Coelho AC, Boisvert S, Mukherjee A, Leprohon P, Corbeil J, Ouellette M. Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing.
PLoS Negl Trop Dis 2012;
6:e1512. [PMID:
22348164 PMCID:
PMC3279362 DOI:
10.1371/journal.pntd.0001512]
[Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023] Open
Abstract
Background
Miltefosine (MF) is the first oral compound used in the chemotherapy against leishmaniasis. Since the mechanism of action of this drug and the targets of MF in Leishmania are unclear, we generated in a step-by-step manner Leishmania major promastigote mutants highly resistant to MF. Two of the mutants were submitted to a short-read whole genome sequencing for identifying potential genes associated with MF resistance.
Methods/Principal Findings
Analysis of the genome assemblies revealed several independent point mutations in a P-type ATPase involved in phospholipid translocation. Mutations in two other proteins—pyridoxal kinase and α-adaptin like protein—were also observed in independent mutants. The role of these proteins in the MF resistance was evaluated by gene transfection and gene disruption and both the P-type ATPase and pyridoxal kinase were implicated in MF susceptibility. The study also highlighted that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes.
Conclusions/Significance
Whole genome sequencing was used to pinpoint known and new resistance markers associated with MF resistance in the protozoan parasite Leishmania. The study also demonstrated the polyclonal nature of a resistant population with individual cells with varying susceptibilities and genotypes.
Leishmania spp. are parasitic protozoa responsible for a spectrum of diseases known as leishmaniasis. There are few drugs available for the treatment of these diseases, and miltefosine is the first oral drug used in treatment of visceral leishmaniasis, a form of the disease that can be lethal if not treated. In this study, we seek to understand the mechanism of action and identify targets of the drug by generating promastigote mutants highly resistant to miltefosine. Two independent mutants were submitted to short read whole genome sequencing. Genome analysis of these mutants has permitted us to identify point mutations in three genes (P-type ATPase, pyridoxal kinase and α-adaptin like protein) that were also present in other independent miltefosine resistant mutants. Some of the new genes identified here could be useful as potential markers for miltefosine resistance in Leishmania. Moreover, our approach has permitted us to highlight that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes. This may have practical applications while studying resistance.
Collapse