1
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
2
|
Yano S, Ishikawa H, Mizuno M, Nakamura H, Shiro Y, Mizutani Y. Ultraviolet Resonance Raman Observations of the Structural Dynamics of Rhizobial Oxygen Sensor FixL on Ligand Recognition. J Phys Chem B 2013; 117:15786-91. [DOI: 10.1021/jp406709e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shinji Yano
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiro Nakamura
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Yuan C, Li H, Gao Z. Amyloid beta modulated the selectivity of heme-catalyzed protein tyrosine nitration: an alternative mechanism for selective protein nitration. J Biol Inorg Chem 2012; 17:1083-91. [DOI: 10.1007/s00775-012-0922-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/10/2012] [Indexed: 01/14/2023]
|
4
|
Yuan C, Yi L, Yang Z, Deng Q, Huang Y, Li H, Gao Z. Amyloid beta–heme peroxidase promoted protein nitrotyrosination: relevance to widespread protein nitration in Alzheimer’s disease. J Biol Inorg Chem 2011; 17:197-207. [DOI: 10.1007/s00775-011-0842-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/31/2011] [Indexed: 01/07/2023]
|
5
|
Role of Phe113 at the distal side of the heme domain of an oxygen-sensor (Ec DOS) in the characterization of the heme environment. J Inorg Biochem 2009; 103:989-96. [DOI: 10.1016/j.jinorgbio.2009.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022]
|
6
|
Reynolds MF, Ackley L, Blizman A, Lutz Z, Manoff D, Miles M, Pace M, Patterson J, Pozzessere N, Saia K, Sato R, Smith D, Tarves P, Weaver M, Sieg K, Lukat-Rodgers GS, Rodgers KR. Role of conserved F(alpha)-helix residues in the native fold and stability of the kinase-inhibited oxy state of the oxygen-sensing FixL protein from Sinorhizobium meliloti. Arch Biochem Biophys 2009; 485:150-9. [PMID: 19254684 DOI: 10.1016/j.abb.2009.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
The oxygen-sensing FixL protein from Sinorhizobium meliloti is part of the heme-PAS family of gas sensors that regulate many important signal transduction pathways in a wide variety of organisms. We examined the role of the conserved F(alpha)-9 arginine 200 and several other conserved residues on the proximal F(alpha)-helix in the heme domain of SmFixL* using site-directed mutagenesis in conjunction with UV-visible, EPR, and resonance Raman spectroscopy. The F(alpha)-helix variants R200A, E, Q, H, Y197A, and D195A were expressed at reasonable levels and purified to homogeneity. The R200I and Y201A variants did not express in observable quantities. Tyrosine 201 is crucial for forming the native protein fold of SmFixL* while Y197 and R200 are important for stabilizing the kinase-inhibited oxy state. Our results show a clear correlation between H-bond donor ability of the F(alpha)-9 side chain and the rate of heme autoxidation. This trend in conjunction with crystal structures of liganded BjFixL heme domains, show that H-bonding between the conserved F(alpha)-9 arginine and the heme-6-propionate group contributes to the kinetic stability of the kinase-inactivated, oxy state of SmFixL*.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yokota N, Araki Y, Kurokawa H, Ito O, Igarashi J, Shimizu T. Critical roles of Leu99 and Leu115 at the heme distal side in auto-oxidation and the redox potential of a heme-regulated phosphodiesterase from Escherichia coli. FEBS J 2006; 273:1210-23. [PMID: 16519686 DOI: 10.1111/j.1742-4658.2006.05145.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The heme-regulated phosphodiesterase from Escherichia coli (Ec DOS), which is a heme redox-dependent enzyme, is active with a ferrous heme but inactive with a ferric heme. Global structural changes including axial ligand switching and a change in the rigidity of the FG loop accompanying the heme redox change may be related to the dependence of Ec DOS activity on the redox state. Axial ligands such as CO, NO, and O2 act as inhibitors of Ec DOS because they interact with the ferrous heme complex. The X-ray crystal structure of the isolated heme-bound domain (Ec DosH) shows that Leu99, Phe113 and Leu115 indirectly and directly form a hydrophobic triad on the heme plane and that they should be located at or near the ligand access channel of the heme iron. We generated L99T, L99F, L115T, and L115F mutants of Ec DosH and examined their physicochemical characteristics, including auto-oxidation rates, O2 and CO binding kinetics, and redox potentials. The Fe(III) complex of the L115F mutant was unstable and had a Soret absorption spectrum located 5 nm lower than those of the wild-type and other mutants. Auto-oxidation rates of the mutants (0.049-0.33 min(-1)) were much higher than that of the wild-type (0.0063 min(-1)). Furthermore, the redox potentials of the former three mutants (23.1-34.6 mV versus SHE) were also significantly lower than that of the wild-type (63.9 mV versus SHE). Interaction between O2 and the L99F mutant was different from that in the wild-type, whereas CO binding rates of the mutants were similar to those of the wild-type. Thus, it appears that Leu99 and Leu115 are critical for determining the characteristics of heme iron. Finally, we discuss the roles of these amino-acid residues in the heme electronic states.
Collapse
Affiliation(s)
- Nao Yokota
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Suquet C, Savenkova M, Satterlee JD. Recombinant PAS-heme domains of oxygen sensing proteins: high level production and physical characterization. Protein Expr Purif 2005; 42:182-93. [PMID: 15939306 DOI: 10.1016/j.pep.2005.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
Details of a high-level recombinant production method for the heme-PAS domains of heme oxygen sensing proteins from Sinorhizobium meliloti (Sm) (formerly Rhizobium meliloti, Rm), Bradyrhizobium japonicum (Bj), and Escherichia coli (Ec) are described. Using a newly proposed, concise, and unambiguous naming system (also described here) these proteins are: SmFixLH(128-264), BjFixLH(140-270), and EcDosH(1-147). In addition, high-level production of BjFixL(140-505), the soluble full-length protein containing both heme (oxygen sensing) and kinase (catalytic) domains is described. Using an IPTG-inducible pET/BL21 expression system and a rapid, two-column purification has resulted in increased yields of 3- to 17-fold over literature values. The recombinant proteins are highly pure as judged by SDS-PAGE, MALDI-TOF mass spectrometry, and a UV-visible purity index. To our knowledge, this work includes the first mass spectrometry analysis of any PAS-heme protein and provides high-resolution confirmation of each protein's identity. These production and characterization improvements make possible future spectroscopic and dynamics studies designed to elucidate the intramolecular/interdomain signal that follows heme-domain oxygen dissociation.
Collapse
Affiliation(s)
- Christine Suquet
- Department of Chemistry, Washington State University, Pullman, 99164-4630, USA
| | | | | |
Collapse
|
9
|
Nakamura H, Kumita H, Imai K, Iizuka T, Shiro Y. ADP reduces the oxygen-binding affinity of a sensory histidine kinase, FixL: the possibility of an enhanced reciprocating kinase reaction. Proc Natl Acad Sci U S A 2004; 101:2742-6. [PMID: 14970341 PMCID: PMC365691 DOI: 10.1073/pnas.0305795101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rhizobial FixL/FixJ system, a paradigm of heme-based oxygen sensors, belongs to the ubiquitous two-component signal transduction system. Oxygen-free (deoxy) FixL is autophosphorylated at an invariant histidine residue by using ATP and catalyzes the concomitant phosphoryl transfer to FixJ, but oxygen binding to the FixL heme moiety inactivates the kinase activity. Here we demonstrate that ADP acts as an allosteric effector, reducing the oxygen-binding affinity of the sensor domain in FixL when it is produced from ATP in the kinase reaction. The addition of ADP to a solution of purified wild-type FixL resulted in an approximately 4- to 5-fold decrease in oxygen-binding affinity in the presence of FixJ. In contrast, phosphorylation-deficient mutants, in which the well conserved ATP-binding catalytic site of the kinase domain is impaired, showed no such allosteric effect. This discovery casts light on the significance of homodimerization of two-component histidine kinases; ADP, generated in the phosphorylation reaction in one subunit of the homodimer, enhances the histidine kinase activity of the other, analogous to a two-cylinder reciprocating engine by reducing the ligand-binding affinity.
Collapse
Affiliation(s)
- Hiro Nakamura
- RIKEN Harima Institute/SPring-8, Mikazuki, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
10
|
Akimoto S, Tanaka A, Nakamura K, Shiro Y, Nakamura H. O2-specific regulation of the ferrous heme-based sensor kinase FixL from Sinorhizobium meliloti and its aberrant inactivation in the ferric form. Biochem Biophys Res Commun 2003; 304:136-42. [PMID: 12705897 DOI: 10.1016/s0006-291x(03)00556-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FixL, a rhizobial heme-based O2-sensing histidine kinase, catalyzes autophosphorylation in the deoxy form at low O2 tension, while the kinase activity is inhibited in the case of the O2-bound form. The present study unambiguously shows that the binding of CO and NO does not significantly inhibit the kinase activity of dithiothreitol (DTT)-reduced ferrous FixL from Sinorhizobium meliloti, which is inconsistent with the spin state mechanism previously reported. Kinase inactivation is caused by aberrant disulfide (S-S) bond formation at Cys301 in the ferric homodimer, which explains these contradictory observations. The addition of DTT cleaved the S-S bond, leading to restoration of kinase activity in the ferric form as well as heme reduction, but, sodium hydrosulfite treatment produced the kinase-inactive deoxy form without S-S cleavage. On the basis of these experimental results, it can be concluded that ferrous FixL discriminates O2 from CO and NO, and signals the O2-bound state by downregulating the phosphoryl transfer reaction.
Collapse
Affiliation(s)
- Satoru Akimoto
- RIKEN Harima Institute/SPring-8, Mikazuki, 679-5148, Hyogo, Japan
| | | | | | | | | |
Collapse
|
11
|
Saito K, Ito E, Hosono K, Nakamura K, Imai K, Iizuka T, Shiro Y, Nakamura H. The uncoupling of oxygen sensing, phosphorylation signalling and transcriptional activation in oxygen sensor FixL and FixJ mutants. Mol Microbiol 2003; 48:373-83. [PMID: 12675798 DOI: 10.1046/j.1365-2958.2003.03446.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhizobial FixL/FixJ system, a member of the superfamily of bacterial two-component signal transducing systems, regulates the expression of nitrogen fixation-related genes by sensing environmental oxygen tension. Oxygen-free (deoxy) FixL is autophosphorylated at an invariant histidine residue with ATP, and the phosphoryl group is transferred to FixJ, leading to an enhancement in transcriptional activity at low oxygen tensions, but the histidine kinase activity of the oxygen-bound (oxy) form is inhibited. To investigate the mechanism of oxygen sensing, we established a FixL/FixJ-mediated PfixK-lacZ reporter system in Escherichia coli, and isolated FixL and FixJ mutations conferring an upregulation of lacZ gene expression on the reporter cells even under aerobic conditions. FixL mutant proteins, which contain single amino acid changes near the autophosphorylation site, showed elevated levels of autophosphorylation and a concomitant phosphoryl transfer to FixJ in the presence of oxygen, although their oxygen-binding affinities were unimpaired. These mutational analyses suggest that the autophosphorylation domain plays a crucial role in regulatory coupling between oxygen binding and kinase activity. FixJ mutants in helix alpha1 and strand beta5 of the N-terminal half exhibited the formation of a stable acyl phosphate bond. In contrast, those in helices alpha4 and alpha5 constitutively bound to the fixK promoter in a monomeric form, suggesting that the alpha4 and alpha5 helices may be involved in the post-phosphorylation/dimerization signal transfer to liberate the DNA-binding activity of the C-terminal domain, not only serving as a dimerization interface.
Collapse
Affiliation(s)
- Ken Saito
- RIKEN Harima Institute/SPring-8, Mikazuki, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kumita H, Yamada S, Nakamura H, Shiro Y. Chimeric sensory kinases containing O2 sensor domain of FixL and histidine kinase domain from thermophile. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:136-44. [PMID: 12637020 DOI: 10.1016/s1570-9639(02)00555-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the functional mechanism of inter-domain interaction in a sensor histidine kinase, five chimeric sensory kinases were constructed. In each of these chimeric proteins (CskA254, CskA264, CskA274, CskA284, and CskA294), the sensor domain of heme-based O(2) sensor FixL, obtained from Sinorhizobium meliloti, was fused with the histidine kinase domain from a hyperthermophile, Thermotoga maritima, each at a systematically different position. The UV-visible (UV-vis), resonance Raman (RR), and circular dichroism (CD) spectral characteristics of the CskAs indicated that the secondary and heme environmental structures of all five CskAs examined are identical to those of FixL. In spite of these structural similarities, all CskAs did not exhibit O(2)-dependent regulation of autophosphorylation activity. Furthermore, their functional properties were much different from those of FixL: The O(2) binding affinity and the autophosphorylation activity for CskA254, CskA264, and CskA274 were similar to those of the truncated sensor and histidine kinase domain, whereas CskA284 and CskA294 display extremely low O(2) affinity and low autophosphorylation activity, as compared with each truncated domain. These observations indicated that the interdomain interaction was presented in those CskAs, and that interaction could be related to the O(2)-dependent regulatory interaction of FixL. In the present study, we demonstrated that the interaction in the physiological sensor histidine kinase would be strictly and finely controlled to mediate the signal ligation-dependent autophosphorylation activity in its histidine kinase domain.
Collapse
Affiliation(s)
- Hideyuki Kumita
- RIKEN Harima Institute/SPring-8, 1-1-1 Koto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan.
| | | | | | | |
Collapse
|
13
|
Aono S, Kato T, Matsuki M, Nakajima H, Ohta T, Uchida T, Kitagawa T. Resonance Raman and ligand binding studies of the oxygen-sensing signal transducer protein HemAT from Bacillus subtilis. J Biol Chem 2002; 277:13528-38. [PMID: 11821422 DOI: 10.1074/jbc.m112256200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HemAT-Bs is a heme-containing signal transducer protein responsible for aerotaxis of Bacillus subtilis. The recombinant HemAT-Bs expressed in Escherichia coli was purified as the oxy form in which oxygen was bound to the ferrous heme. Oxygen binding and dissociation rate constants were determined to be k(on) = 32 microm(-1) s(-1) and k(off) = 23 s(-1), respectively, revealing that HemAT-Bs has a moderate oxygen affinity similar to that of sperm whale myoglobin (Mb). The rate constant for autoxidation at 37 degrees C was 0.06 h(-1), which is also close to that of Mb. Although the electronic absorption spectra of HemAT-Bs were similar to those of Mb, HemAT-Bs showed some unique characteristics in its resonance Raman spectra. Oxygen-bound HemAT-Bs gave the nu(Fe-O(2)) band at a noticeably low frequency (560 cm(-1)), which suggests a unique hydrogen bonding between a distal amino acid residue and the proximal atom of the bound oxygen molecule. Deoxy HemAT-Bs gave the nu(Fe-His) band at a higher frequency (225 cm(-1)) than those of ordinary His-coordinated deoxy heme proteins. CO-bound HemAT-Bs gave the nu(Fe-CO) and nu(C-O) bands at 494 and 1964 cm(-1), respectively, which fall on the same nu(C-O) versus nu(Fe-CO) correlation line as that of Mb. Based on these results, the structural and functional properties of HemAT-Bs are discussed.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Miyatake H, Mukai M, Park SY, Adachi S, Tamura K, Nakamura H, Nakamura K, Tsuchiya T, Iizuka T, Shiro Y. Sensory mechanism of oxygen sensor FixL from Rhizobium meliloti: crystallographic, mutagenesis and resonance Raman spectroscopic studies. J Mol Biol 2000; 301:415-31. [PMID: 10926518 DOI: 10.1006/jmbi.2000.3954] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FixL of Rhizobium meliloti (RmFixL) is a sensor histidine kinase of the two-component system, which regulates the expression of the genes related to nitrogen fixation in the root nodule in response to the O(2) levels. The crystal structure of the sensor domain of FixL (RmFixLH), which contains a heme (Fe-porphyrin) as a sensing site, was determined at 1.4 A resolution. Based on the structural and spectroscopic analyses, we propose the O(2) sensing mechanism that differs from the case proposed in BjFixLH as follows; conformational changes in the F/G loop, which are induced by steric repulsion between the bent-bound O(2) and the Ile209 side-chain, would be transmitted to the histidine kinase domain. Interaction between the iron-bound O(2) and Ile209 was also observed in the resonance Raman spectra of RmFixLH as evidenced by the fact that the Fe-O(2) and Fe-CN stretching frequencies were shifted from 575 to 570 cm(-1) (Fe-O(2)), and 504 to 499 cm(-1), respectively, as the result of the replacement of Ile209 with an Ala residue. In the I209A mutant of RmFixL, the O(2) sensing activity was destroyed, thus confirming our proposed mechanism.
Collapse
Affiliation(s)
- H Miyatake
- RIKEN Harima Institute/SPring-8, 1-1-1 Koto, Hyogo, Mikazuki-cho, 679-5148, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miyatake H, Mukai M, Adachi S, Nakamura H, Tamura K, Iizuka T, Shiro Y, Strange RW, Hasnain SS. Iron coordination structures of oxygen sensor FixL characterized by Fe K-edge extended x-ray absorption fine structure and resonance raman spectroscopy. J Biol Chem 1999; 274:23176-84. [PMID: 10438488 DOI: 10.1074/jbc.274.33.23176] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FixL is a heme-based O(2) sensor protein involved in a two-component system of a symbiotic bacterium. In the present study, the iron coordination structure in the heme domain of Rhizobium meliloti FixLT (RmFixLT, a soluble truncated FixL) was examined using Fe K-edge extended x-ray absorption fine structure (EXAFS) and resonance Raman spectroscopic techniques. In the EXAFS analyses, the interatomic distances and angles of the Fe-ligand bond and the iron displacement from the heme plane were obtained for RmFixLT in the Fe(2+), Fe(2+)O(2), Fe(2+)CO, Fe(3+), Fe(3+)F(-), and Fe(3+)CN(-) states. An apparent correlation was found between the heme-nitrogen (proximal His-194) distance in the heme domain and the phosphorylation activity of the histidine kinase domain. Comparison of the Fe-CO coordination geometry between RmFixLT and RmFixLH (heme domain of RmFixL), based on the EXAFS and Raman results, has suggested that the kinase domain directly or indirectly influences steric interaction between the iron-bound ligand and the heme pocket. Referring to the crystal structure of the heme domain of Bradyrhizobium japonicum FixL (Gong, W., Hao, B., Mansy, S. S., Gonzalez, G., Gilles-Gonzalez, M. A., and Chan, M. K. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 15177-15182), we discussed details of the iron coordination structure of RmFixLT and RmFixLH in relation to an intramolecular signal transduction mechanism in its O(2) sensing.
Collapse
Affiliation(s)
- H Miyatake
- Institute of Physical and Chemical Research, RIKEN Harima Institute, Mikazuki-cho, Sayo, Hyogo 679-5143, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.
Collapse
Affiliation(s)
- K R Rodgers
- Department of Chemistry, Ladd Hall, North Dakota State University, Fargo, ND 58105-5516, USA
| |
Collapse
|