1
|
Arzuk E, Karakuş F, Orhan H. Bioactivation of clozapine by mitochondria of the murine heart: Possible cause of cardiotoxicity. Toxicology 2020; 447:152628. [PMID: 33166605 DOI: 10.1016/j.tox.2020.152628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023]
Abstract
The mechanism of clozapine-associated cardiotoxicity has not been elucidated. The formation of a reactive nitrenium ion from the drug has been suggested as the cause, however, the reason why the heart is a target remains unknown. The heart is one of the most perfused organs; therefore, it contains a large number of mitochondria per cell; these organelles are responsible for both oxygen metabolism and energy production due to high energy expenditure. Given that mitochondria play critical roles in cellular homeostasis and maintenance, this study tested the hypothesis that cardiac mitochondria are both a target and initiator of clozapine-induced cardiotoxicity through activating the drug. We investigated whether murine heart receives a relatively high amount of systemically administered drug (20 mg/kg, i.p., Wistar albino rats) and whether cardiac mice (Swiss albino) and rat (Wistar albino) mitochondria locally activate clozapine (100 μM) to a reactive metabolite. We observed a relatively large distribution of clozapine to heart tissue as well as the formation of reactive metabolites by cardiac mitochondria in situ. Mitochondrial cytochrome P450 enzymes (CYP) in cardiac tissue responsible for biotransformation of clozapine were also characterized. CYP3A4 has been found to be the major enzyme catalyzes CLZ bioactivation, while CYP1A largely and CYP3A4 partially catalyzes the formation of stable metabolites of CLZ. At 100 μM concentration, clozapine caused a significant decline in mitochondrial oxygen consumption rate in vitro as much as positive control (antimycin A), while it did not induce mitochondrial permeability transition pore opening. These data provide an explanation as to why the heart is a target for clozapine adverse effects.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Bornova-İzmir, Turkey
| | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Bornova-İzmir, Turkey
| | - Hilmi Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Bornova-İzmir, Turkey.
| |
Collapse
|
2
|
Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:15-35. [PMID: 30362088 DOI: 10.1007/978-3-319-98788-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.
Collapse
|
3
|
Omura T, Gotoh O. Evolutionary origin of mitochondrial cytochrome P450. J Biochem 2017; 161:399-407. [DOI: 10.1093/jb/mvx011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
|
4
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
5
|
Ewen KM, Ringle M, Bernhardt R. Adrenodoxin-A versatile ferredoxin. IUBMB Life 2012; 64:506-12. [DOI: 10.1002/iub.1029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 11/07/2022]
|
6
|
At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:200-9. [PMID: 20619364 DOI: 10.1016/j.bbapap.2010.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C₂₁ steroids (progesterone derivatives) and delta5-C₂₁ steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C₁₉-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.
Collapse
|
7
|
Abstract
Cytochrome P450 enzyme system consists of P450 and its NAD(P)H-linked reductase or reducing system, and catalyses monooxygenation reactions. The most prevalent type in eukaryotic organisms is 'microsomes type', which consists of membrane-bound P450 and NADPH-P450 reductase. The second type is 'mitochondria type', in which P450 is bound to the inner membrane while the reducing system consisting of an NADPH-linked flavoprotein and a ferredoxin-type iron-sulphur protein is soluble in the matrix space. The third type is 'bacteria type', in which both P450 and the reducing system are soluble in the cytoplasm. In addition to these three types, several forms of P450-reductase fusion proteins have been found in prokaryotic organisms. On the other hand, some P450s catalyse the re-arrangement of the oxygen atoms in the substrate molecules that does not require the supply of reducing equivalents for the reaction. A peculiar P450, P450nor, receives electrons directly from NADH for the reduction of nitric oxide.
Collapse
Affiliation(s)
- Tsuneo Omura
- Kyushu University, Kyushu University, Fukuoka, Fukuoka 811-8582, Japan.
| |
Collapse
|
8
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
9
|
Pechurskaya TA, Harnastai IN, Grabovec IP, Gilep AA, Usanov SA. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochem Biophys Res Commun 2006; 353:598-604. [PMID: 17188650 DOI: 10.1016/j.bbrc.2006.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/08/2006] [Indexed: 11/23/2022]
Abstract
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.
Collapse
Affiliation(s)
- Tatiana A Pechurskaya
- Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141, Belarus
| | | | | | | | | |
Collapse
|
10
|
Omura T. Mitochondrial P450s. Chem Biol Interact 2006; 163:86-93. [DOI: 10.1016/j.cbi.2006.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 01/08/2023]
|
11
|
Yuan ZB, Han TQ, Jiang ZY, Fei J, Zhang Y, Qin J, Tian ZJ, Shang J, Jiang ZH, Cai XX, Jiang Y, Zhang SD. Expression profiling suggests a regulatory role of gallbladder in lipid homeostasis. World J Gastroenterol 2005; 11:2109-16. [PMID: 15810076 PMCID: PMC4305779 DOI: 10.3748/wjg.v11.i14.2109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine expression profile of gallbladder using microarray and to investigate the role of gallbladder in lipid homeostasis.
METHODS: 33P-labelled cDNA derived from total RNA of gallbladder tissue was hybridized to a cDNA array representing 17000 cDNA clusters. Genes with intensities ≥2 and variation <0.33 between two samples were considered as positive signals with subtraction of background chosen from an area where no cDNA was spotted. The average gray level of two gallbladders was adopted to analyze its bioinformatics. Identified target genes were confirmed by touch-down polymerase chain reaction and sequencing.
RESULTS: A total of 11 047 genes expressed in normal gallbladder, which was more than that predicted by another author, and the first 10 genes highly expressed (high gray level in hybridization image), e.g., ARPC5 (2225.88±90.46), LOC55972 (2220.32±446.51) and SLC20A2 (1865.21±98.02), were related to the function of smooth muscle contraction and material transport. Meanwhile, 149 lipid-related genes were expressed in the gallbladder, 89 of which were first identified (with gray level in hybridization image), e.g., FASN (11.42±2.62), APOD (92.61±8.90) and CYP21A2 (246.11±42.36), and they were involved in each step of lipid metabolism pathway. In addition, 19 of those 149 genes were gallstone candidate susceptibility genes (with gray level in hybridization image), e.g., HMGCR (10.98±0.31), NPC1 (34.88±12.12) and NR1H4 (16.8±0.65), which were previously thought to be expressed in the liver and/or intestine tissue only.
CONCLUSION: Gallbladder expresses 11 047 genes and takes part in lipid homeostasis.
Collapse
Affiliation(s)
- Zuo-Biao Yuan
- Department of Surgery, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96:279-97. [PMID: 12888264 DOI: 10.1016/s0162-0134(03)00152-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | | | |
Collapse
|
13
|
Tosha T, Yoshioka S, Hori H, Takahashi S, Ishimori K, Morishima I. Molecular mechanism of the electron transfer reaction in cytochrome P450(cam)--putidaredoxin: roles of glutamine 360 at the heme proximal site. Biochemistry 2002; 41:13883-93. [PMID: 12437345 DOI: 10.1021/bi0261037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We characterized electron transfer (ET) from putidaredoxin (Pdx) to the mutants of cytochrome P450(cam) (P450(cam)), in which one of the residues located on the putative binding site to Pdx, Gln360, was replaced with Glu, Lys, and Leu. The kinetic analysis of the ET reactions from reduced Pdx to ferric P450(cam) (the first ET) and to ferrous oxygenated P450(cam) (the second ET) showed the dissociation constants (K(m)) that were moderately perturbed for the Lys and Leu mutants and the distinctly increased for the Glu mutant. Although the alterations in K(m) indicate that Gln360 is located at the Pdx binding site, the effects of the Gln360 mutations (0.66-20-fold of that of wild type) are smaller than those of the Arg112 mutants (25-2500-fold of that of wild type) [Unno, M., et al. (1996) J. Biol. Chem. 271, 17869-17874], allowing us to conclude that Gln360 much less contributes to the complexation with Pdx than Arg112. The first ET rate (35 s(-1) for wild-type P450(cam)) was substantially reduced in the Glu mutant (5.4 s(-1)), while less perturbation was observed for the Lys (53 s(-1)) and Leu (23 s(-1)) mutants. In the second ET reaction, the retarded ET rate was detected only in the Glu mutant but not in the Lys and Leu mutants. These results showed the smaller mutational effects of Gln360 on the ET reactions than those of the Arg112 mutants. In contrast to the moderate perturbations in the kinetic parameters, the mutations at Gln360 significantly affected both the standard enthalpy and entropy of the redox reaction of P450(cam), which cause the negative shift of the redox potentials for the Fe(3+)/Fe(2+) couple by 20-70 mV. Since the amide group of Gln360 is located near the carbonyl oxygen of the amide group of the axial cysteine, it is plausible that the mutation at Gln360 perturbs the electronic interaction of the axial ligand with heme iron, resulting in the reduction of the redox potentials. We, therefore, conclude that Gln360 primarily regulates the ET reaction of P450(cam) by modulating the redox potential of the heme iron and not by the specific interaction with Pdx or the formation of the ET pathway that are proposed as the regulation mechanism of Arg112.
Collapse
Affiliation(s)
- Takehiko Tosha
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Hlavica P, Lewis DF. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4817-32. [PMID: 11559350 DOI: 10.1046/j.1432-1327.2001.02412.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of monooxygenase activity is shown to occur with diverse cytochrome P450 isoforms and is characterized by kinetic patterns deviating from the Michaelis-Menten model. Homotropic and heterotropic phenomena are encountered in both substrate activation and productive coupling of the electron donors NADPH-cytochrome P450 reductase and cytochrome b5, and the lipid environment of the system also appears to play a role as an effector. Circumstantial analysis reveals the components of the electron transfer chain to be mutually beneficial in interactions with each other depending on the substrate used and type of cytochrome P450 operative. It is noteworthy that association of diatomic gaseous ligands may be amenable to allosteric regulation as well. Thus, dioxygen binding to cytochrome P450 displays nonhyperbolic kinetic profiles in the presence of certain substrates; the latter, together with redox proteins such as cytochrome b5, can exert efficient control of the abortive breakdown of the oxyferrous intermediates formed. Similarly, substrates may modulate the structural features of the access channel for solutes such as carbon monoxide in specific cytochrome P450 isozymes to either facilitate or impair ligand diffusion to the heme iron. The in vivo importance of allosteric regulation of enzyme activity is discussed in detail.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| | | |
Collapse
|