1
|
Yan XL, Li J, Ma QQ, Wang HJ, Li L, Zhao H, Qin CF, Li XF. Identification of mutations in viral proteins involved in cell adaptation using a reverse genetic system of the live attenuated hepatitis A virus vaccine H2 strain. Virol Sin 2024:S1995-820X(24)00131-7. [PMID: 39151705 DOI: 10.1016/j.virs.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The live attenuated hepatitis A virus vaccine H2 strain was developed by passaging a wild-type H2w isolate in cell cultures. Currently, the mechanism underlying its attenuation phenotype remain largely unknown. In this study, we generated a full-length infectious cDNA clone of the H2 strain using in-fusion techniques. The recovered H2 strain (H2ic) from the cDNA clone exhibited an efficient replication in both the hepatoma cell line Huh7.5.1 and the 2BS cell line used for vaccine production, similar to the parental H2 strain. Additionally, H2ic did not cause disease in Ifnar1-/- C57 mice, consistent with the H2 strain. To explore the cell-adaptive mutations of the H2 strain, chimeric viruses were generated by replacing its non-structural proteins with corresponding regions from H2w using the infectious cDNA clone as a genetic backbone. The chimeric viruses carrying the 3C or 3D proteins from H2w showed decreased replication in Huh7.5.1 and 2BS cell lines compared to H2ic. Other chimeric viruses containing the 2B, 2C, or 3A proteins from H2w failed to be recovered. Furthermore, there were no significant differences in disease manifestation in mice between H2ic and the recovered chimeric viruses. These results demonstrate that adaptive mutations in the 2B, 2C, and 3A proteins are essential for efficient replication of the H2 strain in cell cultures. Mutations in the 3C and 3D proteins contribute to enhanced replication in cell cultures but did not influence the attenuated phenotypes in mice. Together, this study presents the first reverse genetic system of the H2 strain and identifies viral proteins essential for adaptation to cell cultures.
Collapse
Affiliation(s)
- Xiu-Li Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jian Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China; School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qing-Qing Ma
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hong-Jiang Wang
- Department of Research, The Chinese People's Liberation Army Strategic Support Force Medical Center, Beijing, 100101, China
| | - Lin Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China; School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Xiao-Feng Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
2
|
McKnight KL, Lemon SM. Hepatitis A Virus Genome Organization and Replication Strategy. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033480. [PMID: 29610147 DOI: 10.1101/cshperspect.a033480] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the genus Hepatovirus of the family Picornaviridae It is an ancient virus with a long evolutionary history and multiple features of its capsid structure, genome organization, and replication cycle that distinguish it from other mammalian picornaviruses. HAV proteins are produced by cap-independent translation of a single, long open reading frame under direction of an inefficient, upstream internal ribosome entry site (IRES). Genome replication occurs slowly and is noncytopathic, with transcription likely primed by a uridylated protein primer as in other picornaviruses. Newly produced quasi-enveloped virions (eHAV) are released from cells in a nonlytic fashion in a unique process mediated by interactions of capsid proteins with components of the host cell endosomal sorting complexes required for transport (ESCRT) system.
Collapse
Affiliation(s)
- Kevin L McKnight
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
3
|
Seggewiß N, Kruse HV, Weilandt R, Domsgen E, Dotzauer A, Paulmann D. Cellular localization and effects of ectopically expressed hepatitis A virus proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC. Arch Virol 2015; 161:851-65. [PMID: 26711455 DOI: 10.1007/s00705-015-2723-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 11/26/2022]
Abstract
In the course of hepatitis A virus (HAV) infections, the seven nonstructural proteins and their intermediates are barely detectable. Therefore, little is known about their functions and mechanisms of action. Ectopic expression of the presumably membrane-associated proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC allowed the intracellular localization of these proteins and their possible function during the replication cycle of HAV to be investigated. In this study, we used rhesus monkey kidney cells, which are commonly used for cell culture experiments, and human liver cells, which are the natural target cells. We detected specific associations of these proteins with distinct membrane compartments and the cytoskeleton, different morphological alterations of the respective structures, and specific effects on cellular functions. Besides comparable findings in both cell lines used with regard to localization and effects of the proteins examined, we also found distinct differences. The data obtained identify so far undocumented interactions with and effects of the HAV proteins investigated on cellular components, which may reflect unknown aspects of the interaction of HAV with the host cell, for example the modification of the ERGIC (ER-Golgi intermediate compartment) structure, an interaction with lipid droplets and lysosomes, and inhibition of the classical secretory pathway.
Collapse
Affiliation(s)
- Nicole Seggewiß
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, Bremen, Germany
| | - Hedi Verena Kruse
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, Bremen, Germany
| | - Rebecca Weilandt
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, Bremen, Germany
| | - Erna Domsgen
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, Bremen, Germany
- Department of Medicine Huddinge, Karolinska Institutet, Center for Infectious Medicine (CIM), Karolinska University Hospital Huddinge, F59, 141 86, Stockholm, Sweden
| | - Andreas Dotzauer
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, Bremen, Germany
| | - Dajana Paulmann
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, Bremen, Germany.
| |
Collapse
|
4
|
Abstract
Hepatitis A virus (HAV) is a faeco-orally transmitted picornavirus and is one of the main causes of acute hepatitis worldwide. An overview of the molecular biology of HAV is presented with an emphasis on recent findings. Immune evasion strategies and a possible correlation between HAV and atopy are discussed as well. Despite the availability of efficient vaccines, antiviral drugs targeting HAV are required to treat severe cases of fulminant hepatitis, contain outbreaks, and halt the potential spread of vaccine-escape variants. Additionally, such drugs could be used to shorten the period of illness and decrease associated economical costs. Several known inhibitors of HAV with various mechanisms of action will be discussed. Since none of these molecules is readily useable in the clinic and since the availability of an anti-HAV drug would be of clinical importance, increased efforts should be targeted toward discovery and development of such antivirals.
Collapse
Affiliation(s)
- Yannick Debing
- Rega Institute for Medical ResearchUniversity of LeuvenLeuvenBelgium
| | - Johan Neyts
- Rega Institute for Medical ResearchUniversity of LeuvenLeuvenBelgium
| | | |
Collapse
|
5
|
Zhang SC, Zhang G, Yang L, Chisholm J, Sanfaçon H. Evidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix. J Virol 2005; 79:11752-65. [PMID: 16140753 PMCID: PMC1212610 DOI: 10.1128/jvi.79.18.11752-11765.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/28/2005] [Indexed: 12/18/2022] Open
Abstract
The NTB-VPg protein of Tomato ringspot nepovirus is an integral membrane protein found in association with endoplasmic reticulum (ER)-derived membranes active in virus replication. A transmembrane helix present in a hydrophobic region at the C terminus of the NTB domain was previously shown to traverse the membranes, resulting in the translocation of the VPg domain in the lumen. We have now conducted an in planta analysis of membrane-targeting domains within NTB-VPg using in-frame fusions to the green fluorescent protein (GFP). As expected, the entire NTB-VPg protein directed the GFP fluorescence to ER membranes. GFP fusion proteins containing the C-terminal 86 amino acids of NTB-VPg also associated with ER membranes, resulting in ER-specific glycosylation at a naturally occurring glycosylation site in the VPg domain. Deletion of the hydrophobic region prevented the membrane association. The N-terminal 80 amino acids of NTB were also sufficient to direct the GFP fluorescence to intracellular membranes. A putative amphipathic helix in this region was necessary and sufficient to promote membrane association of the fusion proteins. Using in vitro membrane association assays and glycosylation site mapping, we show that the N terminus of NTB can be translocated in the lumen at least in vitro. This translocation was dependent on the presence of the putative amphipathic helix, suggesting that oligomeric forms of this helix traverse the membrane. Taken together, our results suggest that at least two distinct elements play a key role in the insertion of NTB-VPg in the membranes: a C-terminal transmembrane helix and an N-terminal amphipathic helix. An updated model of the topology of the protein in the membrane is presented.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Pacific Agri-Food Research Centre, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0
| | | | | | | | | |
Collapse
|
6
|
Liu J, Wei T, Kwang J. Membrane-association properties of avian encephalomyelitis virus protein 3A. Virology 2004; 321:297-306. [PMID: 15051389 DOI: 10.1016/j.virol.2004.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 01/03/2004] [Accepted: 01/04/2004] [Indexed: 11/24/2022]
Abstract
Avian encephalomyelitis virus (AEV) protein 3A is a membrane-interacting protein containing a stretch of 21 hydrophobic amino acid residues. Membrane-association property was assayed using chick embryo brain (CEB) cells transfected with the fusion GFP-3A and its various deletion mutants demonstrate that 3A is integrally interacted with membranes by its hydrophobic domain and further defines that the motif of amino acid residues 45-51, the most C-terminal hydrophobic domain essential for this feature. Expression of 3A in transfected CEB cells results in membrane permeability modifications through association of the third motif with membranes, which can be demonstrated by release of lactate dehydrogenase (LDH) into the medium. Furthermore, the localization of the protein 3A in transfected CEB and Cos-7 cells exhibited an overlapping staining pattern with an endoplasmic reticulum (ER) and involved in the disassembly of the Golgi apparatus under double-staining and confocal microscopic observations, whereas the 3A mutants lacking amino acids 45-51 could not localize to the ER and display an intact Golgi morphology as seen in the mutant devoid of the complete hydrophobic domain after transfection. Taken together, our results demonstrate that the motif (aa 45-51) of the transmembrane domain might be fundamental for the stable interaction of the protein 3A with the ER membrane regardless of the cell types. Although this motif was deleted, the resultant protein did not localize to the ER, which directly results in the loss of the ability to block the ER-to-Golgi transport by 3A protein and hence makes the morphology of the Golgi apparatus return to normal.
Collapse
Affiliation(s)
- Jue Liu
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
7
|
Cytotoxicity of HIV- gp41 segments expressed in E. coli. CHINESE SCIENCE BULLETIN = KEXUE TONGBAO 2004; 49:668-671. [PMID: 32214719 PMCID: PMC7089494 DOI: 10.1007/bf03184262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The failed attempt to express HIV-gp41 inE. coli led to the investigation of HIV-gp41 segments, which is responsible for the toxicity toE. coli cells. A series of deletion mutants containing different regions ofgp41 gene were constructed and expressed inE. coli BL21(DE3) strain. After IPTG induction, the high mortality of host bacteria was observed in host bacteria carrying the deletion mutants ofgp41 gene except for those transformed with pET-HN2; coordinately, the mRNA transcripts of thegp41 was rapidly decreased; and the release of [3H]uridine increased upon induction. All these data suggested that GP41 protein has a cytotoxic effect onE. coli, and it is the cytotoxicity of thegp41 gene product that contributes to the high mortality when expressed inE. coli.
Collapse
|
8
|
Kusov Y, Gauss-Müller V. Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented in trans by 3AB and 3ABC. J Virol 1999; 73:9867-78. [PMID: 10559299 PMCID: PMC113036 DOI: 10.1128/jvi.73.12.9867-9878.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orchestrated liberation of viral proteins by 3C(pro)-mediated proteolysis is pivotal for gene expression by picornaviruses. Proteolytic processing is regulated either by the amino acid sequence at the cleavage site of the substrate or by cofactors covalently or noncovalently linked to the viral proteinase. To determine the role of the amino acid sequence at cleavage sites 3A/3B and 3B/3C that are essential for the liberation of 3C(pro) from its precursors and to assess the function of the stable processing intermediates 3AB and 3ABC, we studied the effect of cleavage site mutations on hepatitis A virus (HAV) polyprotein processing, particle formation, and replication. Using the recombinant vaccinia virus system, we showed that the normally retarded cleavage at the 3A/3B junction can be improved by altering the amino acid sequence at the scissile bond such that it matches the preferred HAV 3C cleavage sites. In contrast to the processing products of the wild-type polyprotein, 3ABC was no longer detectable in the mutant. VP0 and VP3 were generated less efficiently, implying that processing of the structural protein precursor P1-2A depends on the presence of stable 3ABC and/or 3AB. In addition, cleavage of 2BC was impaired in 3AB/3ABC-deficient mutants. Formation of HAV particles was not affected in mutants with blocked 3A/3B and/or 3B/3C cleavage sites. However, 3ABC-deficient mutants produced small numbers of HAV particles, which could be augmented by coexpressing 3AB or 3ABC. The hydrophobic domain of 3A that has been proposed to mediate membrane anchorage of the replication complex was crucial for restoration of defective particle formation. In vitro transcripts of the various cleavage site mutants were unable to initiate an infectious cycle, and no progeny viruses were obtained even after blind passages. Taken together, the data suggest that accumulation of uncleaved HAV 3AB and/or 3ABC is pivotal for both viral replication and efficient particle formation.
Collapse
Affiliation(s)
- Y Kusov
- Institute for Medical Microbiology and Hygiene, Medical University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
9
|
Beneduce F, Ciervo A, Kusov Y, Gauss-Müller V, Morace G. Mapping of protein domains of hepatitis A virus 3AB essential for interaction with 3CD and viral RNA. Virology 1999; 264:410-21. [PMID: 10562502 DOI: 10.1006/viro.1999.0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small hydrophobic protein 3AB of the picornaviruses, encompassing the replication primer 3B, has been suggested to anchor the viral replication complex to membranes. For hepatitis A virus (HAV) 3AB, we have previously demonstrated its ability to form stable homodimers, to bind to membranes, and to interact specifically with RNA, implicating its multiple involvement in viral replication. In the present report, we show that HAV 3AB additionally interacts with HAV protein 3CD, a feature also described for the corresponding polypeptide of poliovirus. By assessing the interactions of three deletion mutants, distinct domains of HAV 3AB were mapped. The hydrophobic domain and the 3B moiety were found to be essential for the 3AB interaction with 3CD. Both electrostatic and hydrophobic forces are involved in this interaction. The cluster of charged amino acid residues at the C terminus of 3A seems to determine the specificity of 3AB interaction with RNA structures formed at either terminus of the HAV genome. Furthermore, our data implicate that 3A can interact with HAV RNA. Compared with poliovirus 3AB, which by itself is a nonspecific RNA-binding protein, HAV 3AB specifically recognizes HAV RNA structures that might be of relevance for initiation of viral RNA replication.
Collapse
Affiliation(s)
- F Beneduce
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy
| | | | | | | | | |
Collapse
|