1
|
Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms221810068. [PMID: 34576228 PMCID: PMC8468037 DOI: 10.3390/ijms221810068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.
Collapse
|
2
|
The Potential of Angiogenin as a Serum Biomarker for Diseases: Systematic Review and Meta-Analysis. DISEASE MARKERS 2018; 2018:1984718. [PMID: 29736193 PMCID: PMC5875026 DOI: 10.1155/2018/1984718] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022]
Abstract
Background Angiogenin (ANG) is a multifunctional angiogenic protein that participates in both normal development and diseases. Abnormal serum ANG levels are commonly reported in various diseases. However, whether ANG can serve as a diagnostic or prognostic marker for different diseases remains a matter of debate. Methods Here, we performed a systematic review and meta-analysis of the literature utilizing PubMed, Web of Science, and Scopus search engines to identify all publications comparing plasma or serum ANG levels between patients with different diseases and healthy controls, as were studies evaluating circulating ANG levels in healthy populations, pregnant women, or other demographic populations. Results This study demonstrated that the serum ANG concentration in healthy populations was 336.14 ± 142.83 ng/ml and remained relatively stable in different populations and regions. We noted no significant differences in serum ANG levels between patients and healthy controls, except in cases in which patients suffered from cancer or cardiovascular diseases. The serum ANG concentrations were significantly higher in patients who developed colorectal cancer, acute myeloid leukemia, multiple myeloma, myelodysplastic syndromes, and heart failure than those in healthy controls. Conclusion ANG has the potential of being a serum biomarker for cancers and cardiovascular diseases.
Collapse
|
3
|
Mol P, Kannegundla U, Dey G, Gopalakrishnan L, Dammalli M, Kumar M, Patil AH, Basavaraju M, Rao A, Ramesha KP, Prasad TSK. Bovine Milk Comparative Proteome Analysis from Early, Mid, and Late Lactation in the Cattle Breed, Malnad Gidda (Bos indicus). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:223-235. [PMID: 29389253 DOI: 10.1089/omi.2017.0162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine milk is important for both veterinary medicine and human nutrition. Understanding the bovine milk proteome at different stages of lactation has therefore broad significance for integrative biology and clinical medicine as well. Indeed, different lactation stages have marked influence on the milk yield, milk constituents, and nourishment of the neonates. We performed a comparative proteome analysis of the bovine milk obtained at different stages of lactation from the Indian indigenous cattle Malnad Gidda (Bos indicus), a widely available breed. The milk differential proteome during the lactation stages in B. indicus has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins at early, mid, and late lactation stages, we identified a total of 564 proteins, out of which 403 proteins were found to be differentially abundant at different lactation stages. As is expected of any body fluid proteome, 51% of the proteins identified in the milk were found to have signal peptides. Gene ontology analyses were carried out to categorize proteins altered across different lactation stages based on biological process and molecular function, which enabled us to correlate their significance in each lactation stage. We also investigated the potential pathways enriched in different lactation stages using bioinformatics pathway analysis tools. To the best of our knowledge, this study represents the first and largest inventory of milk proteins identified to date for an Indian cattle breed. We believe that the current study broadly informs both veterinary omics research and the emerging field of nutriproteomics during lactation stages.
Collapse
Affiliation(s)
- Praseeda Mol
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Gourav Dey
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Lathika Gopalakrishnan
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Manjunath Dammalli
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,6 Department of Biotechnology, Siddaganga Institute of Technology , Tumkur, India
| | - Manish Kumar
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,7 School of Biotechnology, KIIT University , Bhubaneswar, India
| | | | - Akhila Rao
- 3 National Dairy Research Institute , Bangalore, India
| | | | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India
| |
Collapse
|
4
|
Spicer LJ, Schütz LF, Williams JA, Schreiber NB, Evans JR, Totty ML, Gilliam JN. G protein-coupled receptor 34 in ovarian granulosa cells of cattle: changes during follicular development and potential functional implications. Domest Anim Endocrinol 2017; 59:90-99. [PMID: 28040605 PMCID: PMC5357439 DOI: 10.1016/j.domaniend.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Abundance of G protein-coupled receptor 34 (GPR34) mRNA is greater in granulosa cells (GCs) of cystic vs normal follicles of cattle. The present experiments were designed to determine if GPR34 mRNA in granulosa cell [GC] changes during selection and growth of dominant follicles in cattle as well as to investigate the hormonal regulation of GPR34 mRNA in bovine GC in vitro. In Exp. 1, estrous cycles of nonlactating cows were synchronized and then ovariectomized on either day 3-4 or 5-6 after ovulation. GPR34 mRNA abundance in GC was 2.8- to 3.8-fold greater (P < 0.05) in small (1-5 mm) and large (≥8 mm) estrogen-inactive dominant follicles than in large estrogen-active follicles. Also, GPR34 mRNA tended to be greater (P < 0.10) in F2 than F1 follicles on day 3-4 postovulation. In Exp. 2-7, ovaries were collected at an abattoir and GC were isolated and treated in vitro. Expression of GPR34 was increased (P < 0.05) 2.2-fold by IGF1. Tumor necrosis factor (TNF)-α decreased (P < 0.05) the IGF1-induced GPR34 mRNA abundance in small-follicle GC, whereas IGF1 decreased (P < 0.05) GPR34 expression by 45% in large-follicle GC. Treatment of small-follicle GC with either IL-2, prostaglandin E2 or angiogenin decreased (P < 0.05) GPR34 expression, whereas FSH, cortisol, wingless 3A, or hedgehog proteins did not affect (P > 0.10) GPR34 expression. In Exp. 6 and 7, 2 presumed ligands of GPR34, L-a-lysophosphatidylserine (LPPS) and LPP-ethanolamine, increased (P < 0.05) GC numbers and estradiol production by 2-fold or more in small-follicle GC, and this response was only observed in IGF1-treated GC. In conclusion, GPR34 is a developmentally and hormonally regulated gene in GC, and its presumed ligands enhance IGF1-induced proliferation and steroidogenesis of bovine GC.
Collapse
Affiliation(s)
- L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J A Williams
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Abstract
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.
Collapse
|
6
|
Sousa LMMDC, Mendes GP, Campos DB, Baruselli PS, Papa PDC. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum. PLoS One 2016; 11:e0164089. [PMID: 27711194 PMCID: PMC5053489 DOI: 10.1371/journal.pone.0164089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/18/2016] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1—the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2—the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3—the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular matrix (ECM).
Collapse
Affiliation(s)
| | - Gabriela Pacheco Mendes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Danila Barreiro Campos
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Paraíba, Areia, Paraíba, Brazil
| | - Pietro Sampaio Baruselli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Paula de Carvalho Papa
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Koczera P, Martin L, Marx G, Schuerholz T. The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. Int J Mol Sci 2016; 17:ijms17081278. [PMID: 27527162 PMCID: PMC5000675 DOI: 10.3390/ijms17081278] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
In humans, the ribonuclease A (RNase A) superfamily contains eight different members that have RNase activities, and all of these members are encoded on chromosome 14. The proteins are secreted by a large variety of different tissues and cells; however, a comprehensive understanding of these proteins’ physiological roles is lacking. Different biological effects can be attributed to each protein, including antiviral, antibacterial and antifungal activities as well as cytotoxic effects against host cells and parasites. Different immunomodulatory effects have also been demonstrated. This review summarizes the available data on the human RNase A superfamily and illustrates the significant role of the eight canonical RNases in inflammation and the host defence system against infections.
Collapse
Affiliation(s)
- Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
- Department for Experimental Molecular Imaging, University Hospital RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| |
Collapse
|
8
|
Sheng J, Xu Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin (Shanghai) 2016; 48:399-410. [PMID: 26705141 DOI: 10.1093/abbs/gmv131] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
As a member of the vertebrate-specific secreted ribonucleases, angiogenin (ANG) was first isolated and identified solely by its ability to induce new blood vessel formation, and now, it has been recognized to play important roles in various physiological and pathological processes through regulating cell proliferation, survival, migration, invasion, and/or differentiation. ANG exhibits very weak ribonucleolytic activity that is critical for its biological functions, and exerts its functions through activating different signaling transduction pathways in different target cells. A series of recent studies have indicated that ANG contributes to cellular nucleic acid metabolism. Here, we comprehensively review the results of studies regarding the structure, mechanism, and function of ANG over the past three decades. Moreover, current problems and future research directions of ANG are discussed. The understanding of the function and mechanism of ANG in a wide context will help to better delineate its roles in diseases, especially in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinghao Sheng
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
9
|
Dentis JL, Schreiber NB, Gilliam JN, Schutz LF, Spicer LJ. Changes in brain ribonuclease (BRB) messenger RNA in granulosa cells (GCs) of dominant vs subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GCs. Domest Anim Endocrinol 2016; 55:32-40. [PMID: 26773365 PMCID: PMC4779677 DOI: 10.1016/j.domaniend.2015.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GCs) during development of bovine dominant ovarian follicles and to determine the hormonal regulation of BRB in GCs. Estrous cycles of Holstein cows (n = 18) were synchronized, and cows were ovariectomized on either day 3 to 4 or day 5 to 6 after ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GCs were collected for RNA isolation and quantitative polymerase chain reaction. Follicles were categorized as small (1-5 mm; pooled per ovary), medium (5-8 mm; individually collected), or large (8.1-17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by radioimmunoassay (RIA) in FFL. Abundance of BRB messenger RNA (mRNA) in GCs was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66), and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GCs BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = -0.65) and E2:P4 ratio (r = -0.46). In experiment 2, GCs from large (8-22 mm diameter) and small (1-5 mm diameter) follicles were treated with insulin-like growth factor 1 (IGF1; 0 or 30 ng/mL) and/or tumor necrosis factor alpha (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance, and tumor necrosis factor alpha decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GCs. In experiment 3 to 6, E2, follicle-stimulating hormone, fibroblast growth factor 9, cortisol, wingless 3A, or sonic hedgehog did not affect (P > 0.10) abundance of BRB mRNA in GCs; thyroxine and luteinizing hormone increased (P < 0.05), whereas prostaglandin E2 (PGE2) decreased (P < 0.05) BRB mRNA abundance in small-follicle GCs. Treatment of small-follicle GCs with recombinant human RNase1 increased (P < 0.05) GCs numbers and E2 production. In conclusion, BRB is a hormonally and developmentally regulated gene in bovine GCs and may regulate E2 production during follicular growth in cattle.
Collapse
Affiliation(s)
- J L Dentis
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L F Schutz
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
10
|
Mami I, Bouvier N, El Karoui K, Gallazzini M, Rabant M, Laurent-Puig P, Li S, Tharaux PL, Beaune P, Thervet E, Chevet E, Hu GF, Pallet N. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury. J Am Soc Nephrol 2015. [PMID: 26195817 DOI: 10.1681/asn.2015020196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism.
Collapse
Affiliation(s)
- Iadh Mami
- Institut National de la Sante et de la Recherche Médicale (INSERM) U1147, Saints-Pères Research Center Paris, France; Paris Descartes University Paris, France
| | | | - Khalil El Karoui
- Paris Descartes University Paris, France; INSERM U1151, Sick Childrens Necker Institute Paris, France
| | - Morgan Gallazzini
- Paris Descartes University Paris, France; INSERM U1151, Sick Childrens Necker Institute Paris, France
| | - Marion Rabant
- Paris Descartes University Paris, France; Pathology Department, Necker Hospital Paris, France
| | - Pierre Laurent-Puig
- Institut National de la Sante et de la Recherche Médicale (INSERM) U1147, Saints-Pères Research Center Paris, France; Paris Descartes University Paris, France; Clinical Chemistry and
| | - Shuping Li
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | | | - Philippe Beaune
- Institut National de la Sante et de la Recherche Médicale (INSERM) U1147, Saints-Pères Research Center Paris, France; Paris Descartes University Paris, France; Clinical Chemistry and
| | - Eric Thervet
- Paris Descartes University Paris, France; Nephrology Departments, Georges Pompidou European Hospital Paris, France
| | - Eric Chevet
- INSERM, UMR-U1053, Team Endoplasmic Reticulum Stress and Cancer, Bordeaux, France
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Nicolas Pallet
- Institut National de la Sante et de la Recherche Médicale (INSERM) U1147, Saints-Pères Research Center Paris, France; Paris Descartes University Paris, France; Clinical Chemistry and Nephrology Departments, Georges Pompidou European Hospital Paris, France;
| |
Collapse
|
11
|
Aad PY, Echternkamp SE, Sypherd DD, Schreiber NB, Spicer LJ. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems. Biol Reprod 2012; 87:79. [PMID: 22811575 DOI: 10.1095/biolreprod.111.096735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hedgehog signaling is involved in regulation of ovarian function in Drosophila, but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or theca (TC) cells of small (1-5 mm) antral follicles by in situ hybridization and of larger (5-17 mm) antral follicles by real-time RT-PCR from ovaries of cyclic cows genetically selected (Twinner) or not selected (control) for twin ovulations. Expression of IHH mRNA was localized to GC and cumulus cells, whereas PTCH1 mRNA was greater in TC than in GC. Estrogen-active (E-A; follicular fluid concentration of estradiol > progesterone) versus estrogen-inactive follicles had a greater abundance of mRNA for IHH in GC and PTCH1 in TC. Abundance of IHH mRNA in GC was not affected by cow genotype, whereas TC PTCH1 mRNA was less in large E-A follicles of Twinners than in controls. In vitro, estradiol and wingless-type (WNT) 3A increased IHH mRNA in IGF1-treated GC. IGF1 and BMP4 treatments decreased PTCH1 mRNA in small TC. Estradiol and LH increased PTCH1 mRNA in IGF1-treated TC from large and small follicles, respectively. In summary, functional status of ovarian follicles was associated with differences in hedgehog signaling in GC and TC. We hypothesize that as follicles grow and develop, increased free IGF1 may suppress expression of IHH mRNA by GC and PTCH1 mRNA by TC, and these effects are regulated in a paracrine way by estradiol and other intra- and extragonadal factors.
Collapse
Affiliation(s)
- Pauline Y Aad
- Department of Animal Science, Oklahoma State University, Stillwater, USA
| | | | | | | | | |
Collapse
|
12
|
Schreiber NB, Spicer LJ. Effects of fibroblast growth factor 9 (FGF9) on steroidogenesis and gene expression and control of FGF9 mRNA in bovine granulosa cells. Endocrinology 2012; 153:4491-501. [PMID: 22798350 PMCID: PMC3423607 DOI: 10.1210/en.2012-1003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T(4) and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle.
Collapse
Affiliation(s)
- Nicole B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
13
|
Grado-Ahuir JA, Aad PY, Spicer LJ. New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. J Anim Sci 2011; 89:1769-86. [PMID: 21239663 DOI: 10.2527/jas.2010-3463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ovarian follicular growth and development are regulated by extraovarian and intraovarian factors, which influence granulosa cell proliferation and differentiation. However, the molecular mechanisms that drive follicular growth are not completely understood. Ovarian follicular cysts are one of the most common causes of reproductive failure in dairy cattle. Nevertheless, the primary cause of cyst formation has not been clearly established. A gene expression comparison may aid in elucidating the causes of ovarian cyst disease. Our objective was to identify differentially expressed genes in ovarian granulosa cells between normal dominant and cystic follicles of cattle. Granulosa cells and follicular fluid were isolated from dominant and cystic follicles collected via either ultrasound-guided aspiration from dairy cows (n = 24) or slaughterhouse ovaries from beef cows (n = 23). Hormonal analysis for progesterone, estradiol, and androstenedione in follicular fluid was performed by RIA. Total RNA was extracted and hybridized to 6 Affymetrix GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA). Abundance of mRNA for differentially expressed selected genes was determined through quantitative real-time reverse-transcription PCR. Follicular cysts showed greater (P < 0.05) progesterone, lesser (P < 0.05) estradiol, and no differences (P > 0.10) in androstenedione concentrations compared with noncystic follicles. A total of 163 gene sequences were differentially expressed (P < 0.01), with 19 upregulated and 144 downregulated. From selected target genes, quantitative real-time reverse-transcription PCR confirmed angiogenin, PGE(2) receptor 4, and G-protein coupled receptor 34 genes as upregulated in cystic follicles, and Indian hedgehog protein precursor and secreted frizzled-related protein 4 genes as downregulated in cystic follicles. Further research is required to elucidate the role of these factors in follicular development and cyst formation.
Collapse
Affiliation(s)
- J A Grado-Ahuir
- Department of Animal Science, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
14
|
Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I, Nilsson EE. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev 2008; 75:1457-72. [PMID: 18288646 PMCID: PMC5749411 DOI: 10.1002/mrd.20883] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordinated interactions between ovarian granulosa and theca cells are required for female endocrine function and fertility. To elucidate these interactions the regulation of the granulosa and theca cell transcriptomes during bovine antral follicle development were investigated. Granulosa cells and theca cells were isolated from small (<5 mm), medium (5-10 mm), and large (>10 mm) antral bovine follicles. A microarray analysis of 24,000 bovine genes revealed that granulosa cells and theca cells each had gene sets specific to small, medium and large follicle cells. Transcripts regulated (i.e., minimally changed 1.5-fold) during antral follicle development for the granulosa cells involved 446 genes and for theca cells 248 genes. Only 28 regulated genes were common to both granulosa and theca cells. Regulated genes were functionally categorized with a focus on growth factors and cytokines expressed and regulated by the two cell types. Candidate regulatory growth factor proteins mediating both paracrine and autocrine cell-cell interactions include macrophage inflammatory protein (MIP1 beta), teratocarcinoma-derived growth factor 1 (TDGF1), stromal derived growth factor 1 (SDF1; i.e., CXCL12), growth differentiation factor 8 (GDF8), glia maturation factor gamma (GMFG), osteopontin (SPP1), angiopoietin 4 (ANGPT4), and chemokine ligands (CCL 2, 3, 5, and 8). The current study examined granulosa cell and theca cell regulated genes associated with bovine antral follicle development and identified candidate growth factors potentially involved in the regulation of cell-cell interactions required for ovarian function.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA.
| | | | | | | | | |
Collapse
|
15
|
Correlation Between Sexual Steroids and Angiogenin Secretion in Bovine Ovarian Follicles. Vet Res Commun 2006. [DOI: 10.1007/s11259-006-0037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Youn MR, Park MH, Choi CK, Ahn BC, Kim HY, Kang SS, Hong YK, Joe YA, Kim JS, You WK, Lee HS, Chung SI, Chang SI. Direct binding of recombinant plasminogen kringle 1–3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM. Biochem Biophys Res Commun 2006; 343:917-23. [PMID: 16564503 DOI: 10.1016/j.bbrc.2006.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 microM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin.
Collapse
Affiliation(s)
- Mi-Ran Youn
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ferreira-Dias G, Bravo PP, Mateus L, Redmer DA, Medeiros JA. Microvascularization and angiogenic activity of equine corpora lutea throughout the estrous cycle. Domest Anim Endocrinol 2006; 30:247-59. [PMID: 16140491 DOI: 10.1016/j.domaniend.2005.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/19/2005] [Accepted: 07/22/2005] [Indexed: 01/09/2023]
Abstract
Corpus luteum growth and endocrine function are closely dependent on the formation of new capillaries. The objectives of this study were to evaluate (i) tissue growth and microvascular development in the equine cyclic luteal structures; (ii) in vitro angiogenic activity of luteal tissues in response to luteotrophic (LH, PGE(2)) and luteolytic (PGF(2alpha)) hormones and (iii) to relate data to luteal endocrinological function. Our results show that microvascular density was increased in the early and mid luteal phase, followed by a fall in the late luteal phase and a further decrease in the corpus albicans. Hyperplasia of luteal tissue increased until the mid luteal phase and it was followed by tissue regression. Luteal explants were cultured with no hormone added, or with PGF(2alpha), LH, PGE(2), LH+PGE(2) or LH+PGF(2alpha). Media conditioned by equine luteal tissue from different stages of the luteal phase were able to stimulate mitogenesis of bovine aortic endothelial cells (BAEC), suggesting the presence of angiogenic activity. No difference was observed among luteal structures on their mitogenic capacity, for any treatment used. Nevertheless, Late-CL conditioned-media with PGF(2alpha) showed a significant decrease in BAEC proliferation (p<0.05) and LH+PGF(2alpha) a tendency to reduce mitogenesis. Thus, prostaglandin F(2alpha) may play a role on vascular regression of the CL during the late luteal phase in the mare. These data suggest that luteal angiogenesis and vascular regression in the mare are coordinated with the development of non-vascular tissue and might be regulated by many different factors.
Collapse
Affiliation(s)
- G Ferreira-Dias
- CIISA, Faculdade de Medicina Veterinária, R. Prof. Cid dos Santos, 1300-477 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
18
|
Rajashekhar G, Loganath A, Roy AC, Chong SS, Wong YC. Hypoxia up-regulated angiogenin and down-regulated vascular cell adhesion molecule-1 expression and secretion in human placental trophoblasts. ACTA ACUST UNITED AC 2006; 12:310-9. [PMID: 15979542 DOI: 10.1016/j.jsgi.2005.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Many processes that are involved in cellular invasion, including blastocyst implantation, placental development, and rapidly growing tumors, occur in reduced oxygen environments. It has been surmised that oxygen tension could regulate the cytotrophoblast ability to differentiate and, as a consequence, to express proteins that are critical for placentation. The objective of the current investigation was therefore to test the hypothesis that placental tissues and trophoblast cells in culture, under low oxygen tension, release angiogenic factors that could affect vascular behavior and invasive potential, thus providing a link between abnormal placentation and maternal vascular abnormality. METHODS Functionally active term placental explant culture and trophoblast cultures were used to demonstrate the secretion profiles of angiogenin and vascular cell adhesion molecule-1 (VCAM-1), and the real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) technique was employed to demonstrate the mRNA expression under both normoxic and hypoxic conditions. RESULTS A significant increase in the secretion (P <.01) and mRNA expression (P <.01) of angiogenin and a significant decrease in the secretion (P <.04) and mRNA expression (P <.03) of VCAM-1 from both term placental explants and trophoblast cultures subjected to hypoxia in vitro were observed. CONCLUSION Because the primary defect in uteroplacental insufficiency is placental maldevelopment probably associated with hypoxia in situ, this study provides molecular evidence to indicate that the differential expression and secretion of angiogenic factors may play an important role in these pathologic conditions.
Collapse
Affiliation(s)
- G Rajashekhar
- Department of Obstetrics and Gynaecology, National University Hospital, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
19
|
Erdem CZ, Bayar U, Erdem LO, Barut A, Gundogdu S, Kaya E. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging. Eur J Radiol 2004; 51:48-53. [PMID: 15186884 DOI: 10.1016/j.ejrad.2003.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 07/25/2003] [Accepted: 08/04/2003] [Indexed: 11/16/2022]
Abstract
OBJECTIVE to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. METHOD 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T(p)); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. RESULTS the mean values of T(p) were found to be significantly lower in women with PCOS than in controls (p < 0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p < 0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. CONCLUSION the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS.
Collapse
Affiliation(s)
- C Zuhal Erdem
- Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 67600 Kozlu, Zonguldak, Turkey.
| | | | | | | | | | | |
Collapse
|
20
|
Laschke MW, Cengiz Z, Hoffmann JN, Menger MD, Vollmar B. Latent antithrombin does not affect physiological angiogenesis: an in vivo study on vascularization of grafted ovarian follicles. Life Sci 2004; 75:203-13. [PMID: 15120572 DOI: 10.1016/j.lfs.2003.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
Latent antithrombin (L-AT), a heat-denatured form of native antithrombin (AT), is a potent inhibitor of pathological tumor angiogenesis. In the present study, we have investigated whether L-AT has comparable antiangiogenic effects on physiological angiogenesis of ovarian tissue. For this purpose, preovulatory follicles of Syrian golden hamsters were mechanically isolated and transplanted into dorsal skinfold chambers chronically implanted in L-AT- or AT-treated hamsters. Non-treated animals served as controls. Over 14 days after transplantation neovascularization of the follicular grafts was assessed in vivo by quantitative analysis of the newly developed microvascular network, its microvessel density, the diameter of the microvessels, their red blood cell velocity and volumetric blood flow as well as leukocyte-endothelial cell interaction using fluorescence microscopic techniques. In each group, all of the grafted follicles were able to induce angiogenesis. At day 3 after transplantation, sinusoidal sacculations and capillary sprouts could be observed, finally developing complete glomerulum-like microvascular networks within 5 to 7 days. Overall revascularization of grafted follicles did not differ between the groups studied. Interestingly, follicular grafts in L-AT- and AT-treated hamsters presented with higher values of microvessel diameters and volumetric blood flow, when compared to non-treated controls, which may be best interpreted as a reactive response to an increased release of vasoactive mediators. In conclusion, the present study demonstrates, that L-AT has no adverse effects on physiological angiogenesis of freely transplanted ovarian follicles. Thus, L-AT may be an effective drug in tumor therapy, which blocks tumor growth by selective suppression of tumor vascularization without affecting new vessel formation in the female reproductive system.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
21
|
Lu J, Kunimoto S, Yamazaki Y, Kaminishi M, Esumi H. Kigamicin D, a novel anticancer agent based on a new anti-austerity strategy targeting cancer cells' tolerance to nutrient starvation. Cancer Sci 2004; 95:547-52. [PMID: 15182438 PMCID: PMC11158080 DOI: 10.1111/j.1349-7006.2004.tb03247.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 04/10/2004] [Accepted: 04/21/2004] [Indexed: 11/29/2022] Open
Abstract
Both tolerance to nutrient starvation and angiogenesis are essential for cancer progression because of the insufficient supply of nutrients to tumor tissue. Since chronic nutrient starvation seldom occurs in normal tissue, cancer's tolerance to nutrient starvation should provide a novel target for cancer therapy. In this study, we propose an anti-austerity strategy to exploit the ability of agents to eliminate cancer cells' tolerance to nutrient starvation. We established a simple screening method for agents that inhibit cancer cell viability preferentially during nutrient starvation, using PANC-1 cell line cultured in nutrient-rich and nutrient-deprived media. After screening over 2000 culture media of actinomycetes, we identified a new compound, kigamicin D (C(48)H(59)NO(19)), which shows preferential cytotoxicity to cancer cells under nutrient-deprived conditions, but hardly any cytotoxicity under nutrient-rich conditions. Both subcutaneous and oral administration of kigamicin D strongly suppressed the tumor growth of several tested pancreatic cancer cell lines in nude mice. Moreover, kigamicin D was observed to block the activation of Akt induced by nutrient starvation. Therefore, our results suggest that kigamicin D be a candidate for implementing our novel concept, anti-austerity, which may serve as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Jie Lu
- Investigative Treatment Division, National Cancer Center Research Institute East, Chiba 277-8577, Japan
| | | | | | | | | |
Collapse
|
22
|
Malamitsi-Puchner A, Sarandakou A, Baka S, Hasiakos D, Kouskouni E, Creatsas G. In VitroFertilization: Angiogenic, Proliferative, and Apoptotic Factors in the Follicular Fluid. Ann N Y Acad Sci 2003; 997:124-8. [PMID: 14644818 DOI: 10.1196/annals.1290.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The studies reported investigated the concentrations of angiogenic, proliferative, and apoptotic factors in the follicular fluid (FF) of individual follicles, aspirated from women undergoing controlled ovarian hyperstimulation using a long protocol for IVF treatment. Furthermore, the association of the concentrations of the preceding factors with oocyte maturity was studied. Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiogenin, tissue polypeptide specific antigen (TPS), and soluble Fas (sFas) were all found in the FF of all follicles examined. Moreover, from the angiogenic factors only angiogenin concentrations, and from the apoptotic factors sFas concentrations (the soluble form expressing rather an antiapoptotic function), were positively associated with oocyte maturity, possibly indicating angiogenin's biological role beyond neovascularization and a lower apoptotic rate allowing oocytes to mature. Last, the abundant expression of TPS in FF may be indicative of intense cell proliferation, in cases of ovarian stimulation.
Collapse
Affiliation(s)
- Ariadne Malamitsi-Puchner
- 2nd Department of Obstetrics and Gynecology, University of Athens, 19 Soultani Street, GR-10682 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
23
|
Rajashekhar G, Loganath A, Roy AC, Wong YC. Over-expression and secretion of angiogenin in intrauterine growth retardation placenta. Mol Reprod Dev 2003; 64:397-404. [PMID: 12589651 DOI: 10.1002/mrd.10229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human angiogenin is a potent inducer of neovascularization. There is a strong evidence to suggest that it might be involved in morphological and angiogenic changes in the placenta, that are necessary for a successful fetal outcome during pregnancy. However, its precise role in the pathogenesis of abnormal pregnancies is yet unknown. Intrauterine growth retardation (IUGR), an abnormal pregnancy is not a specific disease entity per se, but rather a manifestation of many possible fetal and maternal disorders. In this study, we demonstrated, for the first time, that placental explants in vitro secrete significantly elevated levels of angiogenin in placental tissues from patients with IUGR. We also observed enhanced mRNA expression in placenta from these patients. In addition, using the immunohistochemical methods, we observed identical staining of angiogenin to villous syncytiotrophobalst and fetal endothelial cells in both IUGR and normal placenta. Functionally active placental explants were used to detect immunoreactive angiogenin in conditioned media of all the samples from IUGR placenta and normal term group. The mean levels of angiogenin secreted by IUGR placenta were 1.4-, 1.6-, and 1.3-fold higher (P < 0.01) than normal term samples at 24, 48, and 72 hr of culture, respectively. Expression profiles of angiogenin from term and IUGR cases are in agreement with its mRNA levels and immunoblot analysis. In conclusion, the significant elevated levels of angiogenin in IUGR placenta may provide a molecular mechanism for the abnormal placental development.
Collapse
Affiliation(s)
- G Rajashekhar
- Department of Obstetrics and Gynaecology, National University Hospital, National University of Singapore, Lower Kent Ridge Road, Singapore 119074
| | | | | | | |
Collapse
|
24
|
Plendl J, Snyman C, Bhoola KD. Visualization of the sequential changes in immunolabelled tissue kininogenase which accompany follicular development and luteinization of angiogenic granulosa cells of the ovary. Int Immunopharmacol 2002; 2:1981-94. [PMID: 12489812 DOI: 10.1016/s1567-5769(02)00165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The serine protease, tissue kininogenase (kallikrein), belongs to a unique family of enzymes that cleaves the decapeptide, kallidin, from the endogenous substrate kininogen. By analysis of genealogy patterns, rat KLK gene family members have been detected in ovarian luteinizing granulosa cells of both gonadotrophin-treated and nontreated control rats. Preliminary experiments suggest that when granulosa and endothelial cells are co-cultured, granulosa cells participate in the formation of vascular capillary tubes. This inherent capacity of granulosa cells to behave and respond like endothelial cells may be of importance in the aetiology of ovarian angiogenesis, which drives new blood vessel formation in the ovary. Recently, we demonstrated that tissue kininogenase showed intense immunolabelling in angiogenic endothelial cells isolated from bovine mature and regressing corpora lutea. Therefore, the question to answer was whether granulosa cells possess the same capacity to express the kallikrein-kinin cascade as do microvascular endothelial cells. As a first step, experiments were designed to determine the expression and visualization of tissue kininogenase (both active and pro-forms) as well as kininogen and kinin receptors in granulosa cells of different developmental stage and segments of the ovarian follicle by immunoperoxidase, fluorescent microscopy (confocal) and in situ hybridization.
Collapse
Affiliation(s)
- J Plendl
- Fachbereich Veterinärmedizin, Institut für Veterinär-Anatomie, Freie Universität Berlin, Koserstr 20, D14195, Berlin, Germany
| | | | | |
Collapse
|
25
|
Rajashekhar G, Loganath A, Roy AC, Wong YC. Expression and localization of angiogenin in placenta: enhanced levels at term over first trimester villi. Mol Reprod Dev 2002; 62:159-66. [PMID: 11984825 DOI: 10.1002/mrd.10116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human angiogenin, a 14-kDa non-glycosylated polypeptide with both angiogenic and ribonucleolytic activities, is implicated in angiogenesis, a complex process of proliferation and formation of new capillary blood vessels from existing blood vessels. Placental growth requires extensive angiogenesis, which develops its vascular structure in both fetal chorionic villi and maternal deciduas. In this study, we investigated the expression profiles of angiogenin in placental villi from early and late gestation at both mRNA and protein levels using explant cultures in vitro followed by RT-PCR, immunoblot, and immunohistochemical analyses. From functionally active placental explants, angiogenin was detected in conditioned media of all the samples from first trimester and term group. The mean levels of angiogenin produced by term villi were found to be 2.6-, 2.1-, and 2.2-fold higher (P < 0.01) than first trimester villi at 24, 48, and 72 hr of culture, respectively. Expression profiles of angiogenin from term and first trimester villi seem to agree with its mRNA levels and immunoblot analysis; the expression in term villi was twice that in first trimester villi. The presence of angiogenin in placental villi and upregulation of its production towards term indicate that angiogenin production by the placenta is specific to the developmental stage. In conclusion, the observed changes in the localization and mRNA expression of angiogenin during placental development raise the possibility that it is involved in morphological and angiogenic changes in this endocrine organ vital to the successful fetal outcome during pregnancy.
Collapse
Affiliation(s)
- G Rajashekhar
- Department of Obstetrics and Gynaecology, National University Hospital, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
26
|
Vollmar B, Laschke MW, Rohan R, Koenig J, Menger MD. In vivo imaging of physiological angiogenesis from immature to preovulatory ovarian follicles. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1661-70. [PMID: 11696427 PMCID: PMC1867040 DOI: 10.1016/s0002-9440(10)63013-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To develop a model for the study of physiological angiogenesis, we transplanted ovarian follicles onto striated muscle tissue and analyzed the process of microvascularization in vivo using repeated fluorescence microscopy. Follicles were mechanically isolated from unstimulated as well as pregnant mare's serum gonadotropin (PMSG)- or PMSG/luteinizing hormone (LH)-stimulated Syrian golden hamster ovaries and were transplanted as free grafts into dorsal skinfold chambers of untreated or synchronized hamsters. Follicles lacking thecal cell layers did not vascularize regardless whether harvested from unstimulated or PMSG-stimulated animals, but underwent granulosa cell apoptosis, as indicated in vivo by nuclear condensation and fragmentation of bisbenzimide-stained follicular tissue. In contrast, all follicles at 48 hours after PMSG treatment with a multilayered thecal shell exhibited initial signs of angiogenesis within 3 days. Vascularization was completed within 7 to 10 days, comprising a dense glomerulum-like microvascular network. Nature and extent of vascularization of follicles harvested at 72 hours after either PMSG or PMSG/LH treatment did not notably differ from each other when transplanted into the respective synchronized animals. However, follicles with PMSG/LH treatment revealed significantly larger microvessel diameters and higher capillary blood perfusion compared to follicles with sole PMSG treatment, probably reflecting the adaptation to the increased functional demand upon the LH surge. Using the unique experimental approach of ovarian follicle transplantation in the dorsal skinfold chamber of Syrian golden hamsters, we could show in vivo the developmental stage-dependent vascularization of follicular grafts with sustained potential to meet their metabolic demand by increased blood perfusion.
Collapse
Affiliation(s)
- B Vollmar
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
27
|
Malamitsi-Puchner A, Sarandakou A, Baka SG, Tziotis J, Rizos D, Hassiakos D, Creatsas G. Concentrations of angiogenic factors in follicular fluid and oocyte-cumulus complex culture medium from women undergoing in vitro fertilization: association with oocyte maturity and fertilization. Fertil Steril 2001; 76:98-101. [PMID: 11438326 DOI: 10.1016/s0015-0282(01)01854-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the concentration of angiogenic factors (vascular endothelial growth factor [VEGF], basic fibroblast growth factor [bFGF], and angiogenin) in the follicular fluid (FF) and oocyte-cumulus complex culture medium (CM) of women undergoing IVF and to investigate the association of the concentrations with the maturity and fertilization of the oocyte. DESIGN Prospective study. SETTING Academic tertiary-care institution. PATIENT(S) IVF patients with unexplained or tubal factor infertility. INTERVENTION(S) Analysis of VEGF, bFGF, and angiogenin FF and CM concentrations. MAIN OUTCOME MEASURE(S) Oocyte maturity and fertilization and FF and CM angiogenic factor concentrations. RESULT(S) VEGF, bFGF, and angiogenin were determined in FF and CM. FF angiogenin concentrations were significantly higher when the oocyte was mature versus immature. CM VEGF concentrations were significantly higher when the oocyte was nonfertilized versus fertilized. Positive correlations were observed between angiogenic factors in CM. CONCLUSION(S) VEGF, bFGF, and angiogenin (determined for the first time) are secreted in the FF and CM. Elevated CM VEGF concentrations, probably implying oocyte-cumulus complex hypoxia, are negatively associated with oocyte fertilization. Elevated FF angiogenin concentrations are positively associated with oocyte maturity, possibly indicating angiogenin's biological role beyond neovascularization.
Collapse
Affiliation(s)
- A Malamitsi-Puchner
- Second Department of Obstetrics and Gynecology, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
28
|
Hazzard TM, Stouffer RL. Angiogenesis in ovarian follicular and luteal development. Best Pract Res Clin Obstet Gynaecol 2000; 14:883-900. [PMID: 11141339 DOI: 10.1053/beog.2000.0133] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiogenesis is the process of new capillary formation from previously existing mature vessels. The adult ovary exhibits dramatic growth and regression of capillary networks on a cyclic basis. Ovarian follicles and the corpus luteum contain and produce endothelial cell-specific factors, which may act alone or in concert to regulate the process of angiogenesis. These factors are ultimately controlled by endocrine, paracrine and autocrine regulation, as well as by metabolic cellular signals such as intracellular oxygen content and ageing. Aberrant production of these angiogenic factors may be the cause of vascular dysfunction and the development of ovarian disorders. Recent technological advances for monitoring blood flow and measuring angiogenic factors could assist in accurately diagnosing ovarian disorders. Further elucidation of specific physiological role(s) of factors involved in angiogenesis of the pre-ovulatory follicle and developing corpus luteum may be useful in addressing issues of infertility in women.
Collapse
Affiliation(s)
- T M Hazzard
- Division of Reproductive Sciences, Oregon Regional Primate Research Center, 505 NW 185th Ave., Beaverton, Oregon, USA
| | | |
Collapse
|
29
|
Koga K, Osuga Y, Tsutsumi O, Momoeda M, Suenaga A, Kugu K, Fujiwara T, Takai Y, Yano T, Taketani Y. Evidence for the presence of angiogenin in human follicular fluid and the up-regulation of its production by human chorionic gonadotropin and hypoxia. J Clin Endocrinol Metab 2000; 85:3352-5. [PMID: 10999833 DOI: 10.1210/jcem.85.9.6837] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiogenesis is an essential event during the development of the ovarian follicle and ensuing formation of the corpus luteum. We investigated the presence of angiogenin, a potent inducer of angiogenesis, and the regulatory mechanisms of its production in the human ovary. Follicular fluid (FF) and granulosa cells (GCs) were collected from women undergoing in vitro fertilization and embryo transfer. The presence of angiogenin in FF and GCs was demonstrated by Western blot analysis. The production of angiogenin by cultured GCs was stimulated with the addition of human CG or cAMP or under the hypoxic milieu. Concentrations of angiogenin in FF from an individual follicle were positively correlated with those of progesterone, but not estradiol and testosterone. Given the presence of angiogenin in FF and up-regulation of its production by human CG and hypoxia, it seems logical to assume that angiogenin may play a role as a local angiogenic factor in the human ovary.
Collapse
Affiliation(s)
- K Koga
- Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|