1
|
Piper SJ, Deganutti G, Lu J, Zhao P, Liang YL, Lu Y, Fletcher MM, Hossain MA, Christopoulos A, Reynolds CA, Danev R, Sexton PM, Wootten D. Understanding VPAC receptor family peptide binding and selectivity. Nat Commun 2022; 13:7013. [PMID: 36385145 PMCID: PMC9668914 DOI: 10.1038/s41467-022-34629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.
Collapse
Affiliation(s)
- Sarah J. Piper
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Giuseppe Deganutti
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK
| | - Jessica Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Peishen Zhao
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Yi-Lynn Liang
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,Present Address: Confo TherapeuticsTechnologiepark 94, Ghent (Zwijnaarde), 9052 Belgium
| | - Yao Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Madeleine M. Fletcher
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.454018.c0000 0004 0632 8971Present Address: GlaxoSmithKline, Abbotsford, 3067 VIC Australia
| | - Mohammed Akhter Hossain
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Arthur Christopoulos
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Christopher A. Reynolds
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK ,grid.8356.80000 0001 0942 6946School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Radostin Danev
- grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Denise Wootten
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| |
Collapse
|
2
|
Krainer G, Schenkel M, Hartmann A, Ravamehr-Lake D, Deber CM, Schlierf M. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor. J Biol Chem 2019; 295:1985-1991. [PMID: 31882543 DOI: 10.1074/jbc.ac119.011360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Mathias Schenkel
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Andreas Hartmann
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Dorna Ravamehr-Lake
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Michael Schlierf
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
3
|
Culhane KJ, Liu Y, Cai Y, Yan ECY. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 2015; 6:264. [PMID: 26594176 PMCID: PMC4633518 DOI: 10.3389/fphar.2015.00264] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/23/2015] [Indexed: 01/28/2023] Open
Abstract
Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.
Collapse
Affiliation(s)
- Kelly J Culhane
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | - Yuting Liu
- Department of Chemistry, Yale University New Haven, CT, USA
| | - Yingying Cai
- Department of Chemistry, Yale University New Haven, CT, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University New Haven, CT, USA
| |
Collapse
|
4
|
Dong M, Koole C, Wootten D, Sexton PM, Miller LJ. Structural and functional insights into the juxtamembranous amino-terminal tail and extracellular loop regions of class B GPCRs. Br J Pharmacol 2014; 171:1085-101. [PMID: 23889342 DOI: 10.1111/bph.12293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Class B guanine nucleotide-binding protein GPCRs share heptahelical topology and signalling via coupling with heterotrimeric G proteins typical of the entire superfamily of GPCRs. However, they also exhibit substantial structural differences from the more extensively studied class A GPCRs. Even their helical bundle region, most conserved across the superfamily, is predicted to differ from that of class A GPCRs. Much is now known about the conserved structure of the amino-terminal domain of class B GPCRs, coming from isolated NMR and crystal structures, but the orientation of that domain relative to the helical bundle is unknown, and even less is understood about the conformations of the juxtamembranous amino-terminal tail or of the extracellular loops linking the transmembrane segments. We now review what is known about the structure and function of these regions of class B GPCRs. This comes from indirect analysis of structure-function relationships elucidated by mutagenesis and/or ligand modification and from the more direct analysis of spatial approximation coming from photoaffinity labelling and cysteine trapping studies. Also reviewed are the limited studies of structure of some of these regions. No dominant theme was recognized for the structures or functional roles of distinct regions of these juxtamembranous portions of the class B GPCRs. Therefore, it is likely that a variety of molecular strategies can be engaged for docking of agonist ligands and for initiation of conformational changes in these receptors that would be expected to converge to a common molecular mechanism for activation of intracellular signalling cascades.
Collapse
Affiliation(s)
- M Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | |
Collapse
|
5
|
Ceraudo E, Hierso R, Tan YV, Murail S, Rouyer-Fessard C, Nicole P, Robert JC, Jamin N, Neumann JM, Robberecht P, Laburthe M, Couvineau A. Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction. FASEB J 2012; 26:2060-71. [PMID: 22291440 DOI: 10.1096/fj.11-196444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vasoactive intestinal peptide (VIP) plays a major role in pathophysiology. Our previous studies demonstrated that the VIP sequence 6-28 interacts with the N-terminal ectodomain (N-ted) of its receptor, VPAC1. Probes for VIP and receptor antagonist PG97-269 were synthesized with a photolabile residue/Bpa at various positions and used to explore spatial proximity with VPAC1. PG97-269 probes with Bpa at position 0, 6, and 24 behaved as high-affinity receptor antagonists (K(i)=12, 9, and 7 nM, respectively). Photolabeling experiments revealed that the [Bpa(0)]-VIP probe was in physical contact with VPAC1 Q(135), while [Bpa(0)]-PG97-269 was covalently bound to G(62) residue of N-ted, indicating different binding sites. In contrast, photolabeling with [Bpa(6)]- and [Bpa(24)]-PG97-269 showed that the distal domains of PG97-269 interacted with N-ted, as we previously showed for VIP. Substitution with alanine of the K(143), T(144), and T(147) residues located in the first transmembrane domain of VPAC1 induced a loss of receptor affinity (IC(50)=1035, 874, and 2070 nM, respectively), and pharmacological studies using VIP2-28 indicated that these three residues play an important role in VPAC1 interaction with the first histidine residue of VIP. These data demonstrate that VIP and PG97-269 bind to distinct domains of VPAC1.
Collapse
Affiliation(s)
- Emilie Ceraudo
- INSERM U773/CRB3, Faculté de Médecine X. Bichat, 16 rue Henri Huchard, 75018 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Couvineau A, Ceraudo E, Tan YV, Nicole P, Laburthe M. The VPAC1 receptor: structure and function of a class B GPCR prototype. Front Endocrinol (Lausanne) 2012; 3:139. [PMID: 23162538 PMCID: PMC3499705 DOI: 10.3389/fendo.2012.00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/26/2012] [Indexed: 02/05/2023] Open
Abstract
The class B G protein-coupled receptors (GPCRs) represents a small sub-family encompassing 15 members, and are very promising targets for the development of drugs to treat many diseases such as chronic inflammation, neurodegeneration, diabetes, stress, and osteoporosis. The VPAC1 receptor which is an archetype of the class B GPCRs binds Vasoactive Intestinal Peptide (VIP), a neuropeptide widely distributed in central and peripheral nervous system modulating many physiological processes including regulation of exocrine secretions, hormone release, foetal development, immune response … VIP appears to exert beneficial effect in neurodegenerative and inflammatory diseases. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC1 receptors. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted) of VPAC1 plays a pivotal role in VIP recognition. The use of different approaches such as directed mutagenesis, photoaffinity labeling, Nuclear Magnetic Resonance (NMR), molecular modeling, and molecular dynamic simulation has led to demonstrate that: (1) the central and C-terminal part of the VIP molecule interacts with the N-ted of VPAC1 receptor which is itself structured as a « Sushi » domain; (2) the N-terminal end of the VIP molecule interacts with the first transmembrane domain of the receptor where three residues (K(143), T(144), and T(147)) play an important role in VPAC1 interaction with the first histidine residue of VIP.
Collapse
Affiliation(s)
- A. Couvineau
- *Correspondence: A. Couvineau and M. Laburthe, Faculté de Médecine X. Bichat, INSERM U773/CRB3, 16 Rue Henri Huchard, 75018 Paris, France. e-mail: ;
| | | | | | | | - M. Laburthe
- *Correspondence: A. Couvineau and M. Laburthe, Faculté de Médecine X. Bichat, INSERM U773/CRB3, 16 Rue Henri Huchard, 75018 Paris, France. e-mail: ;
| |
Collapse
|
7
|
Coopman K, Wallis R, Robb G, Brown AJH, Wilkinson GF, Timms D, Willars GB. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor. Mol Endocrinol 2011; 25:1804-18. [PMID: 21868452 DOI: 10.1210/me.2011-1160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.
Collapse
Affiliation(s)
- K Coopman
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Barwell J, Conner A, Poyner DR. Extracellular loops 1 and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1906-16. [PMID: 21703310 PMCID: PMC3228915 DOI: 10.1016/j.bbamcr.2011.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/31/2011] [Accepted: 06/08/2011] [Indexed: 12/30/2022]
Abstract
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced αCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced αCGRP binding. These residues form a hydrophobic cluster within an area defined as the “minor groove” of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of αCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on αCGRP binding and cAMP production; they are likely to indirectly influence the binding site for αCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired αCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.
Collapse
Affiliation(s)
- James Barwell
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | | | | |
Collapse
|
9
|
Chen Q, Pinon DI, Miller LJ, Dong M. Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity. J Biol Chem 2010; 285:24508-18. [PMID: 20529866 DOI: 10.1074/jbc.m110.135749] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7-36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr(145), adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr(205), within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.
Collapse
Affiliation(s)
- Quan Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
10
|
Bewley MS, Pena JTG, Plesch FN, Decker SE, Weber GJ, Forrest JN. Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1157-64. [PMID: 16728467 DOI: 10.1152/ajpregu.00078.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoactive intestinal peptide (VIP) is a secretagogue that mediates chloride secretion in intestinal epithelia. We determined the relative potency of VIP and related peptides in the rectal gland of the elasmobranch dogfish shark and cloned and expressed the VIP receptor (sVIP-R) from this species. In the perfused rectal gland, VIP (5 nM) stimulated chloride secretion from 250 ± 66 to 2,604 ± 286 μeq·h−1·g−1; the relative potency of peptide agonists was VIP > PHI = GHRH > PACAP > secretin, where PHI is peptide histidine isoleucine amide, GHRH is growth hormone-releasing hormone, and PACAP is pituitary adenylate cylase activating peptide. The cloned sVIP-R from shark rectal gland (SRG) is only 61% identical to the human VIP-R1. It maintains a long, extracellular NH2terminus with seven cysteine residues, and has three N-glycosylation sites and eight other residues implicated in VIP binding. Two amino acids considered important for peptide binding in mammals are not present in the shark orthologue. When sVIP-R and the CFTR chloride channel were coexpressed in Xenopus oocytes, VIP increased chloride conductance from 11.3 ± 2 to 127 ± 34 μS. The agonist affinity for activating chloride conductance by the cloned receptor was VIP > GHRH = PHI > PACAP > secretin, a profile mirroring that in the perfused gland. The receptor differs from previously cloned VIP-Rs in having a low affinity for PACAP. Expression of both sVIP-R and CFTR mRNA was detected by quantitative PCR in shark rectal gland, intestine, and brain. These studies characterize a unique G protein-coupled receptor from the shark rectal gland that is the oldest cloned VIP-R.
Collapse
Affiliation(s)
- Marie S Bewley
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Urotensin-II (U-II) is a cyclic 11-amino acid peptide known as a potent mammalian vasoconstrictor. To study some purported intracellular actions of U-II, masked analogs of this peptide, becoming biologically active only upon UV exposure, were developed. Those analogs described as "caged" were derivatized with a photolabile 4,5-dimethoxynitrobenzyl group on the side chain of Lys-8 or Tyr-9. Both caged analogs of U-II showed a major decrease in their affinity towards the UT receptor. Nevertheless, upon UV irradiation, the native and biologically active U-II peptide was recovered. Thus, this work describes the development of new "caged" U-II derivatives and demonstrates that vasoactivity of U-II can be controlled by masking and unmasking two key residues.
Collapse
Affiliation(s)
- Steve Bourgault
- Université du Québec, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS--Institut Armand-Frappier, Institut National de la Recherche Scientifique, 245 boul. Hymus, Pointe-Claire (Montréal), Que. Canada H9R 1G6
| | | | | |
Collapse
|
12
|
Kee F, Ng SSM, Vaudry H, Pang RTK, Lau EHY, Chan SM, Chow BKC. Aspartic acid scanning mutation analysis of a goldfish growth hormone-releasing hormone (GHRH) receptor specific to the GHRHsalmon-like peptide. Gen Comp Endocrinol 2005; 140:41-51. [PMID: 15596070 DOI: 10.1016/j.ygcen.2004.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 08/24/2004] [Accepted: 09/15/2004] [Indexed: 11/22/2022]
Abstract
Growth hormone-releasing hormone (GHRH) plays a pivotal role in the regulation of growth. The study of goldfish GHRH and its receptor is of particular interest as it is so far the only animal model in which two forms of GHRH-like (catfish-like and salmon-like) peptides coexist, and these peptides share only 30-40% of amino acid sequence identities with their mammalian counterparts. For these reasons, we have previously characterized a goldfish GHRH receptor, which is specific for a synthetic carp GHRH-like peptide. In this study, we investigated the structure-function relationships between the receptor and various ligands. Interestingly, among the two endogenous goldfish GHRH-like peptides, only the GHRHsalmon-like peptide was able to stimulate CHO cells transfected with the goldfish GHRH receptor. When the receptor was challenged by GHRHsalmon-like peptide either continuously for 45 min or periodically at 45-min intervals, mild homologous desensitization was observed. To determine whether the negatively charged residues of the receptor are responsible for discriminating GHRHsalmon-like from GHRHcatfish-like, 10 aspartic acid residues residing in the N-terminal ectodomain and the second exoloop were individually mutated to alanine by site-directed mutagenesis. Among these 10 mutants, four of them (D66A, D122A, D190A, and D196A) were defective as indicated by both cAMP assays and extracellular acidification rate measurements. Confocal microscopic studies showed that the D66A and D122A mutants, but not the D190A and D196A mutants, were expressed properly at the plasma membrane. Collectively, these results suggest that aspartic acid residues at positions 66 and 122 are critical for the interaction between the goldfish GHRH receptor and its endogenous ligands.
Collapse
Affiliation(s)
- Francis Kee
- Department of Zoology, University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Langer I, Vertongen P, Perret J, Waelbroeck M, Robberecht P. Lysine 195 and aspartate 196 in the first extracellular loop of the VPAC1 receptor are essential for high affinity binding of agonists but not of antagonists. Neuropharmacology 2003; 44:125-31. [PMID: 12559130 DOI: 10.1016/s0028-3908(02)00233-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role in ligand recognition and receptor activation of two adjacent charged residues (lysine 195 and aspartate 196) in the first extracellular loop of the human VPAC(1) receptor was investigated in stably transfected CHO cells expressing the wild type or point mutated receptors.Replacement of lysine 195 by glutamine or of aspartate 196 by asparagine reduced the agonists' ability to stimulate adenylate cyclase activity; VIP behaved like a partial agonist and a partial agonist behaved as an antagonist. The receptor's capacity to recognize agonists was reduced but antagonists' affinity was unaffected. Both results suggesting that the two charged residues are essential for VPAC(1) receptor activation. On the other hand, the double mutant was less severely affected than single mutants suggesting that hydrogen bonds may partially compensate the loss of charged residues. But the inversion of the residues affected receptor recognition and activation more markedly suggesting that the two charged residues do not interact directly.
Collapse
Affiliation(s)
- I Langer
- Department of Biological Chemistry and Nutrition, Faculty of Medicine, Université Libre de Bruxelles. Bat GE, CP 611, 808 Route de Lennik, B-1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
15
|
López de Maturana R, Donnelly D. The glucagon-like peptide-1 receptor binding site for the N-terminus of GLP-1 requires polarity at Asp198 rather than negative charge. FEBS Lett 2002; 530:244-8. [PMID: 12387900 DOI: 10.1016/s0014-5793(02)03492-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mutation of Asp198 to Asn in the receptor for glucagon-like peptide-1(7-36)amide (GLP-1) had no effect upon GLP-1 affinity whereas substitution with Ala greatly reduced affinity, demonstrating the importance of polarity rather than negative charge at Asp198. However, the Asp198-Ala mutation had less effect upon the affinity of Exendin-4, a peptide agonist that has been shown previously not to require its N-terminus for high affinity. Moreover, the affinity of a truncated GLP-1 analogue lacking the first eight residues was not affected by the Asp198-Ala mutation, demonstrating that Asp198 is required for maintaining the binding site of the N-terminal region of GLP-1.
Collapse
|
16
|
Laburthe M, Couvineau A. Molecular pharmacology and structure of VPAC Receptors for VIP and PACAP. REGULATORY PEPTIDES 2002; 108:165-73. [PMID: 12220741 DOI: 10.1016/s0167-0115(02)00099-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
VIP and PACAP are two prominent neuropeptides which share two common G protein-coupled receptors VPAC1 and VPAC2 while PACAP has an additional specific receptor PAC1. This paper reviews the present knowledge regarding three aspects of VPAC receptors including: (i). receptor specificity towards natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; (ii). receptor signaling; (iii). molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras and structural modeling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Ligands
- Models, Molecular
- Neuropeptides/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Conformation
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Substrate Specificity
- Vasoactive Intestinal Peptide/chemistry
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- M Laburthe
- Neuroendocrinology and Cell Biology, INSERM U41O, Faculté de Médecine Xavier Bichat, 75018, Paris, France.
| | | |
Collapse
|
17
|
Teng BQ, Grider JR, Murthy KS. Identification of a VIP-specific receptor in guinea pig tenia coli. Am J Physiol Gastrointest Liver Physiol 2001; 281:G718-25. [PMID: 11518684 DOI: 10.1152/ajpgi.2001.281.3.g718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues.
Collapse
Affiliation(s)
- B Q Teng
- Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA
| | | | | |
Collapse
|
18
|
Vertongen P, Solano RM, Juarranz MG, Perret J, Waelbroeck M, Robberecht P. Proline residue 280 in the second extracellular loop (EC2) of the VPAC2 receptor is essential for the receptor structure. Peptides 2001; 22:1363-70. [PMID: 11514016 DOI: 10.1016/s0196-9781(01)00476-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inspection of the amino acid sequence of the human VPAC1 and the VPAC2 receptors after alignment of the conserved residues indicates that the second extracellular loop (EC2) is one amino acid shorter in the VPAC1 receptor due to the lack of a proline residue in position 294. We hypothesized that this could be of importance for receptor structure and/or for ligand recognition. Insertion by directed mutagenesis of a proline in that position (<Pro>294 VPAC1) had little consequence on the binding of several agonists but reduced the affinity for the VPAC1 antagonist. Coupling of the <Pro>294 VPAC1 receptor to adenylate cyclase was improved, as demonstrated by an increased affinity for VIP and other agonists, and by a shift of the VPAC1 antagonist to partial agonist behavior. Deletion of the proline 280 (DeltaPro280 VPAC2) in the VPAC2 receptor markedly reduced the apparent affinity for all the agonists tested. Replacement of the proline by a glycine residue had a smaller effect on the ligands affinities. The proline residue in the VPAC2 receptor EC2 is thus essential for the receptor structure, and the EC2 domain is involved in ligand recognition and receptor functionality.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Amino Acid Substitution
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Binding Sites
- Binding, Competitive
- CHO Cells
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cells, Cultured
- Conserved Sequence
- Cricetinae
- Cricetulus
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Helix-Loop-Helix Motifs
- Humans
- Ligands
- Mutagenesis, Site-Directed
- Proline/genetics
- Proline/metabolism
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Alignment
- Structure-Activity Relationship
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- P Vertongen
- Department of Biochemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, Bât G/E, CP 611, 808 route de Lennik, B-1070, Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Lins L, Couvineau A, Rouyer-Fessard C, Nicole P, Maoret JJ, Benhamed M, Brasseur R, Thomas A, Laburthe M. The human VPAC1 receptor: three-dimensional model and mutagenesis of the N-terminal domain. J Biol Chem 2001; 276:10153-60. [PMID: 11124960 DOI: 10.1074/jbc.m009730200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human VPAC(1) receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide belongs to the class II family of G-protein-coupled receptors with seven transmembrane segments. Like for all class II receptors, the extracellular N-terminal domain of the human VPAC(1) receptor plays a predominant role in peptide ligand recognition. To determine the three-dimensional structure of this N-terminal domain (residues 1-144), the Protein Data Bank (PDB) was screened for a homologous protein. A subdomain of yeast lipase B was found to have 27% sequence identity and 50% sequence homology with the N-terminal domain (8) of the VPAC(1) receptor together with a good alignment of the hydrophobic clusters. A model of the N-terminal domain of VPAC(1) receptor was thus constructed by homology. It indicated the presence of a putative signal sequence in the N-terminal extremity. Moreover, residues (Glu(36), Trp(67), Asp(68), Trp(73), and Gly(109)) which were shown to be crucial for VIP binding are gathered around a groove that is essentially negatively charged. New putatively important residues for VIP binding were suggested from the model analysis. Site-directed mutagenesis and stable transfection of mutants in CHO cells indicated that Pro(74), Pro(87), Phe(90), and Trp(110) are indeed important for VIP binding and activation of adenylyl cyclase activation. Combination of molecular modeling and directed mutagenesis provided the first partial three-dimensional structure of a VIP-binding domain, constituted of an electronegative groove with an outspanning tryptophan shell at one end, in the N-terminal extracellular region of the human VPAC(1) receptor.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Amino Acid Sequence
- Animals
- CHO Cells
- Cricetinae
- DNA, Complementary/metabolism
- Databases, Factual
- Enzyme Activation
- Epitopes
- Humans
- Kinetics
- Ligands
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Mutagenesis, Site-Directed
- Mutation
- Phenotype
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Homology, Amino Acid
- Signal Transduction
- Software
- Structure-Activity Relationship
- Transfection
- Tryptophan/metabolism
Collapse
Affiliation(s)
- L Lins
- Unité INSERM U410 de Neuroendocrinologie et Biologie Cellulaire Digestives, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, Paris F-75018, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P, Waelbroeck M. Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J Biol Chem 2001; 276:1084-8. [PMID: 11013258 DOI: 10.1074/jbc.m007696200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We mutated the vasoactive intestinal peptide (VIP) Asp(3) residue and two VPAC(1) receptor second transmembrane helix basic residues (Arg(188) and Lys(195)). VIP had a lower affinity for R188Q, R188L, K195Q, and K195I VPAC(1) receptors than for VPAC(1) receptors. [Asn(3)] VIP and [Gln(3)] VIP had lower affinities than VIP for VPAC(1) receptors but higher affinities for the mutant receptors; the two basic amino acids facilitated the introduction of the negatively charged aspartate inside the transmembrane domain. The resulting interaction was necessary for receptor activation. 1/[Asn(3)] VIP and [Gln(3)] VIP were partial agonists at VPAC(1) receptors; 2/VIP did not fully activate the K195Q, K195I, R188Q, and R188L VPAC(1) receptors; a VIP analogue ([Arg(16)] VIP) was more efficient than VIP at the four mutated receptors; and [Asn(3)] VIP and [Gln(3)] VIP were more efficient than VIP at the R188Q and R188L VPAC(1) receptors; 3/the [Asp(3)] negative charge did not contribute to the recognition of the VIP(1) antagonist, [AcHis(1),D-Phe(2),Lys(15),Arg(16),Leu(27)] VIP ()/growth hormone releasing factor (8-27). This is the first demonstration that, to activate the VPAC(1) receptor, the Asp(3) side chain of VIP must penetrate within the transmembrane domain, in close proximity to two highly conserved basic amino acids from transmembrane 2.
Collapse
Affiliation(s)
- R M Solano
- Laboratoire de Chimie Biologique et de la Nutrition, Faculté de Médecine, Université Libre de Bruxelles, 808 route de Lennik, Building G/E, CP 611, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- V I DeAlmeida
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
22
|
Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A, Martinez J, Brasseur R, Laburthe M. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 2000; 275:24003-12. [PMID: 10801840 DOI: 10.1074/jbc.m002325200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The widespread neuropeptide vasoactive intestinal peptide (VIP) has two receptors VPAC(1) and VPAC(2). Solid-phase syntheses of VIP analogs in which each amino acid has been changed to alanine (Ala scan) or glycine was achieved and each analog was tested for: (i) three-dimensional structure by ab initio molecular modeling; (ii) ability to inhibit (125)I-VIP binding (K(i)) and to stimulate adenylyl cyclase activity (EC(50)) in membranes from cell clones stably expressing human recombinant VPAC(1) or VPAC(2) receptor. The data show that substituting residues at 14 positions out of 28 in VIP resulted in a >10-fold increase of K(i) or EC(50) at the VPAC(1) receptor. Modeling of the three-dimensional structure of native VIP (central alpha-helice from Val(5) to Asn(24) with random coiled N and C terminus) and analogs shows that substitutions of His(1), Val(5), Arg(14), Lys(15), Lys(21), Leu(23), and Ile(26) decreased biological activity without altering the predicted structure, supporting that those residues directly interact with VPAC(1) receptor. The interaction of the analogs with human VPAC(2) receptor is similar to that observed with VPAC(1) receptor, with three remarkable exceptions: substitution of Thr(11) and Asn(28) by alanine increased K(i) for binding to VPAC(2) receptor; substitution of Tyr(22) by alanine increased EC(50) for stimulating adenylyl cyclase activity through interaction with the VPAC(2) receptor. By combining 3 mutations at positions 11, 22, and 28, we developed the [Ala(11,22,28)]VIP analog which constitutes the first highly selective (>1,000-fold) human VPAC(1) receptor agonist derived from VIP ever described.
Collapse
Affiliation(s)
- P Nicole
- Unité INSERM U410 de Neuroendocrinologie et Biologie Cellulaire Digestives, Faculté de Médecine Xavier Bichat, Paris, 75018, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Knudsen SM, Tams JW, Fahrenkrug J. Role of second extracellular loop in the function of human vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide receptor 1 (hVPAC1R). J Mol Neurosci 2000; 14:137-46. [PMID: 10984189 DOI: 10.1385/jmn:14:3:137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2000] [Accepted: 03/26/2000] [Indexed: 11/11/2022]
Abstract
To elucidate the functional role of the second extracellular loop of human vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptor (hVPAC1R), surface expression, ligand binding, and receptor activation were analyzed. Amino acids in the entire second extracellular loop were individually substituted by alanine by site-directed mutagenesis. The mutant and wild-type receptors were transiently expressed in HEK293 cells and purified cell membranes were tested for the ability to bind VIP, while the receptor activity was measured as potency of cAMP production analysed on intact cells. Surface expression of the substituted conserved residues, W286A, I289A, W294A, and W295A, was evidently decreased to 20-30% compared to the wild-type expression. W286A also showed an significantly reduced potency of cAMP production. Substituted residues as F280A, E281A, and G284A showed a significant reduction in the potency of stimulated cAMP production amounting to 8-46-fold, compared to the wild-type with unaffected surface expression and VIP binding. These results indicate that some residues in the second extracellular loop of the human VPAC1R participate in the active mechanism of a ligand-mediated response without being directly involved in the binding of VIP.
Collapse
MESH Headings
- Binding Sites/physiology
- Cells, Cultured
- Cyclic AMP/metabolism
- DNA, Complementary
- Humans
- Iodine Radioisotopes
- Kidney/cytology
- Ligands
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Homology, Amino Acid
- Transfection
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- S M Knudsen
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Abstract
G protein-coupled, seven-transmembrane segment receptors (GPCRs or 7TM receptors), with more than 1000 different members, comprise the largest superfamily of proteins in the body. Since the cloning of the first receptors more than a decade ago, extensive experimental work has uncovered multiple aspects of their function and challenged many traditional paradigms. However, it is only recently that we are beginning to gain insight into some of the most fundamental questions in the molecular function of this class of receptors. How can, for example, so many chemically diverse hormones, neurotransmitters, and other signaling molecules activate receptors believed to share a similar overall tertiary structure? What is the nature of the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways? The goal of the present review is to specifically address these questions as well as to depict the current awareness about GPCR structure-function relationships in general.
Collapse
Affiliation(s)
- U Gether
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Lutz EM, MacKenzie CJ, Johnson M, West K, Morrow JA, Harmar AJ, Mitchell R. Domains determining agonist selectivity in chimaeric VIP2 (VPAC2)/PACAP (PAC1) receptors. Br J Pharmacol 1999; 128:934-40. [PMID: 10556928 PMCID: PMC1571712 DOI: 10.1038/sj.bjp.0702872] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Revised: 07/19/1999] [Accepted: 08/06/1999] [Indexed: 11/08/2022] Open
Abstract
1 The VPAC2 and PAC1 receptors are closely related members of the Group II G protein-coupled receptor family. At the VPAC2 receptor, VIP is equipotent to PACAP-38 in stimulating cyclic AMP production, whereas at the PAC1 receptor PACAP-38 is many fold more potent than VIP. In this study, domains which confer this selectivity were investigated by constructing four chimaeric receptors in which segments of the VPAC2 receptor were exchanged with the corresponding segment from the PAC1 receptor. 2 When expressed in COS 7 cells all the chimaeric receptors bound the common ligand [125I]PACAP-27 and produced cyclic AMP in response to agonists. 3 Relative selectivity for agonists was determined primarily by the amino terminal extracellular domain of the PAC1 receptor and the VPAC2 receptor. The interchange of other domains had little effect on the potency of PACAP-38 or PACAP-27. 4 For chimaeric constructs with a PAC1 receptor amino terminal domain, the substitution of increasing portions of the VPAC2 receptor decreased the potency of VIP yet increased that of helodermin. 5 This suggests that the interaction of VIP/helodermin but not PACAP with the PAC1 receptor may be influenced (and differentially so) by additional receptor domains.
Collapse
Affiliation(s)
- E M Lutz
- MRC Brain Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract but also found in high density in the mammalian brain. The C-terminal sulphated octapeptide fragment of cholecystokinin (CCK8) constitutes one of the major neuropeptides in the brain; CCK8 has been shown to be involved in numerous physiological functions such as feeding behavior, central respiratory control and cardiovascular tonus, vigilance states, memory processes, nociception, emotional and motivational responses. CCK8 interacts with nanomolar affinities with two different receptors designated CCK-A and CCK-B. The functional role of CCK and its binding sites in the brain and periphery has been investigated thanks to the development of potent and selective CCK receptor antagonists and agonists. In this review, the strategies followed to design these probes, and their use to study the anatomy of CCK pathways, the neurochemical and pharmacological properties of this peptide and the clinical perspectives offered by manipulation of the CCK system will be reported. The physiological and pathological implication of CCK-B receptor will be confirmed in CCK-B receptor deficient mice obtained by gene targeting (Nagata el al., 1996. Proc. Natl. Acad. Sci. USA 93, 11825-11830). Moreover, CCK receptor gene structure, deletion and mutagenesis experiments, and signal transduction mechanisms will be discussed.
Collapse
Affiliation(s)
- F Noble
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | |
Collapse
|
27
|
Alexandre D, Anouar Y, Jegou S, Fournier A, Vaudry H. A cloned frog vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide receptor exhibits pharmacological and tissue distribution characteristics of both VPAC1 and VPAC2 receptors in mammals. Endocrinology 1999; 140:1285-93. [PMID: 10067855 DOI: 10.1210/endo.140.3.6576] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three receptor subtypes for the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been identified in mammals: the PAC1 receptor (PAC1-R) which is selectively activated by PACAP, and two VPAC receptors (VPAC1-R and VPAC2-R), which are equally stimulated by PACAP and VIP. The structures of PACAP and VIP have been well conserved during evolution, but little is known about VIP/PACAP receptors in nonmammalian species. An amphibian VIP/PACAP receptor complementary DNA (cDNA) has been cloned and characterized from a frog (Rana ridibunda) pituitary cDNA library. The predicted protein contains seven putative transmembrane domains and exhibits the highest sequence identity (65%) with the human VPAC1-R. The cloned cDNA was transiently expressed in LLC-PK1 cells, and its pharmacological profile was determined in comparison with the human VPAC1-R. Both PACAP and VIP stimulated cAMP accumulation through the cloned receptor with an EC50 of about 30 nM. In contrast, secretin, at concentrations that stimulate the human VPAC1-R, had no effect on cAMP production. RT-PCR analysis revealed the widespread distribution of this frog VIP/PACAP receptor in peripheral tissues. In situ hybridization histochemistry using a complementary RNA probe showed that the receptor gene is highly expressed in several hypothalamic and thalamic nuclei and to a lesser extent in the pallium and striatum. In the pituitary, the highest messenger RNA levels were detected in the distal lobe. Taken together, these data show that the cloned frog receptor shares several common features with both the VPAC1-R and VPAC2-R of mammals; the frog receptor exhibits the highest sequence identity with mammalian VPAC1-R, but the lack of effect of secretin and the brain distribution of the receptor are reminiscent of the characteristics of the mammalian VPAC2-R. The sequence of the frog receptor should thus prove useful to decipher the structure-activity relationships of the VIP/PACAP receptor family.
Collapse
MESH Headings
- Adenylyl Cyclases/drug effects
- Amino Acid Sequence
- Animals
- Brain Chemistry/physiology
- Cloning, Molecular
- Humans
- Mammals/physiology
- Molecular Sequence Data
- Neuropeptides/pharmacology
- Organ Specificity
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Pituitary Gland/chemistry
- Rana ridibunda/physiology
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Vasoactive Intestinal Peptide/analysis
- Receptors, Vasoactive Intestinal Peptide/drug effects
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Homology, Amino Acid
- Species Specificity
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- D Alexandre
- European Institute for Peptide Research 23, Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U-413, Centre National de la Recherche Scientifique, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
28
|
Gaudin P, Couvineau A, Rouyer-Fessard C, Maoret JJ, Laburthe M. The human vasoactive intestinal Peptide/Pituitary adenylate cyclase activating peptide receptor 1 (VPAC1): constitutive activation by mutations at threonine 343. Biochem Biophys Res Commun 1999; 254:15-20. [PMID: 9920725 DOI: 10.1006/bbrc.1998.9883] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human vasoactive intestinal peptide/pituitary adenylate cyclase activating peptide receptor1 (VPAC1) belongs to the class II subfamily of G protein-coupled receptors. Specific changes by mutagenesis of a strictly conserved threonine (H) into lysine (K), proline (P) or alanine (A) at position 343 of the human VPAC1 receptor resulted in its constitutive activation with respect to cAMP production. Transfection of these mutants into Cos cells evoked a 3.5 fold-increase in the cAMP level as compared to cells transfected with the wild-type receptor. In contrast other mutants such as T343C, T343E or T343F were not constitutively activated. They were otherwise expressed at the cell surface of transfected nonpermeabilized cells. Double mutants were then constructed in which the T343K mutation was associated with a point mutation in the the N-terminal extracellular domain that totally abolished VIP binding or VIP-stimulated cAMP production i.e. E36A or D68A. The corresponding double mutants T343K-E36A and T343K-D68A were no longer constitutively activated. A control double mutant (T343K-D132A) with an unaltered dissociation constant for VIP and cAMP response to VIP, was still constitutively activated. Our findings demonstrate that constitutive activation of the VPAC1 receptor can be evoked by specific mutations of T343 at the junction of the second intracellular loop and fourth transmembrane segment. This constitutive activation appears to require the functional integrity of the N-terminal extracellular VIP binding domain.
Collapse
Affiliation(s)
- P Gaudin
- Faculté de Médecine Xavier Bichat, Unité de Neuroendocrinologie et Biologie Cellulaire Digestives, INSERM U410, Paris, Cedex 18, 75870, France
| | | | | | | | | |
Collapse
|
29
|
Nicole P, Du K, Couvineau A, Laburthe M. Site-directed mutagenesis of human VIP1 versus VIP2 receptors. Ann N Y Acad Sci 1998; 865:378-81. [PMID: 9928033 DOI: 10.1111/j.1749-6632.1998.tb11199.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P Nicole
- Laboratoire de Neuroendocrinologie et Biologie Cellulaire Digestives, Institut National de la Santé et de la Recherche Médicale, INSERM U410, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|
30
|
Du K, Nicole P, Couvineau A, Laburthe M. Construction of chimeras between human VIP1 and secretin receptors: identification of receptor domains involved in selectivity towards VIP, secretin, and PACAP. Ann N Y Acad Sci 1998; 865:386-9. [PMID: 9928035 DOI: 10.1111/j.1749-6632.1998.tb11201.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
MESH Headings
- Animals
- Binding, Competitive
- COS Cells
- Cyclic AMP/metabolism
- Humans
- Models, Molecular
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Structure, Secondary
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/biosynthesis
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/biosynthesis
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Secretin/metabolism
- Secretin/pharmacology
- Transfection
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- K Du
- Laboratoire de Neuroendocrinologie et Biologie Cellulaire Digestives, Institut National de la Santé et de la Recherche Médicale, INSERM U410, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|
31
|
Teng B, Murthy KS, Kuemmerle JF, Grider JR, Makhlouf GM. Selective expression of vasoactive intestinal peptide (VIP)2/pituitary adenylate cyclase-activating polypeptide (PACAP)3 receptors in rabbit and guinea pig gastric and tenia coli smooth muscle cells. REGULATORY PEPTIDES 1998; 77:127-34. [PMID: 9809806 DOI: 10.1016/s0167-0115(98)00112-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In both functional and radioligand binding studies of gastric smooth muscle from rabbit and guinea pig, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) show equal potency indicating that the receptor type is either a VIP1/PACAP2 or a VIP2/PACAP3 receptor. We have characterized the VIP/PACAP receptor expressed in freshly dispersed and cultured gastric and tenia coli smooth muscle cells of rabbit and guinea pig by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern analysis, and cloning of the first extracellular domain. Specific primers based on cDNA sequences for rat VIP1/PACAP2, VIP2/PACAP3 and PACAP1 receptors were designed spanning the first extracellular domain. A 275 base pair product corresponding to VIP2/PACAP3 receptor was amplified by RT-PCR in muscle cells from both species. No RT-PCR product was obtained with primers for VIP1/PACAP2 and PACAP1 receptors. The deduced amino acid sequences showed 90% similarity in rabbit and 77% in guinea pig to the sequence in rat. The location of the aspartate, tryptophan and glycine residues and all six N-terminal cysteines required for VIP binding were conserved. The sequence in guinea pig tenia coli differed from that in guinea pig stomach by two amino acid residues, Phe40 and Phe41. Northern analysis revealed a single 3.9 kilobase (kb) mRNA corresponding to VIP2/PACAP3 receptors in rabbit and a 2.1 kb mRNA in guinea pig gastric and tenia coli muscle cells. We conclude that only VIP2/PACAP3 receptors are expressed in smooth muscle cells of rabbit and guinea pig. The two amino acid difference in the sequence obtained from guinea pig tenia coli may reflect the distinct binding and functional properties of this tissue.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Southern
- Cells, Cultured
- Cloning, Molecular
- Colon/metabolism
- Gastric Mucosa/metabolism
- Gene Expression Regulation/genetics
- Guinea Pigs
- Molecular Sequence Data
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/genetics
- Rabbits
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Hormone/genetics
- Receptors, Vasoactive Intestinal Peptide/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- B Teng
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0711, USA
| | | | | | | | | |
Collapse
|
32
|
DeAlmeida VI, Mayo KE. Identification of binding domains of the growth hormone-releasing hormone receptor by analysis of mutant and chimeric receptor proteins. Mol Endocrinol 1998; 12:750-65. [PMID: 9605937 DOI: 10.1210/mend.12.5.0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic peptide GH-releasing hormone (GHRH) stimulates the release of GH from the pituitary through binding and activation of the GHRH receptor, which belongs to the family of G protein-coupled receptors. The objective of this study was to identify regions of the receptor critical for interaction with the ligand by expressing and analyzing truncated and chimeric epitope-tagged GHRH receptors. Two truncated receptors, GHRHdeltaN, in which part of the N-terminal domain between the putative signal sequence and the first transmembrane domain was deleted, and GHRHdeltaC, which was truncated downstream of the first intracellular loop, were generated. Both the receptors were deficient in ligand binding, indicating that neither the N-terminal extracellular domain (N terminus) nor the membrane-spanning domains with the associated extracellular loops (C terminus) are alone sufficient for interaction with GHRH. In subsequent studies, chimeric proteins between the receptors for GHRH and vasoactive intestinal peptide (VIP) or secretin were generated, using the predicted start of the first transmembrane domain as the junction for the exchange of the N terminus between receptors. The chimeras having the N terminus of the GHRH receptor and the C terminus of either the VIP or secretin receptor (GNVC and GNSC) did not bind GHRH or activate adenylate cyclase after GHRH treatment. The reciprocal chimeras having the N terminus of either the VIP or secretin receptors and the C terminus of the GHRH receptor (VNGC and SNGC) bound GHRH and stimulated cAMP accumulation after GHRH treatment. These results suggest that although the N-terminal extracellular domain is essential for ligand binding, the transmembrane domains and associated extracellular loop regions of the GHRH receptor provide critical information necessary for specific interaction with GHRH.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Binding Sites/genetics
- Epitopes/genetics
- HeLa Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Binding/genetics
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/analysis
- Receptors, Gastrointestinal Hormone/biosynthesis
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Neuropeptide/analysis
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/analysis
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/analysis
- Receptors, Vasoactive Intestinal Peptide/biosynthesis
- Receptors, Vasoactive Intestinal Peptide/genetics
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Secretin/metabolism
Collapse
Affiliation(s)
- V I DeAlmeida
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
33
|
Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol 1998; 7:81-96. [PMID: 9583747 DOI: 10.1111/j.1600-0625.1998.tb00307.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between components of the nervous system and multiple target cells in the cutaneous immune system has been receiving increasing attention. It has been observed that certain skin diseases such as psoriasis and atopic dermatitis have a neurogenic component. Neuropeptides released by sensory nerves that innervate the skin and often contact epidermal and dermal cells can directly modulate functions of keratinocytes, Langerhans cells (LC), mast cells, dermal microvascular endothelial cells and infiltrating immune cells. Among these neuropeptides the tachykinins substance P (SP) and neurokinin A (NKA), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and somatostatin (SOM) have been reported to effectively modulate skin and immune cell functions such as cell proliferation, cytokine production or antigen presentation under physiological or pathophysiological conditions. Expression and regulation of their corresponding receptors that are expressed on a variety of skin cells as well as the presence of neuropeptide-specific peptidases such as neutral endopeptidase (NEP) or angiotensin-converting enzyme (ACE) determine the final biological response mediated by these peptides on the target cell or tissue. Likewise, skin cells like keratinocytes or fibroblasts are a source for neurotrophins such as nerve growth factor that are required not only for survival and regeneration of sensory neurons but also to control responsiveness of these neurons to external stimuli. Therefore, neuropeptides, neuropeptide receptors, neuropeptide-degrading enzymes and neurotrophins participate in a complex, interdependent network of mediators that modulate skin inflammation, wound healing and the skin immune system. This review will focus on recent studies demonstrating the role of tachykinins, CGRP, SOM and VIP and their receptors and neuropeptide-degrading enzymes in mediating neurogenic inflammation in the skin.
Collapse
Affiliation(s)
- T Scholzen
- Department of Dermatology, Emory University, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Di Paolo E, De Neef P, Moguilevsky N, Petry H, Bollen A, Waelbroeck M, Robberecht P. Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett 1998; 424:207-10. [PMID: 9539152 DOI: 10.1016/s0014-5793(98)00175-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secretin amino-terminal residues are essential for high affinity binding to its cognate receptor and for its biological activity. Mutation of the [Asp3] residue of secretin to [Asn3] decreased the ligand's affinity for the rat wild-type receptor 100-300-fold. Receptor mutations in the transmembrane 2 domain and the beginning of the first extracellular loop allowed the identification of three residues involved in recognition of the [Asp3] residue: D174, K173 and R166. Mutation of K173 and D174 not only reduced the secretin and [Asn3]secretin affinities, but also changed the receptor's selectivity as judged by a decreased secretin and [Asn3]secretin potency ratio. The most striking effect was observed when R166 was mutated to Q, D or L. This led to receptors with a very low affinity for secretin but an up to 10-fold higher affinity than the wild-type receptor for [Asn3]secretin. This suggested that R166, highly conserved in that subgroup of receptor, is a major determinant for the recognition of the [Asp3] of the ligand.
Collapse
Affiliation(s)
- E Di Paolo
- Department of Biochemistry and Nutrition, Faculty of Medicine, Nivelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Clark JA, Bonner TI, Kim AS, Usdin TB. Multiple regions of ligand discrimination revealed by analysis of chimeric parathyroid hormone 2 (PTH2) and PTH/PTH-related peptide (PTHrP) receptors. Mol Endocrinol 1998; 12:193-206. [PMID: 9482662 DOI: 10.1210/mend.12.2.0063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PTH and PTH-related peptide (PTHrP) bind to the PTH/PTHrP receptor and stimulate cAMP accumulation with similar efficacy. Only PTH activates the PTH2 receptor. To examine the structural basis for this selectivity, we analyzed receptor chimeras in which the amino terminus and third extracellular domains of the two receptors were interchanged. All chimeric receptors bound radiolabeled PTH with high affinity. Transfer of the PTH2 receptor amino terminus to the PTH/PTHrP receptor eliminated high-affinity PTHrP binding and significantly decreased activation by PTHrP. A PTH/PTHrP receptor N terminus modified by deletion of the nonhomologous E2 domain transferred weak PTHrP interaction to the PTH2 receptor. Introduction of the PTH2 receptor third extracellular loop into the PTH/PTHrP receptor increased the EC50 for PTH and PTHrP, while preserving high-affinity PTH binding and eliminating high-affinity PTHrP binding. Similarly, transfer of the PTH/PTHrP receptor third extracellular loop preserved high-affinity PTH binding by the PTH2 receptor but decreased its activation. Return of Gln440 and Arg394, corresponding residues in the PTH/PTHrP and PTH2 receptor third extracellular loops, to the parent residue restored function of these receptors. Simultaneous interchange of wild-type amino termini and third extracellular loops eliminated agonist activation but not binding for both receptors. Function was restored by elimination of the E2 domain in the receptor with a PTH/PTHrP receptor N terminus and return of Gln440/Arg394 to the parent sequence in both receptors. These data suggest that the amino terminus and third extracellular loop of the PTH2 and PTH/PTHrP receptors interact similarly with PTH, and that both domains contribute to differential interaction with PTHrP.
Collapse
Affiliation(s)
- J A Clark
- Section on Genetics, National Institute of Mental Health, Bethesda, Maryland 20892-4090, USA.
| | | | | | | |
Collapse
|