1
|
Kadooka C, Tanaka Y, Kishida R, Hira D, Oka T. Discovery of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in Aspergillus fumigatus mycelium. mSphere 2024; 9:e0010024. [PMID: 38651868 PMCID: PMC11237753 DOI: 10.1128/msphere.00100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The cellular surface of the pathogenic filamentous fungus Aspergillus fumigatus is enveloped in a mannose layer, featuring well-established fungal-type galactomannan and O-mannose-type galactomannan. This study reports the discovery of cell wall component in A. fumigatus mycelium, which resembles N-glycan outer chains found in yeast. The glycosyltransferases involved in its biosynthesis in A. fumigatus were identified, with a focus on two key α-(1→2)-mannosyltransferases, Mnn2 and Mnn5, and two α-(1→6)-mannosyltransferases, Mnn9 and Van1. In vitro examination revealed the roles of recombinant Mnn2 and Mnn5 in transferring α-(1→2)-mannosyl residues. Proton nuclear magnetic resonance (1H-NMR) analysis of cell wall extracts from the ∆mnn2∆mnn5 strain indicated the existence of an α-(1→6)-linked mannan backbone in the A. fumigatus mycelium, with Mnn2 and Mnn5 adding α-(1→2)-mannosyl residues to this backbone. The α-(1→6)-linked mannan backbone was absent in strains where mnn9 or van1 was disrupted in the parental ∆mnn2∆mnn5 strain in A. fumigatus. Mnn9 and Van1 functioned as α-(1→6)-linked mannan polymerases in heterodimers when co-expressed in Escherichia coli, indicating their crucial role in biosynthesizing the α-(1→6)-linked mannan backbone. Disruptions of these mannosyltransferases did not affect fungal-type galactomannan biosynthesis. This study provides insights into the complexity of fungal cell wall architecture and a better understanding of mannan biosynthesis in A. fumigatus. IMPORTANCE This study unravels the complexities of mannan biosynthesis in A. fumigatus, a key area for antifungal drug discovery. It reveals the presence of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in A. fumigatus mycelium, offering fresh insights into the fungal cell wall's design. Key enzymes, Mnn2, Mnn5, Mnn9, and Van1, are instrumental in this process, with Mnn2 and Mnn5 adding specific mannose residues and Mnn9 and Van1 assembling the α-(1→6)-linked mannan structures. Although fungal-type galactomannan's presence in the cell wall is known, the existence of an α-(1→6)-linked mannan adds a new dimension to our understanding. This intricate web of mannan biosynthesis opens avenues for further exploration and enhances our understanding of fungal cell wall dynamics, paving the way for targeted drug development.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Rintaro Kishida
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
2
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
3
|
Dean N, Jones R, DaSilva J, Chionchio G, Ng H. The Mnn10/Anp1-dependent N-linked outer chain glycan is dispensable for Candida albicans cell wall integrity. Genetics 2022; 221:6554200. [PMID: 35333306 PMCID: PMC9071539 DOI: 10.1093/genetics/iyac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans cell wall glycoproteins, and in particular their mannose-rich glycans, are important for maintaining cellular integrity as well as host recognition, adhesion, and immunomodulation. The asparagine (N)-linked mannose outer chain of these glycoproteins is produced by Golgi mannosyltransferases (MTases). The outer chain is composed of a linear backbone of ∼50 α1,6-linked mannoses, which acts as a scaffold for addition of ∼150 or more mannoses in other linkages. Here, we describe the characterization of C. albicans OCH1, MNN9, VAN1, ANP1, MNN10, and MNN11, which encode the conserved Golgi MTases that sequentially catalyze the α1,6 mannose outer chain backbone. Candida albicans och1Δ/Δ, mnn9Δ/Δ, and van1Δ/Δ mutants block the earliest steps of backbone synthesis and like their Saccharomyces cerevisiae counterparts, have severe cell wall and growth phenotypes. Unexpectedly, and in stark contrast to S. cerevisiae, loss of Anp1, Mnn10, or Mnn11, which together synthesize most of the backbone, have no obvious deleterious phenotypes. These mutants were unaffected in cell morphology, growth, drug sensitivities, hyphal formation, and macrophage recognition. Analyses of secreted glycosylation reporters demonstrated that anp1Δ/Δ, mnn10Δ/Δ, and mnn11Δ/Δ strains accumulate glycoproteins with severely truncated N-glycan chains. This hypo-mannosylation did not elicit increased chitin deposition in the cell wall, which in other yeast and fungi is a key compensatory response to cell wall integrity breaches. Thus, C. albicans has evolved an alternate mechanism to adapt to cell wall weakness when N-linked mannan levels are reduced.
Collapse
Affiliation(s)
- Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Corresponding author: Department of Biochemistry and Cell Biology, Life Sciences Bldg Room 310, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | - Rachel Jones
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Gregory Chionchio
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Henry Ng
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Ohashi T, Tanaka T, Tanaka N, Takegawa K. SpMnn9p and SpAnp1p form a protein complex involved in mannan synthesis in the fission yeast Schizosaccharomyces pombe. J Biosci Bioeng 2020; 130:335-340. [DOI: 10.1016/j.jbiosc.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
|
5
|
Tanabe Y, Arai S, Wada I, Adachi H, Kamakura T, Yoda K, Noda Y. Svp26 facilitates ER exit of mannosyltransferases Mnt2 and Mnt3 in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2019; 65:180-187. [PMID: 30700649 DOI: 10.2323/jgam.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
After being translocated into the ER lumen, membrane and secretory proteins are transported from the ER to the early Golgi by COPII vesicles. Incorporation of these cargo proteins into COPII vesicles are facilitated either by direct interaction of cargo proteins with COPII coat proteins or by ER exit adaptor proteins which mediate the interaction of cargo proteins with COPII coat proteins. Svp26 is one of the ER exit adaptor proteins in yeast Saccharomyces cerevisiae. ER exit of several type II membrane proteins have been reported to be facilitated by Svp26. We demonstrate here that efficient incorporation of Mnt2 and Mnt3 into COPII vesicles is also dependent on the function of Svp26. Mnt2 and Mnt3 are Golgi-localized α-1,3-mannosyltransferases with type II membrane topology involved in protein O-glycosylation. Immunoisolation of the yeast Golgi subcompartments quantitatively showed that Mnt2 and Mnt3 are more abundant in the early Golgi fraction than in the late Golgi fraction. Subcellular fractionation and fluorescence microscopy showed that deletion of the SVP26 gene results in the accumulation of Mnt2 and Mnt3 in ER. Using an in vitro COPII vesicle formation assay, we further demonstrate that Svp26 facilitates incorporation of Mnt2 and Mnt3 into COPII vesicles. Finally, we showed that Mnt2 and Mnt3 were co-immunoprecipitated with Svp26 from digitonin-solubilized membranes. These results indicate that Svp26 functions as an ER exit adaptor protein of Mnt2 and Mnt3.
Collapse
Affiliation(s)
- Yuuki Tanabe
- Department of Biotechnology, The University of Tokyo.,Department of Applied Biological Science, Tokyo University of Science
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Hiroyuki Adachi
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Takashi Kamakura
- Department of Applied Biological Science, Tokyo University of Science
| | - Koji Yoda
- Department of Biotechnology, The University of Tokyo
| | - Yoichi Noda
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
6
|
Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol 2019; 128:20-28. [PMID: 30904668 DOI: 10.1016/j.fgb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Josef Voglmeir
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
7
|
Noda Y, Arai S, Wada I, Yoda K. Both Svp26 and Mnn6 are required for the efficient ER exit of Mnn4 in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2019; 65:215-224. [PMID: 30842360 DOI: 10.2323/jgam.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Incorporation of membrane and secretory proteins into COPII vesicles are facilitated either by the direct interaction of cargo proteins with COPII coat proteins, or by ER exit adaptor proteins which mediate the interaction of cargo proteins with COPII coat proteins. Svp26 is one of the ER exit adaptor proteins in the yeast Saccharomyces cerevisiae. The ER exit of several type II membrane proteins have been reported to be facilitated by Svp26. We demonstrate here that the efficient incorporation of Mnn4, a type II membrane protein required for mannosyl phosphate transfer to glycoprotein-linked oligosaccharides, into COPII vesicles is also dependent on the function of Svp26. We show that Mnn4 is localized to the Golgi. In addition to Mnn4, Mnn6 is known to be also required for the transfer of mannosyl phosphate to the glycans. We show, by indirect immunofluorescence, that Mnn6 localizes to the ER. As in the case with Svp26, deletion of the MNN6 gene results in the accumulation of Mnn4 in ER. In vitro COPII vesicle budding assays show that Svp26 and Mnn6 facilitate the incorporation of Mnn4 into COPII vesicles. In contrast to Svp26, which is itself efficiently captured into the COPII vesicles, Mnn6 was not incorporated into the COPII vesicles. Mnn4 and Mnn6 have the DXD motif which is often found in the many glycosyltransferases and functions to coordinate a divalent cation essential for the reaction. Alcian blue dye binding assay shows that substitution of the first D in this motif present in Mnn4 by A impairs the Mnn4 function. In contrast, amino acid substitutions in DXD motifs present in Mnn6 did not affect the function of Mnn6. These results suggest that Mnn4 may be directly involved in the mannosyl phosphate transfer reaction.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine
| | - Koji Yoda
- Department of Biotechnology, The University of Tokyo
| |
Collapse
|
8
|
Molecular Mechanisms of the Localization of Membrane Proteins in the Yeast Golgi Compartments. Biosci Biotechnol Biochem 2014; 77:435-45. [DOI: 10.1271/bbb.120982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Noda Y, Hara T, Ishii M, Yoda K. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER. Biol Open 2014; 3:209-24. [PMID: 24585773 PMCID: PMC4001239 DOI: 10.1242/bio.20146312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
10
|
Okada H, Ohnuki S, Roncero C, Konopka JB, Ohya Y. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Mol Biol Cell 2013; 25:222-33. [PMID: 24258022 PMCID: PMC3890343 DOI: 10.1091/mbc.e13-07-0396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To better define how cell wall structure affects morphogenesis, the morphology of yeast cells was analyzed quantitatively after treatment with the three drugs that inhibit different aspects of cell wall synthesis. These drugs induced both similar effects, including broader necks and increased morphological variation, and distinct effects. The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, 37007 Salamanca, Spain Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | | | | | | | | |
Collapse
|
11
|
Hall RA, Gow NAR. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol 2013; 90:1147-61. [PMID: 24125554 PMCID: PMC4112839 DOI: 10.1111/mmi.12426] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
Abstract
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.
Collapse
Affiliation(s)
- Rebecca A Hall
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Aberdeen, AB252ZD, UK
| | | |
Collapse
|
12
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
13
|
Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:491-510. [DOI: 10.1111/j.1567-1364.2012.00810.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | - Zihe Liu
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Dina Petranovic
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| |
Collapse
|
14
|
Matsuzawa T, Ohashi T, Nakase M, Yoritsune KI, Takegawa K. Galactose-Specific Recognition System in the Fission Yeast Schizosaccharomyces pombe. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tomohiko Matsuzawa
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takao Ohashi
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Mai Nakase
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Ken-ichi Yoritsune
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
15
|
Noda Y, Yoda K. Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae. J Biol Chem 2010; 285:15420-15429. [PMID: 20236934 DOI: 10.1074/jbc.m109.086272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Svp26 is a polytopic integral membrane protein found in the ER and early Golgi compartment. In the Deltasvp26 cell, the Golgi mannosyltransferase Ktr3 remains in the ER. Here, we report that two other Golgi mannosyltransferases, Mnn2 and Mnn5 are also mislocalized and found in the ER in the absence of Svp26 and that localization of other mannosyltransferases including Mnn1 are not affected. Mnn2 and Mnn5 bind to Svp26 in vivo as Ktr3 does. Using an in vitro budding assay, the incorporation of Ktr3 and Mnn2 in the COPII vesicles is greatly stimulated by the presence of Svp26. As Svp26 itself is an efficient cargo, Svp26 is likely to support selective incorporation of a set of mannosyltransferases into COPII vesicles by working as their adaptor protein. The domain switching between Svp26-dependent Mnn2 or Ktr3 and Svp26-independent Mnn1 suggests that the lumenal domain of mannosyltransferases, but not the cytoplasmic or transmembrane domain, is responsible for recognition by Svp26.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Koji Yoda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Expression and purification of recombinant M-Pol I from Saccharomyces cerevisiae with α-1,6 mannosylpolymerase activity. Protein Expr Purif 2009; 66:1-6. [DOI: 10.1016/j.pep.2009.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/17/2022]
|
17
|
Abstract
Histone acetylation levels are regulated through the opposing activities of histone acetyltransferases (HATs) and deacetylases (HDACs). While much is known about gene-specific control of histone acetylation, little is understood about how total or cellular levels of histone acetylation are regulated. To identify regulators of cellular levels of histone acetylation, we developed an immunofluorescence-based approach to screen the single-gene deletion library of Saccharomyces cerevisiae for strains with significant reductions in cellular histone acetylation levels. Of the 4848 mutants screened, we identified 63 strains with considerable cellular hypoacetylation of N-terminal lysines in histones H3 and H4. The cellular hypoacetylation was validated for subsets of the identified strains through secondary screens including mass spectrometric analysis of individual lysines and chromatin immunoprecipitation of specific genomic loci. Among the identified mutants were several members of the Ccr4-Not complex, V-type ATPases, and vacuolar protein-sorting complexes as well as genes with unknown functions. We show that Gcn5, a major HAT in yeast, has diminished histone acetyltransferase activity in particular mutants, providing a plausible explanation for reduction of cellular acetylation levels in vivo. Our findings have revealed unexpected and novel links between histone acetylation, Gcn5 HAT activity, and diverse processes such as transcription, cellular ion homeostasis, and protein transport.
Collapse
|
18
|
Protchenko O, Rodriguez-Suarez R, Androphy R, Bussey H, Philpott CC. A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum. J Biol Chem 2006; 281:21445-21457. [PMID: 16717099 DOI: 10.1074/jbc.m512812200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Candida albicans and Saccharomyces cerevisiae express very similar systems of iron uptake, these species differ in their capacity to use heme as a nutritional iron source. Whereas C. albicans efficiently takes up heme, S. cerevisiae grows poorly on media containing heme as the sole source of iron. We identified a gene from C. albicans that would enhance heme uptake when expressed in S. cerevisiae. Overexpression of CaFLC1 (for flavin carrier 1) stimulated the growth of S. cerevisiae on media containing heme iron. In C. albicans, deletion of both alleles of CaFLC1 resulted in a decrease in heme uptake activity, whereas overexpression of CaFLC1 resulted in an increase in heme uptake. The S. cerevisiae genome contains three genes with homology to CaFLC1, and two of these, termed FLC1 and FLC2, also stimulated growth on heme when overexpressed in S. cerevisiae. The S. cerevisiae Flc proteins were detected in the endoplasmic reticulum and the FLC genes encoded an essential function, as strains deleted for either FLC1 or FLC2 were viable, but deletion of both FLC1 and FLC2 was synthetically lethal. FLC gene deletion resulted in pleiotropic phenotypes related to defects in cell wall integrity. High copy suppressors of this synthetic lethality included three mannosyltransferases, VAN1, KTR4, and HOC1. FLC deletion strains exhibited loss of cell wall mannose phosphates, defects in cell wall assembly, and delayed maturation of carboxypeptidase Y. Permeabilized cells lacking FLC proteins exhibited dramatic loss of FAD import activity. We propose that the FLC genes are required for import of FAD into the lumen of the endoplasmic reticulum, where it is required for disulfide bond formation.
Collapse
Affiliation(s)
- Olga Protchenko
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Rachel Androphy
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Howard Bussey
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Caroline C Philpott
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
19
|
Yoda K, Noda Y. Vesicular transport and the Golgi apparatus in yeast. J Biosci Bioeng 2005; 91:1-11. [PMID: 16232937 DOI: 10.1263/jbb.91.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Accepted: 11/21/2000] [Indexed: 01/26/2023]
Abstract
Eukaryotic cells have developed a complex intracellular membrane system to divide the cell into various compartments where specific biochemical reactions are efficiently conducted locally. They also have developed systems to deliver appropriate materials to each specific compartment. Vesicular transport is a delivery system that also links most of the main organelles in the cell. The Golgi apparatus occupies the central position of the traffic between the endoplasmic reticulum and the endosome/vacuole/plasma membrane by maturating and sorting delivery of materials. Every important feature of vesicular transport has been identified by studying the Golgi apparatus, and the unicellular microorganism Saccharomyces cerevisiae has been an extremely excellent material for this study. Cycles of production and consumption of the transport vesicles by sorting the cargo, budding from the donor, tethering, docking and fusion to the target can now be explained to a large extent at the molecular level. The functional and structural aspects of the Golgi have also been well studied in the last decade.
Collapse
Affiliation(s)
- K Yoda
- Department of Biotechnology, University of Tokyo, Yayoi, Tokyo 113-8657, Japan.
| | | |
Collapse
|
20
|
Abe M, Noda Y, Adachi H, Yoda K. Localization of GDP-mannose transporter in the Golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer. J Cell Sci 2004; 117:5687-96. [PMID: 15494368 DOI: 10.1242/jcs.01491] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae GDP-mannose transporter (GMT) encoded by the essential gene VRG4/VIG4 is a member of the nucleotide-sugar transporter family in the Golgi apparatus. We examined GMT in the secretory mutant cells to investigate the mechanism of its localization in the Golgi. At the nonpermissive temperature, most GMT was found in the endoplasmic reticulum of sec23ts cells, which have defective COPII, and in the vacuole of sec21ts cells, which have defective COPI. The C-terminal hydrophilic peptide of GMT that is exposed to the cytosol binds to Ret2p, a subunit of the COPI coat. Mutant peptide derivatives that have lost a cluster of lysine in the vicinity of the transmembrane domain had reduced binding activity to Ret2p and the GMT with this sequence was delivered to the vacuole. Our results indicate that GMT escapes from delivery to the vacuole by recycling to the endoplasmic reticulum and retrieval requires the lysine-rich C-terminal tail that can bind to the COPI coat.
Collapse
Affiliation(s)
- Masato Abe
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
21
|
Tomishige N, Noda Y, Adachi H, Shimoi H, Takatsuki A, Yoda K. Mutations that are synthetically lethal with a gas1Delta allele cause defects in the cell wall of Saccharomyces cerevisiae. Mol Genet Genomics 2003; 269:562-73. [PMID: 12827498 DOI: 10.1007/s00438-003-0864-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2002] [Accepted: 05/02/2003] [Indexed: 10/26/2022]
Abstract
The GAS1-related genes of fungi encode GPI-anchored proteins with beta-1,3-glucanosyltransferase activity. Loss of this activity results in defects in the assembly of the cell wall. We isolated mutants that show a synthetic defect when combined with a gas1Delta allele in Saccharomyces cerevisiae, and identified nine wild-type genes that rescue this defect. The indispensability of BIG1 and KRE6 for the viability of gas1Delta cells confirmed the important role of beta-1,6-glucan in cells that are defective in the processing of beta-1,3-glucan. The identification of the Wsc1p hypo-osmotic stress sensor and components of the PKC signal transduction pathway in our screen also confirmed that the cell wall integrity response attenuates the otherwise lethal gas1Delta defect. Unexpectedly, we found that the KEX2 gene is also required for the viability of the gas1Delta mutant. Kex2p is a Golgi/endosome-membrane-anchored protease that processes secretory preproteins. A cell wall defect was also found in the kex2Delta mutant, which was suppressible by multiple copies of the MKC7 or YAP3 gene, both of which encode other GPI-anchored proteases. Therefore, normal cell wall assembly requires proteolytic processing of secretory preproteins. Furthermore, the genes CSG2 and IPT1 were found to be required for normal growth of gas1Delta cells in the presence of 1 M sorbitol. This finding suggests that complex sphingolipids play a role in the hyper-osmotic response.
Collapse
Affiliation(s)
- N Tomishige
- Department of Biotechnology, University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Hashimoto H, Abe M, Hirata A, Noda Y, Adachi H, Yoda K. Progression of the stacked Golgi compartments in the yeast Saccharomyces cerevisiae by overproduction of GDP-mannose transporter. Yeast 2002; 19:1413-24. [PMID: 12478588 DOI: 10.1002/yea.925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi compartments of the yeast Saccharomyces cerevisiaeare dispersed within the cytoplasm, in contrast to the stacked cisternae in the mammalian cell, and consequently are observed as a punctate pattern by immunofluorescent staining of Golgi-marker proteins. The VIG4/VRG4 gene encodes the essential yeast GDP-mannose transporter, which is a polytopic membrane protein in the early and medial Golgi compartments. Upon overexpression of this gene by the aid of a strong promoter and multicopy vector, we found that stacked multivesicular structures, which resembled the cisternae of mammalian Golgi apparatus, had developed in S. cerevisiae. Immuno-electron microscopy showed that the GDP-mannose transporter was located on the stacked cisternae. Immuno-isolation and immunoblotting analyses of the vesicles showed that the overproduced GDP-mannose transporter also co-localized with the Golgi glycosyltransferases, but not with the ER- or late Golgi-marker proteins as in the control cell. We propose that the localization mechanism of the GDP-mannose transporter in the Golgi compartment would be efficient and hardly saturable, and therefore the overproduced protein induced a progression of Golgi-like compartments rather than being mislocalized in other compartments, such as the ER or a vacuole.
Collapse
Affiliation(s)
- Hitoshi Hashimoto
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Stolz J, Munro S. The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem 2002; 277:44801-8. [PMID: 12235155 DOI: 10.1074/jbc.m208023200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae processes N-linked glycans in the Golgi apparatus in two different ways. Whereas most of the proteins of internal membranes receive a simple core-type structure, a long branched polymer termed mannan is attached to the glycans of many of the proteins destined for the cell wall. The first step in mannan synthesis is the initiation and extension of an alpha-1,6-linked polymannose backbone. This requires the sequential action of two enzyme complexes, mannan polymerases (M-Pol) I and II. M-Pol I contains the proteins Mnn9p and Van1p, although the stoichiometry and individual contributions to enzyme action are unclear. We report here that the two proteins are each present as a single copy in the complex. Both proteins contain a DXD motif found in the active site of many glycosyltransferases, and mutations in this motif in Mnn9p or Van1p reveal that both proteins contribute to mannose polymerization. However, the effects of these mutations on both the in vivo and in vitro activity are distinct, suggesting that the two proteins may have different roles in the complex. Finally, we show that a simple glycoprotein based on hen egg lysozyme can be used as a substrate for modification by purified M-Pol I in vitro.
Collapse
Affiliation(s)
- Jurgen Stolz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
24
|
Kosodo Y, Noda Y, Adachi H, Yoda K. Binding of Sly1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci 2002; 115:3683-91. [PMID: 12186954 DOI: 10.1242/jcs.00027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLY1 is an essential gene for vesicular transport between the ER and the early Golgi apparatus in Saccharomyces cerevisiae. It encodes a hydrophilic Sec1/Munc18 family protein that binds to the t-SNAREs. The amount of Sly1 protein that coprecipitated with the t-SNARE Sed5 was much reduced in a temperature-sensitive sly1(ts) mutant yeast compared with the wildtype. The mutant Sly1(ts) protein was shown to have a reduced binding activity to Sed5. In the wildtype, a detectable amount of Sly1 was found in the complex between Sed5 and the v-SNARE Bet1. In vitro formation of this complex on different membranes in yeast lysate was enhanced by the addition of recombinant Sly1. These results indicate that binding of Sly1 to Sed5 enhances trans-SNARE complex formation.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Department of Biotechnology, the University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
25
|
|
26
|
Cho JH, Noda Y, Yoda K. Proteins in the early golgi compartment of Saccharomyces cerevisiae immunoisolated by Sed5p. FEBS Lett 2000; 469:151-4. [PMID: 10713261 DOI: 10.1016/s0014-5793(00)01268-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast tSNARE Sed5p is considered to mainly reside in the early Golgi compartment at the steady state of its intracellular cycling. To better understand this compartment, we immunoisolated a membrane subfraction having Sed5p on the surface (the Sed5 vesicles). Immunoblot studies showed that considerable portions (20-30%) of the Golgi mannosyltransferases (Mnt1p, Van1p, and Mnn9p) were simultaneously recovered while the late Golgi (Kex2p) or endoplasmic reticulum (Sec71p) proteins were almost excluded. The N-terminal sequences of the polypeptides detectable by Coomassie blue staining indicated that the prominent components of the Sed5 vesicles include Anp1p, Emp24p, Erv25p, Erp1p, Ypt52p, and a putative membrane protein of unknown function (Yml067c).
Collapse
Affiliation(s)
- J H Cho
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Kojima H, Hashimoto H, Yoda K. Interaction among the subunits of Golgi membrane mannosyltransferase complexes of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 1999; 63:1970-6. [PMID: 10635561 DOI: 10.1271/bbb.63.1970] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Saccharomyces cerevisiae Mnn9 protein is a type II Golgi membrane protein which concerns in protein mannosylation. When solubilized by Triton X-100, it was recovered in two distinct complexes both having mannosyltransferase activity; one with Van1 protein (V-complex) and the other with Anp1, Hoc1, Mnn10, and Mnn11 proteins (A-complex). Characterization of the null mutants suggested that A-complex is also concerned in protein O-glycosylation. A-complex was more resistant than V-complex to dissociating conditions. Interaction between the lumenal domains of Van1 and Mnn9 was detected by a two-hybrid experiment. The anchor domain of Mnn9 protein could be replaced with other membrane anchors without losing the ability to form complexes similar to V- and A-complexes. Thus the lumenal domains are important to assemble these distinct complexes.
Collapse
Affiliation(s)
- H Kojima
- Department of Biotechnology, University of Tokyo, Japan
| | | | | |
Collapse
|
28
|
Abe M, Hashimoto H, Yoda K. Molecular characterization of Vig4/Vrg4 GDP-mannose transporter of the yeast Saccharomyces cerevisiae. FEBS Lett 1999; 458:309-12. [PMID: 10570930 DOI: 10.1016/s0014-5793(99)01177-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Saccharomyces cerevisiae Vig4/Vrg4 protein is a Golgi membrane protein which has multiple transmembrane domains and is essential for transport of GDP-mannose across the Golgi membrane. By immunoprecipitation of detergent-solubilized tagged protein, we found that this protein exists as oligomer. Two mutants vig4-1 and vig4-2 had amino acid substitutions in the C-terminal region, Ala286Val and Ser278Cys, respectively. In accord with these mutations, trimming of the C-terminal hydrophobic part close to the region impaired the function and traffic of the proteins from the endoplasmic reticulum to the Golgi compartments.
Collapse
Affiliation(s)
- M Abe
- Department of Biotechnology, The University of Tokyo, Yayoi, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Jungmann J, Rayner JC, Munro S. The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex. J Biol Chem 1999; 274:6579-85. [PMID: 10037752 DOI: 10.1074/jbc.274.10.6579] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae many of the N-linked glycans on cell wall and periplasmic proteins are modified by the addition of mannan, a large mannose-containing polysaccharide. Mannan comprises a backbone of approximately 50 alpha-1,6-linked mannoses to which are attached many branches consisting of alpha-1,2-linked and alpha-1,3-linked mannoses. The initiation and subsequent elongation of the mannan backbone is performed by two complexes of proteins in the cis Golgi. In this study we show that the product of the MNN10/BED1 gene is a component of one of these complexes, that which elongates the backbone. Analysis of interactions between the proteins in this complex shows that Mnn10p, and four previously characterized proteins (Anp1p, Mnn9p, Mnn11p, and Hoc1p) are indeed all components of the same large structure. Deletion of either Mnn10p, or its homologue Mnn11p, results in defects in mannan synthesis in vivo, and analysis of the enzymatic activity of the complexes isolated from mutant strains suggests that Mnn10p and Mnn11p are responsible for the majority of the alpha-1, 6-polymerizing activity of the complex.
Collapse
Affiliation(s)
- J Jungmann
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | |
Collapse
|
30
|
Gaynor EC, Mondésert G, Grimme SJ, Reed SI, Orlean P, Emr SD. MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. Mol Biol Cell 1999; 10:627-48. [PMID: 10069808 PMCID: PMC25192 DOI: 10.1091/mbc.10.3.627] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1998] [Accepted: 12/07/1998] [Indexed: 11/11/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p's lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4-174) harbors a single amino acid change in motif 2. The mcd4-174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4-174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4-174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.
Collapse
Affiliation(s)
- E C Gaynor
- Department of Biology, The Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0668, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The Golgi complex is the site where the terminal carbohydrate modification of proteins and lipids occurs. These carbohydrates play a variety of biological roles, ranging from the stabilization of glycoprotein structure to the provision of ligands for cell-cell interactions to the regulation of cell surface properties. Progress in our understanding of the biosynthesis and regulation of glycoconjugates has been accelerating at a rapid pace. Recent advances in the field of yeast glycobiology have been particularly impressive. This review focuses on glycosylation of proteins in the Golgi of the yeast Saccharomyces cerevisiae, with emphasis on the candidate mannosyltransferases that participate in the synthesis of N-linked oligosaccharides. Current views on how these enzymes may be regulated and how glycosylation relates on other cellular processes are also discussed.
Collapse
Affiliation(s)
- N Dean
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
32
|
Kasuya T, Nakajima H, Kitamoto K. Cloning and characterization of the bipA gene encoding ER chaperone BiP from Aspergillus oryzae. J Biosci Bioeng 1999; 88:472-8. [PMID: 16232647 DOI: 10.1016/s1389-1723(00)87661-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1999] [Accepted: 08/10/1999] [Indexed: 11/28/2022]
Abstract
We describe the cloning and characterization of the ER localized chaperone (BiP) encoding gene from the filamentous fungus Aspergillus oryzae. The BiP encoding gene, designated bipA, has three introns and encodes a protein with 672 amino acids, which has a high homology with various BiP-like proteins. Sequences resembling heat shock elements (HSEs) and unfolded protein response (UPR) elements, as found in the Saccharomyces cerevisiae KAR2 promoter, are present in the 5' no coding region of the bipA gene. Transcription of the bipA gene was increased by heat shock or tunicamycin treatment. Expression of bipA cDNA partially complemented the temperature-sensitive growth of kar2 mutant alleles of S. cerevisiae. These results indicate that the bipA gene product plays a role as BiP in A. oryzae.
Collapse
Affiliation(s)
- T Kasuya
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
33
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs, also known as Batten disease) are the most common childhood neurodegenerative disease. They are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent storage material in many cell types. Clinical features include seizures, psychomotor deterioration, and blindness, the ages and order of onset of which differ for each NCL type. An increasing number of subtypes caused by mutations in different genes are now recognized. With the advent of molecular genetics the basic genetic defect underlying each NCL phenotype is being determined, thus shedding light on the molecular basis of the NCLs and opening the way for the development of effective treatment. Four genes have been identified to date. The function of two of these is known and suggests that the primary defect in the NCLs lies in lysosomal proteolysis, the first example of this type of disease. However, since the function of the other two genes remains elusive, and at least four more genes remain to be identified, the molecular basis underlying the NCLs may be more complex than originally predicted.
Collapse
Affiliation(s)
- S E Mole
- Department of Paediatrics, University College London Medical School, United Kingdom
| |
Collapse
|