1
|
Abrantes-Coutinho VE, Santos AO, Holanda BEB, Costa HRA, Oliveira TMBF. Integrating machine learning and electrochemistry to develop a glucose biosensor assembled with Ganoderma applanatum lectin. Bioelectrochemistry 2023; 151:108392. [PMID: 36753946 DOI: 10.1016/j.bioelechem.2023.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Fungal lectins have enormous biotechnological potential, but limited knowledge about their biochemical and biophysical features prevents their proper use. Herein, we report an innovative alternative to use Ganoderma applanatum lectin (GAL) as a glucose biorecognition element, after identifying the ideal electroanalytical conditions by machine learning studies performed with a homologous agglutinin from the same macrofungus. The research revealed that GAL has moderate resistance to pH (4-8) and temperature (20-60 °C) variations, but its hemagglutinating activity (376.5 HU mg-1 GAL at 20 °C) was better conserved under physiological conditions. Integrating electrochemical data and semi-empirical molecular modeling, biocompatible and electrostatically favorable conditions were found to immobilize the lectin on Prussian blue-modified glassy carbon electrode, after thermal activation of the metal-complex film. The glucose dose-response relationship obtained with the developed biosensor, defined as GAL/ta-PB/GCE, showed a typical Hill equation correlation, suggesting electrodic interactions represented by a sigmoidal mathematical function. GAL/ta-PB/GCE achieved remarkable electroanalytical performance, with emphasis on the detection limit (10.2 pM) and sensitivity (0.012 µA µM-1cm-2). The biosensor was successfully used to quantify glucose in pharmaceutical formulations, reiterating that the association of theoretical and experimental information drives important advances in bioelectrochemical studies.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Brenna E B Holanda
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Heryka R A Costa
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
2
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
3
|
The Enhancing Effect of Fungal Immunomodulatory Protein-Volvariella Volvacea (FIP-vvo) on Maturation and Function of Mouse Dendritic Cells. Life (Basel) 2021; 11:life11060471. [PMID: 34073762 PMCID: PMC8225060 DOI: 10.3390/life11060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Volvariella volvacea, also known as straw mushroom, is a common edible mushroom in Chinese cuisine. It contains many nutrients for human health. A fungal immunomodulatory protein (FIP) has been isolated from V. volvacea and named FIP-vvo. Although the regulatory effects of many FIPs on immunity have been identified, the impact of FIP-vvo in modulating dendritic cells (DCs), which play a key role to connect the innate and the adaptive immunity, is not known. In this study, we aim to study the effect of FIP-vvo on the DC maturation and function. We found that FIP-vvo slightly increased the generation of CD11c+ bone marrow-derived DC (BMDC). In addition, the surface expression of MHCII was promoted in BMDCs after the treatment of FIP-vvo, suggesting that FIP-vvo induces DC maturation. Furthermore, FIP-vvo enhanced the ability of BMDCs to activate antigen-specific T cell responses in vitro. In the in vivo study, the FIP-vvo treatment facilitated T cell response in lymph nodes. Therefore, for the first time, our data demonstrated that FIP-vvo promoted DC maturation and function and suggested that FIP-vvo could have benefits for human health by enhancing immunity.
Collapse
|
4
|
|
5
|
Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y, Xu J. Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products. J Fungi (Basel) 2020; 6:E269. [PMID: 33171663 PMCID: PMC7712035 DOI: 10.3390/jof6040269] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Shouxian Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Zhekun Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
6
|
Efficacy of Live Attenuated Vaccine and Commercially Available Lectin Against Avian Pathogenic E. coli Infection in Broiler Chickens. Vet Sci 2020; 7:vetsci7020065. [PMID: 32414109 PMCID: PMC7355798 DOI: 10.3390/vetsci7020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, the protective efficacy of an E. coli live attenuated vaccine was compared to the preventive administration of lectin preparation before the challenge. Two hundred broiler chicks were divided into eight equal groups. The first group was used as a negative control group. Three groups were vaccinated at day 1 with the avian colibacillosis live vaccine of which one group served as a vaccinated nonchallenged group. Another two groups were treated with lectin product (0.5 mL/L drinking water) for three days before the challenge. The last two groups served as challenge control for either E. coli O78 or O125 strains. The challenge was conducted at three weeks of age with either homologous O78 or heterologous O125E. coli strains, using 0.5 mL/bird of each avian pathogenic E. coli (APEC) strain (~108 colony forming units “CFU”/mL)/subcutaneously. The bodyweight and feed conversion ratios (FCR) were calculated for four weeks. Clinical signs and gross and histopathological lesions were scored at two and seven days post inoculation (dpi). The heart and liver of euthanized chickens at 2 dpi were removed aseptically and homogenized to evaluate pathogenic E. coli colonization. Results showed that live avian colibacillosis vaccine reduced mortalities and APEC colonization in the homologous challenge group but not in the heterologous challenge group. Lectin-treated groups showed 20% and 16% mortality after challenge with E. coli O78 and O125, respectively, and both groups showed performance parameters, clinical signs, and histopathological lesion scores comparable to the negative control group, with variable E. coli colonization of heart and liver. The study demonstrated the efficacy of live attenuated avian colibacillosis vaccine against homologous but not heterologous APEC challenge in broiler chickens. The lectin-containing products can be used as a preventive medication to reduce the clinical impacts of colibacillosis regardless of the challenge strain. Standardization of the evaluation parameters for APEC vaccines is recommended.
Collapse
|
7
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
8
|
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-14846-1_1] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zhou R, Liu ZK, Zhang YN, Wong JH, Ng TB, Liu F. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms. Curr Protein Pept Sci 2019; 20:196-219. [DOI: 10.2174/1389203719666180613090710] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023]
Abstract
For centuries, mushrooms have been widely used as traditional Chinese medicine in Asia.
Apart from polysaccharides and some small-molecule components, such as flavones, polyphenols and
terpenes, mushrooms produce a large number of pharmaceutically active proteins, which have become
popular sources of natural antitumor, antimicrobial, immunoenhancing agents. These bioactive proteins
include lectins, laccases, Ribosome Inactivating Proteins (RIPs), nucleases, and Fungal Immunomodulatory
Proteins (FIPs). The review is to summarize the characterstics of structure and bioactivities involved
in antitumor, antiviral, antifungal, antibacterial and immunoenhancing activities of proteins from
edible mushrooms, to better understand their mechanisms, and to direct research.
Collapse
Affiliation(s)
- Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhao Kun Liu
- Department of History, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ye Ni Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Chen P, Qin HJ, Li YW, Ma GX, Yang JS, Wang Q. Study on chemical constituents of an edible mushroom Volvariella volvacea and their antitumor activity in vitro. Nat Prod Res 2018; 34:1417-1422. [DOI: 10.1080/14786419.2018.1509324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ping Chen
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Hui-Juan Qin
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yuan-Wei Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Guo-Xu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Shan Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Wang Y, Wu B, Shao J, Jia J, Tian Y, Shu X, Ren X, Guan Y. Extraction, purification and physicochemical properties of a novel lectin from Laetiporus sulphureus mushroom. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Bao DP, Ma YW, Gong M, Li Y, Gao YN, Yang RH, Yang RF, Mao WJ, Wang Y. Sequence analysis and heterologous expression of lectin-like gene CMLec3 from the medicinal fungus Cordyceps militaris. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Hou L, Li Y, Chen M, Li Z. Improved fruiting of the straw mushroom (Volvariella volvacea) on cotton waste supplemented with sodium acetate. Appl Microbiol Biotechnol 2017; 101:8533-8541. [DOI: 10.1007/s00253-017-8476-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/30/2017] [Accepted: 08/05/2017] [Indexed: 10/18/2022]
|
14
|
Singh RS, Kaur HP, Kennedy JF. Modulation of immunocyte functions by a mucin-specific lectin from Aspergillus gorakhpurensis. Int J Biol Macromol 2017; 101:172-178. [DOI: 10.1016/j.ijbiomac.2017.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 11/28/2022]
|
15
|
Nikitina VE, Loshchinina EA, Vetchinkina EP. Lectins from Mycelia of Basidiomycetes. Int J Mol Sci 2017; 18:E1334. [PMID: 28640205 PMCID: PMC5535827 DOI: 10.3390/ijms18071334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022] Open
Abstract
Lectins are proteins of a nonimmunoglobulin nature that are capable of specific recognition of and reversible binding to the carbohydrate moieties of complex carbohydrates, without altering the covalent structure of any of the recognized glycosyl ligands. They have a broad range of biological activities important for the functioning of the cell and the whole organism and, owing to the high specificity of reversible binding to carbohydrates, are valuable tools used widely in biology and medicine. Lectins can be produced by many living organisms, including basidiomycetes. Whereas lectins from the fruit bodies of basidiomycetes have been studied sufficiently well, mycelial lectins remain relatively unexplored. Here, we review and comparatively analyze what is currently known about lectins isolated from the vegetative mycelium of macrobasidiomycetes, including their localization, properties, and carbohydrate specificities. Particular attention is given to the physiological role of mycelial lectins in fungal growth and development.
Collapse
Affiliation(s)
- Valentina E Nikitina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| |
Collapse
|
16
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
17
|
Ng T, Ngai PH, Xia L. An agglutinin with mitogenic and antiproliferative activities from the mushroomFlammulina velutipes. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Patrick H.K. Ngai
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lixin Xia
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China, and College of Life Science, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Fruiting Body Formation in Volvariella volvacea Can Occur Independently of Its MAT-A-Controlled Bipolar Mating System, Enabling Homothallic and Heterothallic Life Cycles. G3-GENES GENOMES GENETICS 2016; 6:2135-46. [PMID: 27194800 PMCID: PMC4938666 DOI: 10.1534/g3.116.030700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Volvariella volvacea is an important crop in Southeast Asia, but erratic fruiting presents a serious challenge for its production and breeding. Efforts to explain inconsistent fruiting have been complicated by the multinucleate nature, typical lack of clamp connections, and an incompletely identified sexual reproductive system. In this study, we addressed the life cycle of V. volvacea using whole genome sequencing, cloning of MAT loci, karyotyping of spores, and fruiting assays. Microscopy analysis of spores had previously indicated the possible coexistence of heterothallic and homothallic life cycles. Our analysis of the MAT loci showed that only MAT-A, and not MAT-B, controlled heterokaryotization. Thus, the heterothallic life cycle was bipolar. Karyotyping of single spore isolates (SSIs) using molecular markers supported the existence of heterokaryotic spores. However, most SSIs were clearly not heterokaryotic, yet contained structural variation (SV) markers relating to both alleles of both parents. Heterokaryons from crossed, self-sterile homokaryons could produce fruiting bodies, agreeing with bipolar heterothallism. Meanwhile, some SSIs with two different MAT-A loci also produced fruiting bodies, which supported secondary homothallism. Next, SSIs that clearly contained only one MAT-A locus (homothallism) were also able to fruit, demonstrating that self-fertile SSIs were not, per definition, secondary homothallic, and that a third life cycle or genetic mechanism must exist. Finally, recombination between SV markers was normal, yet 10 out of 24 SV markers showed 1:2 or 1:3 distributions in the spores, and large numbers of SSIs contained doubled SV markers. This indicated selfish genes, and possibly partial aneuploidy.
Collapse
|
19
|
|
20
|
Ren XM, Li DF, Jiang S, Lan XQ, Hu Y, Sun H, Wang DC. Structural Basis of Specific Recognition of Non-Reducing Terminal N-Acetylglucosamine by an Agrocybe aegerita Lectin. PLoS One 2015; 10:e0129608. [PMID: 26114302 PMCID: PMC4483166 DOI: 10.1371/journal.pone.0129608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification that plays essential roles in many cellular pathways. Research in this field, however, is hampered by the lack of suitable probes to identify, accumulate, and purify the O-GlcNAcylated proteins. We have previously reported the identification of a lectin from the mushroom Agrocybe aegerita, i.e., Agrocybe aegerita lectin 2, or AAL2, that could bind terminal N-acetylglucosamine with higher affinities and specificity than other currently used probes. In this paper, we report the crystal structures of AAL2 and its complexes with GlcNAc and GlcNAcβ1-3Galβ1-4GlcNAc and reveal the structural basis of GlcNAc recognition by AAL2 and residues essential for the binding of terminal N-acetylglucosamine. Study on AAL2 may enable us to design a protein probe that can be used to identify and purify O-GlcNAcylated proteins more efficiently.
Collapse
Affiliation(s)
- Xiao-Ming Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People’s Republic of China
| | - De-Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, People’s Republic of China
| | - Shuai Jiang
- College of Life Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Xian-Qing Lan
- College of Life Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, People’s Republic of China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
- * E-mail: (HS); (DCW)
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, People’s Republic of China
- * E-mail: (HS); (DCW)
| |
Collapse
|
21
|
Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16:7802-38. [PMID: 25856678 PMCID: PMC4425051 DOI: 10.3390/ijms16047802] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.
Collapse
|
22
|
Li SY, Shi LJ, Ding Y, Nie Y, Tang XM. Identification and functional characterization of a novel fungal immunomodulatory protein from Postia placenta. Food Chem Toxicol 2015; 78:64-70. [PMID: 25662032 DOI: 10.1016/j.fct.2015.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/15/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022]
Abstract
In this study, a previously unknown fungal immunomodulatory protein (FIP), here called FIP-ppl, was identified from the basidiomycete fungus Postia placenta by searching its genome sequence database using known FIPs as baits, which was the first basidiomycete FIP to be identified outside the order of edible macro fungi. The gene FIP-ppl was synthesized and expressed in Escherichia coli to produce a glutathione S-transferase (GST) fusion protein. The fusion protein was purified on a GST affinity column and the protein tag was removed using in situ thrombin cleavage. The purified recombinant protein (rFIP-ppl) displayed hemagglutination activity toward rabbit red blood cells but not against human red blood cells. RFIP-ppl stimulated mouse splenocyte cell proliferation and enhanced interleukin-2 (IL-2) release. Antitumor assays indicated that rFIP-ppl had significant cell proliferation inhibitory activity and apoptotic effects in human tumor cells with more pronounced inhibiting proliferation and inducing apoptotic effects on gastric tumor cells (MGC823) than against hepatoma (HepG2) cells. This study confirms an alternative means of identifying, producing, and isolating new FIPs. It may provide convenient access to FIP-ppl with potential human therapeutic applications.
Collapse
Affiliation(s)
- Shu Ying Li
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Li Jun Shi
- Institute of Animal Science and Veterinary Medicine, CAAS, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yang Ding
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Ying Nie
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xuan Ming Tang
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
23
|
|
24
|
Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014; 20:446-69. [PMID: 25558856 PMCID: PMC6272671 DOI: 10.3390/molecules20010446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
Collapse
Affiliation(s)
- Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Cui Ming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Leiden University of Applied Science, Zernikedreef 11, Leiden 2333 CK, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
25
|
A novel hemagglutinin with antiproliferative activity against tumor cells from the hallucinogenic mushroom Boletus speciosus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:340467. [PMID: 24977148 PMCID: PMC4058106 DOI: 10.1155/2014/340467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/30/2014] [Accepted: 04/29/2014] [Indexed: 11/26/2022]
Abstract
Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+ and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μM.
Collapse
|
26
|
Sekete M, Ma D, Wang B, Wang HX, Gong Z, Ng TB. An acid-tolerant lectin coupled with high Hg2+ potentiated hemagglutination enhancing property purified from Amanita hemibapha var. ochracea. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Production and functional characterization of a novel fungal immunomodulatory protein FIP-SN15 shuffled from two genes of Ganoderma species. Appl Microbiol Biotechnol 2014; 98:5967-75. [DOI: 10.1007/s00253-014-5539-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 11/26/2022]
|
28
|
Alborés S, Mora P, Bustamante MJ, Cerdeiras MP, Franco Fraguas L. Purification and Applications of a Lectin from the Mushroom Gymnopilus spectabilis. Appl Biochem Biotechnol 2013; 172:2081-90. [DOI: 10.1007/s12010-013-0665-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
|
29
|
Rouf R, Stephens AS, Spaan L, Arndt NX, Day CJ, May TW, Tiralongo E, Tiralongo J. G₂/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora. Glycoconj J 2013; 31:61-70. [PMID: 24072585 DOI: 10.1007/s10719-013-9502-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.
Collapse
Affiliation(s)
- Razina Rouf
- Institute for Glycomics, Griffith University, Gold Coast Campus, Griffith, QLD, 4222, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Q, Ng T, Wang H. Isolation and characterization of a novel lectin from the wild mushroom Oudemansiella radicata (Relhan.: Fr.) sing. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0699-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
A lectin with highly potent inhibitory activity toward breast cancer cells from edible tubers of Dioscorea opposita cv. nagaimo. PLoS One 2013; 8:e54212. [PMID: 23349827 PMCID: PMC3549954 DOI: 10.1371/journal.pone.0054212] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
A 70-kDa galactose-specific lectin was purified from the tubers of Dioscorea opposita cv. nagaimo. The purification involved three chromatographic steps: anion exchange chromatography on a Q-Sepharose column, FPLC-anion exchange chromatography on a Mono Q column, and FPLC-gel filtration on a Superdex 75 column. The purified nagaimo lectin presented as a single 35-kDa band in reducing SDS-PAGE while it exhibited a 70-kDa single band in non-reducing SDS-PAGE suggesting its dimeric nature. Nagaimo lectin displayed moderate thermostability, retaining full hemagglutinating activity after heating up to 62°C for 30 minutes. It also manifested stability over a wide pH range from pH 2 to 13. Nagaimo lectin was a galactose-specific lectin, as evidenced by binding with galactose and galactose-containing sugars such as lactose and raffinose. The minimum concentration of galactose, lactose and raffinose required to exert an inhibitory effect on hemagglutinating activity of nagaimo lectin was 20 mM, 5 mM and 40 mM, respectively. Nagaimo lectin inhibited the growth of some cancer cell lines including breast cancer MCF7 cells, hepatoma HepG2 cells and nasopharyngeal carcinoma CNE2 cells, with IC(50) values of 3.71 µM, 7.12 µM and 19.79 µM, respectively, after 24 hour treatment with nagaimo lectin. The induction of phosphatidylserine externalization and mitochondrial depolarization indicated that nagaimo lectin evoked apoptosis in MCF7 cells. However, the anti-proliferative activity of nagaimo lectin was not blocked by application of galactose, signifying that the activity was not related to the carbohydrate binding specificity of the lectin.
Collapse
|
32
|
Singh RS, Walia AK. Microbial lectins and their prospective mitogenic potential. Crit Rev Microbiol 2012; 40:329-47. [DOI: 10.3109/1040841x.2012.733680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Willis W, Wall D, Isikhuemhe O, Ibrahim S, Minor R, Jackson J, Hurley S, Anike F. Effect of Different Mushrooms Fed to Eimeria-Challenged Broilers on
Rearing Performance. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ijps.2012.433.437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Ahlawat OP, Singh R, Kumar S. Evaluation of Volvariella volvacea Strains for Yield and Diseases/Insect-Pests Resistance Using Composted Substrate of Paddy Straw and Cotton Mill Wastes. Indian J Microbiol 2012; 51:200-5. [PMID: 22654165 DOI: 10.1007/s12088-011-0126-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/24/2009] [Indexed: 11/26/2022] Open
Abstract
Out of the 3 parent strains and 4 single spore isolates of Volvariella volvacea evaluated, strain, OE-274 gave earliest yield in 11.25-11.50 days post-spawning in all 4 trials. The yield varied in different strains in different trials and it was highest in strain, OE-272 in trial 1, SSI, OE-55-08 in trial 2, and strain, OE-274 in trial 3 and 4. In overall average, highest yield was in strain, OE-272, closely followed by strain, OE-274. The number of fruiting bodies per q substrate also varied in different strains in different trials. Highest numbers were in strain, OE-272, SSIs, OE-55-08 and OE-12-22, and strain, OE-210 in trial 1, 2, 3 and 4, respectively. Highest fruiting body wt was in strain, OE-274 in all 4 trials. The yield during different weeks of cropping varied in different strains but invariably it was highest in first week, which accounted for 60-70% of the total yield. The fruiting bodies of strain, OE-274 were of bigger size, brownish, toughest and with least tendency of veil opening, while that of strain, OE-272 and SSI, OE-55-08 were whitish to grayish-white, oblong, medium size, delicate and lesser tendency of veil opening. The strain, OE-274 and SSI, OE-55-08 exhibited higher resistance against the growth of competitor moulds and infestations of insect-pests, while strain, OE-272 exhibited highest susceptibility to insect-pests infestation.
Collapse
Affiliation(s)
- O P Ahlawat
- Directorate of Mushroom Research, Solan, Himachal Pradesh 173 213 India
| | | | | |
Collapse
|
35
|
Zhang GQ, Tian T, Liu YP, Wang HX, Chen QJ. A laccase with anti-proliferative activity against tumor cells from a white root fungus Abortiporus biennis. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wu Y, Wang H, Ng TB. Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr Res 2011; 346:2576-81. [DOI: 10.1016/j.carres.2011.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
37
|
Wu JY, Chen CH, Chang WH, Chung KT, Liu YW, Lu FJ, Chen CH. Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:982368. [PMID: 21792367 PMCID: PMC3139501 DOI: 10.1093/ecam/neq057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 04/20/2010] [Indexed: 12/20/2022]
Abstract
Calvatia lilacina (CL), Pleurotus ostreatus (PO) and Volvariella volvacea (VV) are widely distributed worldwide and commonly eaten as mushrooms. In this study, cell viabilities were evaluated for a human colorectal adenocarcinoma cell line (SW480 cells) and a human monocytic leukemia cell line (THP-1 cells). Apoptotic mechanisms induced by the protein extracts of PO and VV were evaluated for SW480 cells. The viabilities of THP-1 and SW480 cells decreased in a concentration-dependent manner after 24 h of treatment with the protein extracts of CL, PO or VV. Apoptosis analysis revealed that the percentage of SW480 cells in the SubG1 phase (a marker of apoptosis) was increased upon PO and VV protein-extract treatments, indicating that oligonucleosomal DNA fragmentation existed concomitantly with cellular death. The PO and VV protein extracts induced reactive oxygen species (ROS) production, glutathione (GSH) depletion and mitochondrial transmembrane potential (ΔΨm) loss in SW480 cells. Pretreatment with N-acetylcysteine, GSH or cyclosporine A partially prevented the apoptosis induced by PO protein extracts, but not that induced by VV extracts, in SW480 cells. The protein extracts of CL, PO and VV exhibited therapeutic efficacy against human colorectal adenocarcinoma cells and human monocytic leukemia cells. The PO protein extracts induced apoptosis in SW480 cells partially through ROS production, GSH depletion and mitochondrial dysfunction. Therefore, the protein extracts of these mushrooms could be considered an important source of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Graduate Institute of Biomedical and Biopharmaceutical Sciences, College of Life Sciences, National Chiayi University, A25-303 Room, Life Sciences Hall, 300 Syuefu Road, Chiayi 60004, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Immunomodulatory and therapeutic potential of a mycelial lectin from Aspergillus nidulans. Appl Biochem Biotechnol 2011; 165:624-38. [PMID: 21590306 DOI: 10.1007/s12010-011-9281-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
Lectins bind to surface receptors on target cells, and activate a cascade of events, eventually leading to altered immune status of host. The immunomodulatory potential of purified lectin from Aspergillus nidulans was evaluated in Swiss albino mice treated intraperitoneally with seven different doses of purified lectin. Lectin prevented BSA-induced Arthus reaction and systemic anaphylaxis. The enhanced functional ability of macrophages was evident from respiratory burst activity and nitric oxide production in splenocyte cultures. Interferon-gamma and interleukin-6 levels were significantly up-regulated in treated groups. Maximum stimulatory effect was observed at the dose of 1.5 mg/kg body weight. Therapeutic potential of A. nidulans lectin was assessed against trinitrobenzene sulfonic acid-induced ulcerative colitis in male Wistar rats. Rats pre-treated with 80 mg/kg body weight of purified lectin intraperitoneally prior to colitis induction showed lesser disease severity and recovery within 7 days, while rats post-treated with the same dose showed recovery in 11 days. The results demonstrate immunomodulatory effects of A. nidulans lectin in Swiss albino mice, resulting in improved immune status of the animals and unfold its curative effect against ulcerative colitis in rat model. This is the first report on immunomodulatory and therapeutic potential of a lectin from microfungi.
Collapse
|
39
|
Arora P, Dilbaghi N, Chaudhury A. Opportunistic invasive fungal pathogen Macrophomina phaseolina prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect. Eur J Clin Microbiol Infect Dis 2011; 31:101-7. [DOI: 10.1007/s10096-011-1275-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
40
|
Agrawal P, Kumar S, Jaiswal YK, Das HR, Das RH. A Mesorhizobium lipopolysaccharide (LPS) specific lectin (CRL) from the roots of nodulating host plant, Cicer arietinum. Biochimie 2011; 93:440-9. [DOI: 10.1016/j.biochi.2010.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
|
41
|
Zhao JK, Zhao YC, Li SH, Wang HX, Ng TB. Isolation and characterization of a novel thermostable lectin from the wild edible mushroom Agaricus arvensis. J Basic Microbiol 2011; 51:304-11. [DOI: 10.1002/jobm.201000267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
|
42
|
|
43
|
Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 2010; 30:99-126. [PMID: 20105049 DOI: 10.3109/07388550903365048] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide-protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immune stimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | |
Collapse
|
44
|
Zhang G, Sun J, Wang H, Ng TB. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:775-781. [PMID: 20378319 DOI: 10.1016/j.phymed.2010.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 02/04/2010] [Indexed: 05/29/2023]
Abstract
To date only a ribonuclease and a protein with anti-HIV-1 reverse transcriptase activity have been isolated from mushrooms of the genus Russula. In this study a novel lectin, with a molecular weight of 32 kDa, and a unique N-terminal sequence different from other lectins, was isolated from the mushroom Russula lepida. It represents the first lectin isolated from Russula mushrooms. The purification scheme involved (NH4)2SO4 precipitation, ion exchange chromatography on diethylaminoethyl DEAE-cellulose and SP-Sepharose, and fast protein liquid chromatography-gel filtration on Superdex 75. The hemagglutinating activity of the lectin (RLL) was inhibited by inulin and O-nitrophenyl-beta-D-galacto-pyranoside. The lectin was stable at temperatures up to 70 degrees C (half of the activity was preserved at 80 degrees C), and in the presence of NaOH or HCl solutions up to a concentration of 12.5 mM. Its hemagglutinating activity was reduced in the presence of Mn2+, Co2+, and Hg2+ ions, and enhanced by Cu2+ ions. It exhibited antiproliferative activity toward hepatoma Hep G2 cells and human breast cancer MCF-7 cells with an IC(50) of 1.6 microM and 0.9 microM, respectively. Daily intraperitoneal injections of RLL (5.0 mg/kg body weight/day for 20 days) brought about 67.6% reduction in the weight of S-180 tumor. RLL was devoid of antifungal, ribonuclease, and HIV-1 reverse transcriptase inhibitory activities.
Collapse
Affiliation(s)
- G Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
45
|
A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J Biomed Biotechnol 2010; 2010:716515. [PMID: 20625408 PMCID: PMC2896861 DOI: 10.1155/2010/716515] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 12/04/2022] Open
Abstract
A lectin designated as Hericium erinaceum agglutinin (HEA) was isolated from dried fruiting bodies of the mushroom Hericium erinaceum with a chromatographic procedure which entailed DEAE-cellulose, CM-cellulose, Q-Sepharose, and FPLC Superdex 75. Its molecular mass was estimated to be 51 kDa and its N-terminal amino acid sequences was distinctly different from those of other isolated mushroom lectins. The hemagglutinating activity of HEA was inhibited at the minimum concentration of 12.5 mM by inulin. The lectin was stable at pH 1.9–12.1 and at temperatures up to 70°C, but was inhibited by Hg2+, Cu2+, and Fe3+ ions. The lectin exhibited potent mitogenic activity toward mouse splenocytes, and demonstrated antiproliferative activity toward hepatoma (HepG2) and breast cancer (MCF7) cells with an IC50 of 56.1 μM and 76.5 μM, respectively. It manifested HIV-1 reverse transcriptase inhibitory activity with an IC50 of 31.7 μM. The lectin exhibited potent mitogenic activity toward murine splenocytes but was devoid of antifungal activity.
Collapse
|
46
|
Purification and characterization of a mitogenic lectin from cephalosporium, a pathogenic fungus causing mycotic keratitis. Biochem Res Int 2010; 2010:854656. [PMID: 21188078 PMCID: PMC3008968 DOI: 10.1155/2010/854656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/23/2010] [Indexed: 12/03/2022] Open
Abstract
Ophthalmic mycoses caused by infectious fungi are being recognized as a serious concern since they lead to total blindness. Cephalosporium is one amongst several opportunistic fungal species implicated in ophthalmic infections leading to mycotic keratitis. A mitogenic lectin has been purified from the mycelia of fungus Cephalosporium, isolated from the corneal smears of a keratitis patient. Cephalosporium lectin (CSL) is a tetramer with subunit mass of 14 kDa, agglutinates human A, B, and O erythrocytes, and exhibits high affinity for mucin compared to fetuin and asialofetuin but does not bind to simple sugars indicating its complex sugar specificity. CSL showed strong binding to normal
human peripheral blood mononuclear cells (PBMCs) to elicit mitogenic activity. The sugar specificity of the lectin and its interaction with PBMCs to exhibit mitogenic effect indicate its possible role in adhesion and infection process of Cephalosporium.
Collapse
|
47
|
A potent mitogenic lectin from the mycelia of a phytopathogenic fungus, Rhizoctonia bataticola, with complex sugar specificity and cytotoxic effect on human ovarian cancer cells. Glycoconj J 2010; 27:375-86. [DOI: 10.1007/s10719-010-9285-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
48
|
da Silva RF, Barros ACDA, Pletsch M, Cavalcante Malta Argolo AC, de Araujo BS. Study on the scavenging and anti-Staphylococcus aureus activities of the extracts, fractions and subfractions of two Volvariella volvacea strains. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0355-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Zhao S, Zhao Y, Li S, Zhao J, Zhang G, Wang H, Ng TB. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj J 2010; 27:259-65. [DOI: 10.1007/s10719-009-9274-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Khan F, Ahmad A, Khan MI. Steady State and Time Resolved Fluorescence Quenching and Chemical Modification Studies of a Lectin from Endophytic Fungus Fusarium solani. J Fluoresc 2009; 20:305-13. [DOI: 10.1007/s10895-009-0556-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
|