1
|
Ye Y, Jiang H, Xu R, Wang S, Zheng L, Guo J. The INSIGHT platform: Enhancing NAD(P)-dependent specificity prediction for co-factor specificity engineering. Int J Biol Macromol 2024; 278:135064. [PMID: 39182884 DOI: 10.1016/j.ijbiomac.2024.135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Enzyme specificity towards cofactors like NAD(P)H is crucial for applications in bioremediation and eco-friendly chemical synthesis. Despite their role in converting pollutants and creating sustainable products, predicting enzyme specificity faces challenges due to sparse data and inadequate models. To bridge this gap, we developed the cutting-edge INSIGHT platform to enhance the prediction of coenzyme specificity in NAD(P)-dependent enzymes. INSIGHT integrates extensive data from principal bioinformatics resources, concentrating on both NADH and NADPH specificities, and utilizes advanced protein language models to refine the predictions. This integration not only strengthens computational predictions but also meets the practical demands of high-throughput screening and optimization. Experimental validation confirms INSIGHT's effectiveness, boosting our ability to engineer enzymes for efficient, sustainable industrial and environmental processes. This work advances the practical use of computational tools in enzyme research, addressing industrial needs and offering scalable solutions for environmental challenges.
Collapse
Affiliation(s)
- Yilin Ye
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | | | - Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., China
| | | | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao.
| |
Collapse
|
2
|
Boonkumkrong R, Chunthaboon P, Munkajohnpong P, Watthaisong P, Pimviriyakul P, Maenpuen S, Chaiyen P, Tinikul R. A high catalytic efficiency and chemotolerant formate dehydrogenase from Bacillus simplex. Biotechnol J 2024; 19:e2300330. [PMID: 38180313 DOI: 10.1002/biot.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.
Collapse
Affiliation(s)
- Rattima Boonkumkrong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Paweenapon Chunthaboon
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pobthum Munkajohnpong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Partipilo M, Whittaker JJ, Pontillo N, Coenradij J, Herrmann A, Guskov A, Slotboom DJ. Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella. FEBS J 2023; 290:4238-4255. [PMID: 37213112 DOI: 10.1111/febs.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Jacob J Whittaker
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Nicola Pontillo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | - Jelmer Coenradij
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Andreas Herrmann
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Germany
| | - Albert Guskov
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| |
Collapse
|
4
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
5
|
Enhanced thermostability of formate dehydrogenase via semi-rational design. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia-Borràs M, Bar-Even A, Acevedo-Rocha CG. In Vivo Selection for Formate Dehydrogenases with High Efficiency and Specificity toward NADP . ACS Catal 2020; 10:7512-7525. [PMID: 32733773 PMCID: PMC7384739 DOI: 10.1021/acscatal.0c01487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Indexed: 02/06/2023]
Abstract
The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.
Collapse
Affiliation(s)
| | - Carla Calvó-Tusell
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Gabriele M. M. Stoffel
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sílvia Osuna
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Tobias J. Erb
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 16, D-35043 Marburg, Germany
| | - Marc Garcia-Borràs
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
7
|
Batyrova KA, Khusnutdinova AN, Wang PH, Di Leo R, Flick R, Edwards EA, Savchenko A, Yakunin AF. Biocatalytic in Vitro and in Vivo FMN Prenylation and (De)carboxylase Activation. ACS Chem Biol 2020; 15:1874-1882. [PMID: 32579338 DOI: 10.1021/acschembio.0c00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible UbiD-like (de)carboxylases represent a large family of mostly uncharacterized enzymes, which require the recently discovered prenylated FMN (prFMN) cofactor for activity. Functional characterization of novel UbiDs is hampered by a lack of robust protocols for prFMN generation and UbiD activation. Here, we report two systems for in vitro and in vivo FMN prenylation and UbiD activation under aerobic conditions. The in vitro one-pot prFMN cascade includes five enzymes: FMN prenyltransferase (UbiX), prenol kinase, polyphosphate kinase, formate dehydrogenase, and FMN reductase, which use prenol, polyphosphate, formate, ATP, NAD+, and FMN as substrates and cofactors. Under aerobic conditions, this cascade produced prFMN from FMN with over 98% conversion and activated purified ferulic acid decarboxylase Fdc1 from Aspergillus niger and protocatechuic acid decarboxylase ENC0058 from Enterobacter cloaceae. The in vivo system for FMN prenylation and UbiD activation is based on the coexpression of Fdc1 and UbiX in Escherichia coli cells under aerobic conditions in the presence of prenol. The in vitro and in vivo FMN prenylation cascades will facilitate functional characterization of novel UbiDs and their applications.
Collapse
Affiliation(s)
- Khorcheska A. Batyrova
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Basic Biological Problems of the Russian Academy of Sciences, a Separate Subdivision of PSCBR RAS (IBP RAS), Pushchino, 142290, Russia
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Basic Biological Problems of the Russian Academy of Sciences, a Separate Subdivision of PSCBR RAS (IBP RAS), Pushchino, 142290, Russia
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| |
Collapse
|
8
|
Maenpuen S, Pongsupasa V, Pensook W, Anuwan P, Kraivisitkul N, Pinthong C, Phonbuppha J, Luanloet T, Wijma HJ, Fraaije MW, Lawan N, Chaiyen P, Wongnate T. Creating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineering. Chembiochem 2020; 21:1481-1491. [PMID: 31886941 DOI: 10.1002/cbic.201900737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 02/06/2023]
Abstract
We have employed computational approaches-FireProt and FRESCO-to predict thermostable variants of the reductase component (C1 ) of (4-hydroxyphenyl)acetate 3-hydroxylase. With the additional aid of experimental results, two C1 variants, A166L and A58P, were identified as thermotolerant enzymes, with thermostability improvements of 2.6-5.6 °C and increased catalytic efficiency of 2- to 3.5-fold. After heat treatment at 45 °C, both of the thermostable C1 variants remain active and generate reduced flavin mononucleotide (FMNH- ) for reactions catalyzed by bacterial luciferase and by the monooxygenase C2 more efficiently than the wild type (WT). In addition to thermotolerance, the A166L and A58P variants also exhibited solvent tolerance. Molecular dynamics (MD) simulations (6 ns) at 300-500 K indicated that mutation of A166 to L and of A58 to P resulted in structural changes with increased stabilization of hydrophobic interactions, and thus in improved thermostability. Our findings demonstrated that improvements in the thermostability of C1 enzyme can lead to broad-spectrum uses of C1 as a redox biocatalyst for future industrial applications.
Collapse
Affiliation(s)
- Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Wiranee Pensook
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Piyanuch Anuwan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | | | - Chatchadaporn Pinthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Road, Bangkok, 10110, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Thikumporn Luanloet
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huaykaew Road, Suthep, Chiang Mai, 50200, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
9
|
Fedorchuk TP, Khusnutdinova AN, Evdokimova E, Flick R, Di Leo R, Stogios P, Savchenko A, Yakunin AF. One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6-Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases. J Am Chem Soc 2020; 142:1038-1048. [PMID: 31886667 DOI: 10.1021/jacs.9b11761] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Production of platform chemicals from renewable feedstocks is becoming increasingly important due to concerns on environmental contamination, climate change, and depletion of fossil fuels. Adipic acid (AA), 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD) are key precursors for nylon synthesis, which are currently produced primarily from petroleum-based feedstocks. In recent years, the biosynthesis of adipic acid from renewable feedstocks has been demonstrated using both bacterial and yeast cells. Here we report the biocatalytic conversion/transformation of AA to 6-ACA and HMD by carboxylic acid reductases (CARs) and transaminases (TAs), which involves two rounds (cascades) of reduction/amination reactions (AA → 6-ACA → HMD). Using purified wild type CARs and TAs supplemented with cofactor regenerating systems for ATP, NADPH, and amine donor, we established a one-pot enzyme cascade catalyzing up to 95% conversion of AA to 6-ACA. To increase the cascade activity for the transformation of 6-ACA to HMD, we determined the crystal structure of the CAR substrate-binding domain in complex with AMP and succinate and engineered three mutant CARs with enhanced activity against 6-ACA. In combination with TAs, the CAR L342E protein showed 50-75% conversion of 6-ACA to HMD. For the transformation of AA to HMD (via 6-ACA), the wild type CAR was combined with the L342E variant and two different TAs resulting in up to 30% conversion to HMD and 70% to 6-ACA. Our results highlight the suitability of CARs and TAs for several rounds of reduction/amination reactions in one-pot cascade systems and their potential for the biobased synthesis of terminal amines.
Collapse
Affiliation(s)
- Tatiana P Fedorchuk
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Institute of Basic Biological Problems , Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Institute of Basic Biological Problems , Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Department of Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Centre for Environmental Biotechnology, School of Natural Sciences , Bangor University , Gwynedd LL57 2UW , U.K
| |
Collapse
|
10
|
Jaroensuk J, Intasian P, Kiattisewee C, Munkajohnpon P, Chunthaboon P, Buttranon S, Trisrivirat D, Wongnate T, Maenpuen S, Tinikul R, Chaiyen P. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J Biol Chem 2019; 294:11536-11548. [PMID: 31182484 DOI: 10.1074/jbc.ra119.008246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/08/2019] [Indexed: 11/06/2022] Open
Abstract
An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Cholpisit Kiattisewee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pobthum Munkajohnpon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Paweenapon Chunthaboon
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Duangthip Trisrivirat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
11
|
Tishkov VI, Pometun AA, Stepashkina AV, Fedorchuk VV, Zarubina SA, Kargov IS, Atroshenko DL, Parshin PD, Shelomov MD, Kovalevski RP, Boiko KM, Eldarov MA, D’Oronzo E, Facheris S, Secundo F, Savin SS. Rational Design of Practically Important Enzymes. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0027131418020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
D'Oronzo E, Secundo F, Minofar B, Kulik N, Pometun AA, Tishkov VI. Activation/Inactivation Role of Ionic Liquids on Formate Dehydrogenase fromPseudomonassp. 101 and Its Mutated Thermostable Form. ChemCatChem 2018. [DOI: 10.1002/cctc.201800145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erica D'Oronzo
- Istituto di Chimica del Riconoscimento Molecolare, CNR; Via Mario Bianco 9 20131 Milan Italy
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR; Via Mario Bianco 9 20131 Milan Italy
| | - Babak Minofar
- Institute of Microbiology; Academy of, Sciences of the Czech Republic; Zamek 136 37333 Nove Hrady Czech Republic
- Faculty of Science; University of South Bohemia; Branišovská 1760 37005 České Budějovice Czech Republic
| | - Natallia Kulik
- Institute of Microbiology; Academy of, Sciences of the Czech Republic; Zamek 136 37333 Nove Hrady Czech Republic
| | - Anastasia A. Pometun
- Innovations and High Technologies MSU Ltd.; Tsymlyanskaya ul., 16-96 109451 Moscow Russian Federation
- A.N. Bach Institute of Biochemistry; Research Center, of Biotechnology of the Russian Academy of Sciences; bld. 2 Leninsky Ave. Moscow 119071 Russian Federation
| | - Vladimir I. Tishkov
- Innovations and High Technologies MSU Ltd.; Tsymlyanskaya ul., 16-96 109451 Moscow Russian Federation
- Chemistry Faculty; M.V. Lomonosov Moscow State University; Leninskie Gory 1-3 119991 Moscow Russian Federation
- A.N. Bach Institute of Biochemistry; Research Center, of Biotechnology of the Russian Academy of Sciences; bld. 2 Leninsky Ave. Moscow 119071 Russian Federation
| |
Collapse
|
13
|
Chen X, Cui Y, Cheng X, Feng J, Wu Q, Zhu D. Highly Atom Economic Synthesis of d-2-Aminobutyric Acid through an In Vitro Tri-enzymatic Catalytic System. ChemistryOpen 2017; 6:534-540. [PMID: 28794949 PMCID: PMC5542762 DOI: 10.1002/open.201700093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/11/2022] Open
Abstract
d-2-Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by-product is a pressing demand. A tri-enzymatic catalytic system, which is composed of l-threonine ammonia lyase (l-TAL), d-amino acid dehydrogenase (d-AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d-2-aminobutyric acid with high optical purity. In this cascade reaction, the readily available l-threonine serves as the starting material, carbon dioxide and water are the by-products. d-2-Aminobutyric acid was obtained with >90 % yield and >99 % enantioselective excess, even without adding external ammonia, demonstrating that the ammonia from the first reaction can serve as the amino donor for the reductive amination step. This multi-enzymatic system provides an attractive method with high atomic economy for the synthesis of d-α-amino acids from the corresponding l-α-amino acids, which are readily produced by fermentation.
Collapse
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Xinkuan Cheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
14
|
Zheng J, Yang T, Zhou J, Xu M, Zhang X, Rao Z. Elimination of a Free Cysteine by Creation of a Disulfide Bond Increases the Activity and Stability of Candida boidinii Formate Dehydrogenase. Appl Environ Microbiol 2017; 83:e02624-16. [PMID: 27836850 PMCID: PMC5203636 DOI: 10.1128/aem.02624-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022] Open
Abstract
NAD+-dependent formate dehydrogenase (FDH; EC 1.2.1.2) is an industrial enzyme widely used for NADH regeneration. However, enzyme inactivation caused by the oxidation of cysteine residues is a flaw of native FDH. In this study, we relieved the oxidation of the free cysteine of FDH from Candida boidinii (CboFDH) through the construction of disulfide bonds between A10 and C23 as well as I239 and C262. Variants A10C, I239C, and A10C/I239C were obtained by the site-directed mutagenesis and their properties were studied. Results showed that there were no significant changes in the optimum temperature and pH between variants and wild-type CboFDH. However, the stabilities of all variant enzymes were improved. Specifically, the CboFDH variant A10C (A10Cfdh) showed a significant increase in copper ion resistance and acid resistance, a 6.7-fold increase in half-life at 60°C, and a 1.4-fold increase in catalytic efficiency compared with the wild type. Asymmetric synthesis of l-tert-leucine indicated that the process time was reduced by 40% with variant A10Cfdh, which benefited from the increase in catalytic efficiency. Circular dichroism analysis and molecular dynamics simulation indicated that variants that contained disulfide bonds lowered the overall root mean square deviation (RMSD) and consequently increased the protein rigidity without affecting the secondary structure of enzyme. This work is expected to provide a viable strategy to avoid the microbial enzyme inactivation caused by the oxidation of the free cysteine residues and improving their performances. IMPORTANCE FDH is widely used for NADH regeneration in dehydrogenase-based synthesis of optically active compounds to decrease the cost of production. This study highlighted a viable strategy that was used to eliminate the oxidation of free cysteine residues of FDH from Candida boidinii by the introduction of disulfide bonds. Using this strategy, we obtained a variant FDH with improved activity and stability. The improvement of activity and stability of FDH is expected to reduce its price and then further to decrease the cost of its application.
Collapse
Affiliation(s)
- Junxian Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Promising properties of a formate dehydrogenase from a methanol-assimilating yeast Ogataea parapolymorpha DL-1 in His-tagged form. Appl Microbiol Biotechnol 2013; 98:1621-30. [DOI: 10.1007/s00253-013-4996-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
16
|
Zakharova GS, Uporov IV, Tishkov VI. Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. BIOCHEMISTRY (MOSCOW) 2012; 76:1391-401. [PMID: 22339595 DOI: 10.1134/s0006297911130037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Horseradish peroxidase (HRP) is one of the most studied enzymes of the plant peroxidase superfamily. HRP is also widely used in different bioanalytical applications and diagnostic kits. The methods of genetic engineering and protein design are now widely used to study the catalytic mechanism and to improve properties of the enzyme. Here we review the results of another approach to HRP modification-through the chemical modification of amino acids or prosthetic group of the enzyme. Computer models of HRPs with modified hemes are in good agreement with the experimental data.
Collapse
Affiliation(s)
- G S Zakharova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
17
|
Hoelsch K, Sührer I, Heusel M, Weuster-Botz D. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl Microbiol Biotechnol 2012; 97:2473-81. [PMID: 22588502 DOI: 10.1007/s00253-012-4142-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 12/01/2022]
Abstract
Formate dehydrogenases (FDHs) are frequently used for the regeneration of cofactors in biotransformations employing NAD(P)H-dependent oxidoreductases. Major drawbacks of most native FDHs are their strong preference for NAD(+) and their low operational stability in the presence of reactive organic compounds such as α-haloketones. In this study, the FDH from Mycobacterium vaccae N10 (MycFDH) was engineered in order to obtain an enzyme that is not only capable of regenerating NADPH but also stable toward the α-haloketone ethyl 4-chloroacetoacetate (ECAA). To change the cofactor specificity, amino acids in the conserved NAD(+) binding motif were mutated. Among these mutants, MycFDH A198G/D221Q had the highest catalytic efficiency (k cat/K m) with NADP(+). The additional replacement of two cysteines (C145S/C255V) not only conferred a high resistance to ECAA but also enhanced the catalytic efficiency 6-fold. The resulting quadruple mutant MycFDH C145S/A198G/D221Q/C255V had a specific activity of 4.00 ± 0.13 U mg(-1) and a K m, NADP(+) of 0.147 ± 0.020 mM at 30 °C, pH 7. The A198G replacement had a major impact on the kinetic constants of the enzyme. The corresponding triple mutant, MycFDH C145S/D221Q/C255V, showed the highest specific activity reported to date for a NADP(+)-accepting FDH (v max, 10.25 ± 1.63 U mg(-1)). However, the half-saturation constant for NADP(+) (K m, NADP(+) , 0.92 ± 0.10 mM) was about one order of magnitude higher than the one of the quadruple mutant. Depending on the reaction setup, both novel MycFDH variants could be useful for the production of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-ECHB] by asymmetric reduction of ECAA with NADPH-dependent ketoreductases.
Collapse
Affiliation(s)
- Kathrin Hoelsch
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany.
| | | | | | | |
Collapse
|
18
|
Liu DF, Ding HT, Du YQ, Zhao YH, Jia XM. Cloning, expression, and characterization of a wide-pH-range stable phosphite dehydrogenase from Pseudomonas sp. K in Escherichia coli. Appl Biochem Biotechnol 2012; 166:1301-13. [PMID: 22238013 DOI: 10.1007/s12010-011-9518-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
A phosphite dehydrogenase gene (ptdhK) consisting of 1,011-bp nucleotides which encoding a peptide of 336 amino acid residues was cloned from Pseudomonas sp. K. gene ptdhK was expressed in Escherichia coli BL21 (DE3) and the corresponding recombinant enzyme was purified by metal affinity chromatography. The recombinant protein is a homodimer with a monomeric molecular mass of 37.2 kDa. The specific activity of PTDH-K was 3.49 U mg(-1) at 25 °C. The recombinant PTDH-K exhibited maximum activity at pH 3.0 and at 40 °C and displayed high stability within a wide range of pHs (5.0 to 10.5). PTDH-K had a high affinity to its natural substrates, with K (m) values for sodium phosphite and NAD of 0.475 ± 0.073 and 0.022 ± 0.007 mM, respectively. The activity of PTDH-K was enhanced by Na(+), NH (4) (+) , Mg(2+), Fe(2+), Fe(3+), Co(2+), and EDTA, and PTDH-K exhibited different tolerance to various organic solvents.
Collapse
Affiliation(s)
- Dan-Feng Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
19
|
Xie X, Pashkov I, Gao X, Guerrero JL, Yeates TO, Tang Y. Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity. Biotechnol Bioeng 2008; 102:20-8. [PMID: 18988191 DOI: 10.1002/bit.22028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed approximately 50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 h, which represents a significant improvement over the performance of wild-type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes.
Collapse
Affiliation(s)
- Xinkai Xie
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bolivar JM, Wilson L, Ferrarotti SA, Fernandez-Lafuente R, Guisan JM, Mateo C. Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports. Biomacromolecules 2006; 7:669-73. [PMID: 16529396 DOI: 10.1021/bm050947z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate dehydrogenase (FDH) is a stable enzyme that may be readily inactivated by the interaction with hydrophobic interfaces (e.g., due to strong stirring). This may be avoided by immobilizing the enzyme on a porous support by any technique. Thus, even if the enzyme is going to be used in an ultra-membrane reactor, the immobilization presents some advantages. Immobilization on supports activated with bromocianogen, polyethylenimine, glutaraldehyde, etc., did not promote any stabilization of the enzyme under thermal inactivation. However, the immobilization of FDH on highly activated glyoxyl agarose has permitted increasing the enzyme stability against any distorting agent: pH, T, organic solvent, etc. The time of support-enzyme reaction, the temperature of immobilization, and the activation of the support need to be optimized to get the optimal stability-activity properties. Optimized biocatalyst retained 50% of the offered activity and became 50 times more stable at high temperature and neutral pH. Moreover, the quaternary structure of this dimeric enzyme becomes stabilized by immobilization under optimized conditions. Thus, at acidic pH (conditions where the subunit dissociation is the first step in the enzyme inactivation), the immobilization of both subunits of the enzyme on glyoxyl-agarose has allowed the enzyme to be stabilized by hundreds of times. Moreover, the optimal temperature of the enzyme has been increased (even by 10 degrees C at pH 4.5). Very interestingly, the activity with NAD(+)-dextran was around 60% of that observed with free cofactor.
Collapse
Affiliation(s)
- Juan M Bolivar
- Departamento de Biocatalisis, Instituto de Catalisis-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Filippova EV, Polyakov KM, Tikhonova TV, Stekhanova TN, Boiko KM, Sadykhov IG, Tishkov VI, Popov VO, Labru N. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate. CRYSTALLOGR REP+ 2006. [DOI: 10.1134/s1063774506040146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Tishkov VI, Popov VO. Protein engineering of formate dehydrogenase. ACTA ACUST UNITED AC 2006; 23:89-110. [PMID: 16546445 DOI: 10.1016/j.bioeng.2006.02.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/24/2022]
Abstract
NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) is one of the best enzymes for the purpose of NADH regeneration in dehydrogenase-based synthesis of optically active compounds. Low operational stability and high production cost of native FDHs limit their application in commercial production of chiral compounds. The review summarizes the results on engineering of bacterial and yeast FDHs aimed at improving their chemical and thermal stability, catalytic activity, switch in coenzyme specificity from NAD+ to NADP+ and overexpression in Escherichia coli cells.
Collapse
Affiliation(s)
- Vladimir I Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
23
|
Hollmann F, Hofstetter K, Schmid A. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol 2006; 24:163-71. [PMID: 16488494 DOI: 10.1016/j.tibtech.2006.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 10/25/2005] [Accepted: 02/03/2006] [Indexed: 10/25/2022]
Abstract
Biocatalytic oxygenation chemistry is a rapidly evolving field in which monooxygenases are the tools of choice. Monooxygenases catalyze many industrially important synthetic transformations; however, their use in preparative applications is hampered by their intrinsic requirement for reducing equivalents. As a result, non-enzymatic strategies--where the reducing equivalents are introduced directly into the catalytic cycle--are being developed to supersede the well-established enzymatic NAD(P)H regeneration systems currently in use. In this review we summarize and evaluate recent achievements in this area.
Collapse
Affiliation(s)
- F Hollmann
- Degussa Care & Surface Specialties, Goldschmidt AG, Goldschmidtstrasse 100, 45127 Essen, Germany
| | | | | |
Collapse
|
24
|
Woodyer R, Zhao H, van der Donk WA. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. FEBS J 2005; 272:3816-27. [PMID: 16045753 DOI: 10.1111/j.1742-4658.2005.04788.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NAD(P)H regeneration is important for biocatalytic reactions that require these costly cofactors. A mutant phosphite dehydrogenase (PTDH-E175A/A176R) that utilizes both NAD and NADP efficiently is a very promising system for NAD(P)H regeneration. In this work, both the kinetic mechanism and practical application of PTDH-E175A/A176R were investigated for better understanding of the enzyme and to provide a basis for future optimization. Kinetic isotope effect studies with PTDH-E175A/A176R showed that the hydride transfer step is (partially) rate determining with both NAD and NADP giving (D)V values of 2.2 and 1.7, respectively, and (D)V/K(m,phosphite) values of 1.9 and 1.7, respectively. To better comprehend the relaxed cofactor specificity, the cofactor dissociation constants were determined utilizing tryptophan intrinsic fluorescence quenching. The dissociation constants of NAD and NADP with PTDH-E175A/A176R were 53 and 1.9 microm, respectively, while those of the products NADH and NADPH were 17.4 and 1.22 microm, respectively. Using sulfite as a substrate mimic, the binding order was established, with the cofactor binding first and sulfite binding second. The low dissociation constant for the cofactor product NADPH combined with the reduced values for (D)V and k(cat) implies that product release may become partially rate determining. However, product inhibition does not prevent efficient in situ NADPH regeneration by PTDH-E175A/A176R in a model system in which xylose was converted into xylitol by NADP-dependent xylose reductase. The in situ regeneration proceeded at a rate approximately fourfold faster with PTDH-E175A/A176R than with either WT PTDH or a NADP-specific Pseudomonas sp.101 formate dehydrogenase mutant with a total turnover number for NADPH of 2500.
Collapse
Affiliation(s)
- Ryan Woodyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
25
|
Maurer S, Kühnel K, Kaysser L, Eiben S, Schmid R, Urlacher V. Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants. Adv Synth Catal 2005. [DOI: 10.1002/adsc.200505044] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Shinoda T, Arai K, Shigematsu-Iida M, Ishikura Y, Tanaka S, Yamada T, Kimber MS, Pai EF, Fushinobu S, Taguchi H. Distinct conformation-mediated functions of an active site loop in the catalytic reactions of NAD-dependent D-lactate dehydrogenase and formate dehydrogenase. J Biol Chem 2005; 280:17068-75. [PMID: 15734738 DOI: 10.1074/jbc.m500970200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structures of NAD-dependent D-lactate dehydrogenase (D-LDH) and formate dehydrogenase (FDH), which resemble each other, imply that the two enzymes commonly employ certain main chain atoms, which are located on corresponding loop structures in the active sites of the two enzymes, for their respective catalytic functions. These active site loops adopt different conformations in the two enzymes, a difference likely attributable to hydrogen bonds with Asn97 and Glu141, which are also located at equivalent positions in D-LDH and FDH, respectively. X-ray crystallography at 2.4-A resolution revealed that replacement of Asn97 with Asp did not markedly change the overall protein structure but markedly perturbed the conformation of the active site loop in Lactobacillus pentosus D-LDH. The Asn97-->Asp mutant D-LDH exhibited virtually the same k(cat), but about 70-fold higher K(M) value for pyruvate than the wild-type enzyme. For Paracoccus sp. 12-A FDH, in contrast, replacement of Glu141 with Gln and Asn induced only 5.5- and 4.3-fold increases in the K(M) value, but 110 and 590-fold decreases in the k(cat) values for formate, respectively. Furthermore, these mutant FDHs, particularly the Glu141-->Asn enzyme, exhibited markedly enhanced catalytic activity for glyoxylate reduction, indicating that FDH is converted to a 2-hydroxy-acid dehydrogenase on the replacement of Glu141. These results indicate that the active site loops play different roles in the catalytic reactions of D-LDH and FDH, stabilization of substrate binding and promotion of hydrogen transfer, respectively, and that Asn97 and Glu141, which stabilize suitable loop conformations, are essential elements for proper loop functioning.
Collapse
Affiliation(s)
- Takeshi Shinoda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tishkov VI, Popov VO. Catalytic mechanism and application of formate dehydrogenase. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Tishkov VI, Popov VO. Catalytic mechanism and application of formate dehydrogenase. BIOCHEMISTRY (MOSCOW) 2004; 69:1252-67. [PMID: 15627379 DOI: 10.1007/s10541-005-0071-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NAD+-dependent formate dehydrogenase (FDH) is an abundant enzyme that plays an important role in energy supply of methylotrophic microorganisms and in response to stress in plants. FDH belongs to the superfamily of D-specific 2-hydroxy acid dehydrogenases. FDH is widely accepted as a model enzyme to study the mechanism of hydride ion transfer in the active center of dehydrogenases because the reaction catalyzed by the enzyme is devoid of proton transfer steps and implies a substrate with relatively simple structure. FDH is also widely used in enzymatic syntheses of optically active compounds as a versatile biocatalyst for NAD(P)H regeneration consumed in the main reaction. This review covers the late developments in cloning genes of FDH from various sources, studies of its catalytic mechanism and physiological role, and its application for new chiral syntheses.
Collapse
Affiliation(s)
- V I Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
29
|
Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N. Robust NADH-regenerator: improved alpha-haloketone-resistant formate dehydrogenase. Appl Microbiol Biotechnol 2004; 67:33-9. [PMID: 15338080 DOI: 10.1007/s00253-004-1728-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/18/2004] [Accepted: 06/23/2004] [Indexed: 11/30/2022]
Abstract
Formate dehydrogenases (FDH) are useful for the regeneration of NADH, which is required for asymmetric reduction by several dehydrogenases and reductases. FDHs have relatively low activity and are labile, especially to alpha-haloketones, thus FDH cannot be applied to the industrial manufacture of optically active alpha-haloalcohols. To stabilize a FDH from Mycobacterium vaccae (McFDH) against the alpha-haloketone ethyl 4-chloroacetoacetate (ECAA), a set of cysteine-mutant enzymes was constructed. Sensitivity to ECAA of mutant C6S was similar to that of the wild-type enzyme, and mutants C249S and C355S showed little activity. In contrast, mutant C256S exhibited remarkable tolerance to ECAA. Surprisingly, mutant C146S was activated by several organic compounds such as ethyl acetate. An optimized mutant, C6A/C146S/C256V (McFDH-26), was obtained by combining several effective mutations. Ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-ECHB] was synthesized from ECAA to 49.9 g/l with an optical purity of more than 99% e.e. using recombinant Escherichia coli cells coexpressing McFDH-26 and a carbonyl reductase (KaCR1) from Kluyveromyces aestuarii.
Collapse
Affiliation(s)
- H Yamamoto
- Life Science Development Center, CPI Company, Tsukuba Research Center, Daicel Chemical Industries, 27 Miyukigaoka, Tsukuba 305-0841, Japan.
| | | | | | | | | |
Collapse
|
30
|
Galkin AG, Kutsenko AS, Bajulina NP, Esipova NG, Lamzin VS, Mesentsev AV, Shelukho DV, Tikhonova TV, Tishkov VI, Ustinnikova TB, Popov VO. Site-directed mutagenesis of the essential arginine of the formate dehydrogenase active centre. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:136-49. [PMID: 11825616 DOI: 10.1016/s0167-4838(01)00297-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequence alignment shows that residue Arg 284 (according to the numbering of the residues in formate dehydrogenase, FDH, from the methylotrophic bacterium Pseudomonas sp. 101) is conserved in NAD-dependent FDHs and D-specific 2-hydroxyacid dehydrogenases. Mutation of Arg 284 to glutamine and alanine results in a change of the catalytic, thermodynamic and spectral properties of FDH. In comparison to wild-type, the affinity of the mutants for the substrate (K(formate)m) or the transition state analogue (K(azide)i) decreases and correlates with the ability of the side chain of residue 284 to form H-bonds. In contrast, the affinity for the coenzyme (K(NAD)d or K(NAD)m) is either not affected or increases and correlates inversely with the partial positive charge of the side chain. The temperature dependence of circular dichroism (CD) spectra of the wild-type FDH and its Ala mutant has been studied over the 5-90 degrees C temperature range. Both proteins reveal regions of enhanced conformational mobility at the predenaturing temperatures (40-55 degrees C) associated with a change of enzyme kinetic parameters and a co-operative transition around 55-70 degrees C which is followed by the loss of enzyme activity. CD spectra of the wild-type and mutant proteins were deconvoluted and contributions from various types of secondary structure estimated. It is shown that the co-operative transition at 55-70 degrees C in the FDH protein globule is triggered by a loss of alpha-helical secondary structure. The results confirm the conclusion, from the crystal structures, that Arg 284 is directly involved in substrate binding. In addition this residue seems to exert a major structural role by supporting the catalytic conformation of the enzyme active centre.
Collapse
Affiliation(s)
- Andrey G Galkin
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Leninskie Gori, 119899 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Slusarczyk H, Felber S, Kula MR, Pohl M. Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1280-9. [PMID: 10691964 DOI: 10.1046/j.1432-1327.2000.01123.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene of the NAD-dependent formate dehydrogenase (FDH) from the yeast Candida boidinii was cloned by PCR using genomic DNA as a template. Expression of the gene in Escherichia coli yielded functional FDH with about 20% of the soluble cell protein. To confirm the hypothesis of a thiol-coupled inactivation process, both cysteine residues in the primary structure of the enzyme have been exchanged by site-directed mutagenesis using a homology model based on the 3D structure of FDH from Pseudomonas sp. 101 and from related dehydrogenases. Compared to the wt enzyme, most of the mutants were significantly more stable towards oxidative stress in the presence of Cu(II) ions, whereas the temperature optima and kinetic constants of the enzymatic reaction are not significantly altered by the mutations. Determination of the Tm values revealed that the stability at temperatures above 50 degrees C is optimal for the native and the recombinant wt enzyme (Tm 57 degrees C), whereas the Tm values of the mutant enzymes vary in the range 44-52 degrees C. Best results in initial tests concerning the application of the enzyme for regeneration of NADH in biotransformation of trimethyl pyruvate to Ltert leucine were obtained with two mutants, FDHC23S and FDHC23S/C262A, which are significantly more stable than the wt enzyme.
Collapse
Affiliation(s)
- H Slusarczyk
- Institute of Enzyme Technology, Heinrich-Heine-University Dusseldorf, Research Centre Jülich, Germany
| | | | | | | |
Collapse
|
32
|
Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR. Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990720)64:2<187::aid-bit7>3.0.co;2-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Mesentsev AV, Lamzin VS, Tishkov VI, Ustinnikova TB, Popov VO. Effect of pH on kinetic parameters of NAD+-dependent formate dehydrogenase. Biochem J 1997; 321 ( Pt 2):475-80. [PMID: 9020883 PMCID: PMC1218093 DOI: 10.1042/bj3210475] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To define in detail the molecular mechanism of NAD+-dependent formate dehydrogenase, the pH dependences of various kinetic and spectroscopic parameters have been studied: Vmax, Km (NAD+), Km (formate), inhibition constants for structural analogues of substrate (NO3-) and product (CNS-, CNO-, N3-), CD and fluorescence properties. The value of Vmax, rate-limiting hydride transfer, is nearly constant throughout the entire pH range of enzyme stability (6.0-11.2) but decreases below 6. The K(m) values for both substrates remain constant within the pH range 6-10. At pH values below 6 (for the coenzyme) and above 10 (for both substrate and coenzyme) the Km values increase. In the acidic range this change is attributed to the ionization of two carboxy groups (pK approx. 5.5-6.0) located at the NAD+-binding site of the enzyme active centre. The pH transition in the basic region (pK 10.5 +/- 0.2) has a conformational origin and affects the enzyme's affinity for substrates and anion inhibitors. A similar transition has been observed for formate dehydrogenases from yeast Candida boidinii and Hansenula polymorpha. The results complement the conclusions about the catalytic mechanism deduced from the crystal structure of the enzyme.
Collapse
Affiliation(s)
- A V Mesentsev
- A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
34
|
Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K. Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 1995; 44:479-83. [PMID: 8597552 DOI: 10.1007/bf00169947] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene of NAD(+)-dependent formate dehydrogenase (FDH) from Mycobacterium vaccae N10 was cloned into Escherichia coli by hybridization with digoxigenin-labeled DNA probes, which were prepared by amplification of the chromosomal DNA from the bacterium by the polymerase chain reaction with degenerate primers. The primers were designed on the basis of the most conserved parts of known sequences of FDH from different organisms. An open-reading frame of 1200 bp exhibited extremely high sequence similarity to the FDH gene of Pseudomonas sp. 101. The deduced amino acid sequence of FDH from Mycobacterium vaccae N10 (McFDH) was identical to that of Pseudomonas sp. 101 (PsFDH) except for two amino acid residues: isoleucine-35 (threonine in PsFDH) and glutamate-61 (lysine in PsFDH). The physicochemical properties of both enzymes appeared to be closely similar to each other, but the thermostability of McFDH was a little lower than that of PsFDH. To examine the role of the two amino acid residues in the thermostability of the enzymes, glutamate-61 of McFDH was replaced by glutaminyl, prolyl and lysyl residues by site-directed mutagenesis. All the mutant enzymes showed higher thermostability than the wild-type McFDH. The negative charge of glutamate-61 contributes to the stability of the wild-type enzyme being lower than that of PsFDH.
Collapse
Affiliation(s)
- A Galkin
- Institute of Chemical Research, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
35
|
Allen SJ, Holbrook JJ. Isolation, sequence and overexpression of the gene encoding NAD-dependent formate dehydrogenase from the methylotrophic yeast Candida methylica. Gene 1995; 162:99-104. [PMID: 7557425 DOI: 10.1016/0378-1119(95)00347-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NAD-dependent formate dehydrogenase (FDH) was isolated from Candida methylica (Cm) grown on 0.5% methanol. Its N-terminal amino acid (aa) sequence was determined, as was that of a commercial FDH from Candida boidinii. Degenerate oligodeoxyribonucleotides were made to the 5' region of the fdh gene from Cm using this information and to the 3' region using C-terminal aa sequence data from the methylotropic yeast, Hansenula polymorpha. An almost complete 1.1-kb fragment was amplified from Cm genomic DNA via the polymerase chain reaction (PCR). This fragment was cloned, sequenced and used to probe a Southern blot, from which a 3.4-kb EcoRI fragment containing the fdh open reading frame (ORF) was isolated. The complete nucleotide sequence of this fdh ORF was determined and corresponds to a protein of 364 aa (40,343 Da). The ORF of fdh was cloned into pKK223-3 using PCR and transformed into Escherichia coli. Enzymatically active FDH was produced to 15% of soluble E. coli protein. The deduced aa sequence of this FDH is compared to the aa sequences of four known FDH, from bacteria, yeast, fungi and plant mitochondria.
Collapse
Affiliation(s)
- S J Allen
- Molecular Recognition Centre, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
36
|
Affiliation(s)
- V O Popov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | |
Collapse
|