley C. Effect of phytase supplementation on plasma and organ myo-inositol content and erythrocyte inositol phosphates as pertaining to breast meat quality issues in chickens. JOURNAL OF APPLIED ANIMAL NUTRITION 2022. [DOI: 10.3920/jaan2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
‘Woody breast’ (WB) and ‘white striping’ in broiler meat is a global problem. With unknown etiology, WB negatively impacts bird health, welfare and is a significant economic burden to the poultry industry. New evidence has shown that WB is associated with dysregulation in systemic and breast muscle-oxygen homeostasis, resulting in hypoxia and anaemia. However, it has been observed that phytase (Quantum Blue (QB) a modified, E. coli-derived 6-phytase) super dosing can reverse dysregulation of muscle-oxygen homeostasis and reduces WB severity by ~5%. The objective of this study was to assess whether levels of Ins(1,3,4,5,6)P5, the main allosteric regulator of haemoglobin, are influenced by changes in plasma myo-inositol arising from super dosing with phytase. To enable this, methods suitable for measurement of myo-inositol in tissues and inositol phosphates in blood were developed. Data were collected from independent trials, including male Ross 308 broilers fed low and adequate calcium/available phosphate (Ca/AvP) diets supplemented with QB at 1,500 phytase units (FTU)/kg, which simultaneously decreased gizzard InsP6 (P<0.001) and increased gizzard myo-inositol (P<0.001). Similarly, male Cobb 500 broiler chicks fed a negative control (NC) diet deficient in AvP, Ca and sodium or diet supplemented with the QB phytase at 500, 1000 or 2,000 FTU/kg increased plasma (P<0.001) and liver (P=0.007) myo-inositol of 18d-old birds at 2,000 FTU/kg. Finally, QB supplementation of Cobb 500 breeder flock diet at 1,250 FTU/kg increased blood myo-inositol (P<0.001) and erythrocyte Ins(1,3,4,5,6)P5 (P=0.011) of their 1d-old hatchlings. These data confirmed the ability of phytase to modulate inositol phosphate pathways by provision of metabolic precursors of important signalling molecules. The ameliorations of WB afforded by super doses of phytase may include modulation of hypoxia pathways that also involve inositol signalling molecules. Elevations of erythrocyte Ins(1,3,4,5,6)P5 by phytase supplementation may enhance systemic oxygen carrying capacity, an important factor in the amelioration of WB and WS myopathy.
Collapse
Affiliation(s)
- H. Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - C. Laurendon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - S.J. Rochell
- University of Arkansas, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-406, Fayetteville, AR 72701, USA
| | - S. Dridi
- University of Arkansas, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-406, Fayetteville, AR 72701, USA
| | - S.A. Lee
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - T. Dale
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - T. York
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - I. Kuehn
- AB Vista, Feldbergstrasse 78, 64293 Darmstadt, Germany
| | - M.R. Bedford
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - C.A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
King J, Keim M, Teo R, Weening KE, Kapur M, McQuillan K, Ryves J, Rogers B, Dalton E, Williams RSB, Harwood AJ. Genetic control of lithium sensitivity and regulation of inositol biosynthetic genes. PLoS One 2010; 5:e11151. [PMID: 20567601 PMCID: PMC2887444 DOI: 10.1371/journal.pone.0011151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/30/2010] [Indexed: 12/12/2022] Open
Abstract
Lithium (Li(+)) is a common treatment for bipolar mood disorder, a major psychiatric illness with a lifetime prevalence of more than 1%. Risk of bipolar disorder is heavily influenced by genetic predisposition, but is a complex genetic trait and, to date, genetic studies have provided little insight into its molecular origins. An alternative approach is to investigate the genetics of Li(+) sensitivity. Using the social amoeba Dictyostelium, we previously identified prolyl oligopeptidase (PO) as a modulator of Li(+) sensitivity. In a link to the clinic, PO enzyme activity is altered in bipolar disorder patients. Further studies demonstrated that PO is a negative regulator of inositol(1,4,5)trisphosphate (IP(3)) synthesis, a Li(+) sensitive intracellular signal. However, it was unclear how PO could influence either Li(+) sensitivity or risk of bipolar disorder. Here we show that in both Dictyostelium and cultured human cells PO acts via Multiple Inositol Polyphosphate Phosphatase (Mipp1) to control gene expression. This reveals a novel, gene regulatory network that modulates inositol metabolism and Li(+) sensitivity. Among its targets is the inositol monophosphatase gene IMPA2, which has also been associated with risk of bipolar disorder in some family studies, and our observations offer a cellular signalling pathway in which PO activity and IMPA2 gene expression converge.
Collapse
Affiliation(s)
- Jason King
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Melanie Keim
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Regina Teo
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Karin E. Weening
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Mridu Kapur
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Karina McQuillan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jonathan Ryves
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Dalton
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Robin S. B. Williams
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | | |
Collapse
|
4
|
Sauer K, Huang YH, Lin H, Sandberg M, Mayr GW. Phosphoinositide and inositol phosphate analysis in lymphocyte activation. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 11:11.1.1-11.1.46. [PMID: 19918943 PMCID: PMC4500525 DOI: 10.1002/0471142735.im1101s87] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lymphocyte antigen receptor engagement profoundly changes the cellular content of phosphoinositide lipids and soluble inositol phosphates. Among these, the phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) play key signaling roles by acting as pleckstrin homology (PH) domain ligands that recruit signaling proteins to the plasma membrane. Moreover, PIP2 acts as a precursor for the second messenger molecules diacylglycerol and soluble inositol 1,4,5-trisphosphate (IP3), essential mediators of PKC, Ras/Erk, and Ca2+ signaling in lymphocytes. IP3 phosphorylation by IP3 3-kinases generates inositol 1,3,4,5-tetrakisphosphate (IP4), an essential soluble regulator of PH domain binding to PIP3 in developing T cells. Besides PIP2, PIP3, IP3, and IP4, lymphocytes produce multiple other phosphoinositides and soluble inositol phosphates that could have important physiological functions. To aid their analysis, detailed protocols that allow one to simultaneously measure the levels of multiple different phosphoinositide or inositol phosphate isomers in lymphocytes are provided here. They are based on thin layer, conventional and high-performance liquid chromatographic separation methods followed by radiolabeling or non-radioactive metal-dye detection. Finally, less broadly applicable non-chromatographic methods for detection of specific phosphoinositide or inositol phosphate isomers are discussed. Support protocols describe how to obtain pure unstimulated CD4+CD8+ thymocyte populations for analyses of inositol phosphate turnover during positive and negative selection, key steps in T cell development.
Collapse
Affiliation(s)
- Karsten Sauer
- The Scripps Research Institute, La Jolla, California
| | | | - Hongying Lin
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Sandberg
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California
| | - Georg W Mayr
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Liu X, Villalta PW, Sturla SJ. Simultaneous determination of inositol and inositol phosphates in complex biological matrices: quantitative ion-exchange chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:705-712. [PMID: 19191261 DOI: 10.1002/rcm.3923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
myo-Inositol (Ins) and myo-inositol phosphates (InsPs) are widely distributed in plants and animals. The evaluation of the distribution of Ins and InsPs in cells and plant sources can impact the understanding of their role in nutrition, cellular processes and diseases, and how they may be modulated by diet. We developed an anion-exchange chromatography/tandem mass spectrometry (HPLC/ESI-MS/MS) method for the separation and simultaneous quantitation of Ins and different naturally occurring phosphorylated inositol compounds. Chromatographic separation was achieved in 30 min on a commercial anion-exchange column (0.5 x 150 mm) using a gradient of 200 mM ammonium carbonate buffer (pH 9.0) and 5% methanol in H(2)O. Analytes were identified by selective reaction monitoring using a triple quadrupole mass spectrometer in negative ion electrospray ionization mode. Adenosine 5'-monophosphate was used as a general internal standard for quantitation. Detection is linear in the range of 0.25-400 pmol for Ins, InsP(1), InsP(4), and InsP(5), 40-400 pmol for InsP(2) and InsP(3), and 60-400 pmol for InsP(6), with a minimum r(2) > 0.994. The limit of detection is 0.25 pmol with a signal-to-noise ratio of 10:1 for all analytes. The intra-day and inter-day variations were within 17% at three concentration levels. Recovery values for the seven analytes spiked into extraction solution or different matrices were between 63 and 121%. Using this approach, Ins and InsPs were measured in three different plant samples and in cultured cells, illustrating significant differences in the distribution of inositol compounds in food samples compared to cells and between cell types.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
6
|
Cho J, King JS, Qian X, Harwood AJ, Shears SB. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc Natl Acad Sci U S A 2008; 105:5998-6003. [PMID: 18413611 PMCID: PMC2329705 DOI: 10.1073/pnas.0710980105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Indexed: 11/18/2022] Open
Abstract
The Rapoport-Luebering glycolytic bypass comprises evolutionarily conserved reactions that generate and dephosphorylate 2,3-bisphosphoglycerate (2,3-BPG). For >30 years, these reactions have been considered the responsibility of a single enzyme, the 2,3-BPG synthase/2-phosphatase (BPGM). Here, we show that Dictyostelium, birds, and mammals contain an additional 2,3-BPG phosphatase that, unlike BPGM, removes the 3-phosphate. This discovery reveals that the glycolytic pathway can bypass the formation of 3-phosphoglycerate, which is a precursor for serine biosynthesis and an activator of AMP-activated protein kinase. Our 2,3-BPG phosphatase activity is encoded by the previously identified gene for multiple inositol polyphosphate phosphatase (MIPP1), which we now show to have dual substrate specificity. By genetically manipulating Mipp1 expression in Dictyostelium, we demonstrated that this enzyme provides physiologically relevant regulation of cellular 2,3-BPG content. Mammalian erythrocytes possess the highest content of 2,3-BPG, which controls oxygen binding to hemoglobin. We determined that total MIPP1 activity in erythrocytes at 37 degrees C is 0.6 mmol 2,3-BPG hydrolyzed per liter of cells per h, matching previously published estimates of the phosphatase activity of BPGM. MIPP1 is active at 4 degrees C, revealing a clinically significant contribution to 2,3-BPG loss during the storage of erythrocytes for transfusion. Hydrolysis of 2,3-BPG by human MIPP1 is sensitive to physiologic alkalosis; activity decreases 50% when pH rises from 7.0 to 7.4. This phenomenon provides a homeostatic mechanism for elevating 2,3-BPG levels, thereby enhancing oxygen release to tissues. Our data indicate greater biological significance of the Rapoport-Luebering shunt than previously considered.
Collapse
Affiliation(s)
- Jaiesoon Cho
- *Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Social Services, P.O. Box 12233, Research Triangle Park, NC 27709; and
| | - Jason S. King
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | - Xun Qian
- *Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Social Services, P.O. Box 12233, Research Triangle Park, NC 27709; and
| | - Adrian J. Harwood
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | - Stephen B. Shears
- *Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Social Services, P.O. Box 12233, Research Triangle Park, NC 27709; and
| |
Collapse
|
7
|
Muñoz JA, Valiente M. Determination of Phytic Acid in Urine by Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2003; 75:6374-8. [PMID: 14616025 DOI: 10.1021/ac0345805] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ICPMS method for the determination of phytic acid in human urine based on the total phosphorus measurement of purified extracts of phytic acid is described. Pretreatment of the sample is required to avoid interference in the ICPMS detection from other phosphorus compounds accompanying phytic acid in urine such as phosphate or pyrophosphate. This treatment consists of a simple filtration of the urine sample followed by complete separation of phytic acid from the mentioned phosphorus components using an anion-exchange solid-phase extraction. Separation/recovery conditions, optimized for standards of phytic acid prepared in water and artificial urine, were successfully applied to natural urine samples, resulting in adequate accuracy and precision. Linear range (0.02-0.6 mg of phytic acid L(-)(1)) and limit of detection (5 microg L(-)(1) phytic acid) are adequate for analysis of the usual amounts of phytic acid present in urine. Phosphate, pyrophosphate, and pH of urine samples at concentrations exceeding their normal physiological ranges do not affect the determination of phytic acid. Because of the simplicity, low sample requirement, and relatively high sample throughput (10 to 6 min per sample for runs between 50 and 100 samples, respectively), the present method presents the best alternative to current methods for phytic acid determination in urine. Results also show that the method is adequate for the differentiation of levels of phytic acid excretion from patients suffering from oxalocalcic urolithiasis and healthy controls, suggesting that low phytic acid concentrations in urine lead to elevated risk of oxalocalcic urolithiasis.
Collapse
Affiliation(s)
- Jose A Muñoz
- Grup de Tècniques de Separació en Química (GTS), Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
8
|
Luís Villar J, Puigbò P, Riera-Codina M. Analysis of highly phosphorylated inositols in avian and crocodilian erythrocytes. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:169-75. [PMID: 12781983 DOI: 10.1016/s1096-4959(03)00077-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both morphological and paleontological characteristics support the hypothesis of a monophyletic origin of crocodilian and avian groups. However, while the erythrocytes of all birds studied to date are reported to contain high levels of inositol pentakisphosphate (InsP(5)), which acts as an allosteric effector of hemoglobin, this molecule has not been reported in crocodilian erythrocytes. In this study we compare the highly phosphorylated inositols in crocodilian and avian erythrocytes using a particularly sensitive analytical procedure. Our aim was to obtain new data which might provide further evidence for the monophyletic origin, or otherwise, of crocodiles and birds. We studied three avian and three crocodilian species. The erythrocytes of the three bird species contained low levels of inositol-3,4,5,6-tetrakisphosphate and inositol-1,3,4,6-tetrakisphosphate, thought to be precursors of Ins(1,3,4,5,6)P(5). The crocodilian erythrocytes studied contained Ins(1,3,4,5,6)P(5) and InsP(6) in higher concentrations than those found in mammal erythrocytes and in other more active cells such as macrophages. Our data provide further evidence of the similarity between crocodilian and avian groups and agree with the hypothesis that both groups evolved from a common ancestor. The process by which the function of inositol phosphates changed from that of intracellular signaling to hemoglobin allosteric effector is discussed.
Collapse
Affiliation(s)
- José Luís Villar
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal, 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
9
|
Christensen SC, Kolbjørn Jensen A, Simonsen LO. Aberrant 3H in Ehrlich mouse ascites tumor cell nucleotides after in vivo labeling with myo-[2-3H]- and L-myo-[1-3H]inositol: implications for measuring inositol phosphate signaling. Anal Biochem 2003; 313:283-91. [PMID: 12605865 DOI: 10.1016/s0003-2697(02)00592-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
After in vivo radiolabeling of Ehrlich cells for 24h with conventional myo-[2-3H]inositol we previously demonstrated an aberrant 3H-labeling of ATP that interfered in the HPLC analysis of inositol trisphosphates. This aberrant 3H-labeling was accounted for by the extensive kidney catabolism of myo-[2-3H] inositol with delivery of 3H-labeled metabolites to extrarenal tissues. As expected, the aberrant labeling of ATP is markedly reduced with the use of 3H-myo-inositol labeled at L-C1 rather than at C2, reflecting that the 3H at L-C1 disappears in the first step of the myo-inositol catabolism: the oxidative conversion to D-glucuronate. In contrast, with the 3H at C2 of myo-inositol, the 3H-C2 passes into the pentose phosphate conversions with resulting labeling of nucleotides. The extent of catabolism to 3H-labeled water, the cellular accumulation of 3H-myo-inositol, the incorporation into cellular inositol phospholipids, and the labeling pattern of cellular phosphoinositides were all found to be similar for the two labeled myo-inositol moieties. With the use of L-myo-[1-3H]inositol an aberrant 3H-labeling at about 25% remained, for which a presumptive mechanism is proposed. L-myo-[1-3H]Inositol appears nevertheless to be a preferable alternative to myo-[2-3H]inositol for tracing the intact myo-inositol molecule after in vivo labeling, with minimized interference from aberrant 3H-labeling of nucleotides.
Collapse
Affiliation(s)
- Søren C Christensen
- Laboratory for Cellular and Molecular Physiology, August Krogh Institute, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|