1
|
Olaechea S, Gannavarapu BS, Alvarez C, Gilmore A, Sarver B, Xie D, Infante R, Iyengar P. Primary Tumor Fluorine‐18 Fluorodeoxydglucose (18F‐FDG) Is Associated With Cancer-Associated Weight Loss in Non-Small Cell Lung Cancer (NSCLC) and Portends Worse Survival. Front Oncol 2022; 12:900712. [PMID: 35814438 PMCID: PMC9263563 DOI: 10.3389/fonc.2022.900712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Aim To investigate the diagnostic potential of and associations between tumor 18F‐FDG uptake on PET imaging and cancer-associated weight loss. Methods 774 non-small cell lung cancer (NSCLC) patients with pre-treatment PET evaluated between 2006 and 2014 were identified. Using the international validated definition of cachexia, the presence of clinically significant pretreatment cancer-associated weight loss (WL) was retrospectively determined. Maximum Standardized Uptake Value (SUVMax) of 18F‐FDG was recorded and dichotomized based on 3 experimental cutpoints for survival analyses. Each SUVMax cutpoint prioritized either survival differences, total cohort comparison sample sizes, or sample size by stage. Patient outcomes and associations between SUVMax and cancer-associated weight loss were assessed by multivariate, categorical, and survival analyses. Results Patients were found to have an increased likelihood of having WL at diagnosis associated with increasing primary tumor SUVMax after controlling for potentially confounding patient and tumor characteristics on multivariate logistic regression (OR 1.038; 95% CI: 1.012, 1.064; P=0.0037). After stratifying the cohort by WL and dichotomized SUVMax, both factors were found to be relevant in predicting survival outcomes when the alternative variable was constant. Of note, the most striking survival differences contributed by WL status occurred in high SUVMax groups, where the presence of WL predicted a median survival time detriment of up to 10 months, significant regardless of cutpoint determination method applied to categorize high SUVMax patients. SUVMax classification was found to be most consistently relevant in both WL and no WL groups. Conclusions The significant positive association between significant pretreatment cancer-associated weight loss and primary tumor SUVMax underscores increased glucose uptake as a component of catabolic tumor phenotypes. This substantiates 18F‐FDG PET analysis as a prospective tool for assessment of cancer-associated weight loss and corresponding survival outcomes. Furthermore, the survival differences observed between WL groups across multiple SUVMax classifications supports the importance of weight loss monitoring in oncologic workups. Weight loss in the setting of NSCLCs with higher metabolic activity as determined by 18F‐FDG PET signal should encourage more aggressive and earlier palliative care interventions.
Collapse
Affiliation(s)
- Santiago Olaechea
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bhavani S. Gannavarapu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christian Alvarez
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne Gilmore
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brandon Sarver
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Donglu Xie
- Academic Information Systems, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rodney Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Rodney Infante, ; Puneeth Iyengar,
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Rodney Infante, ; Puneeth Iyengar,
| |
Collapse
|
2
|
Meng X, Huang Z, Inoue A, Wang H, Wan Y, Yue X, Xu S, Jin X, Shi GP, Kuzuya M, Cheng XW. Cathepsin K activity controls cachexia-induced muscle atrophy via the modulation of IRS1 ubiquitination. J Cachexia Sarcopenia Muscle 2022; 13:1197-1209. [PMID: 35098692 PMCID: PMC8978007 DOI: 10.1002/jcsm.12919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia is a complicated metabolic disorder that is characterize by progressive atrophy of skeletal muscle. Cathepsin K (CTSK) is a widely expressed cysteine protease that has garnered attention because of its enzymatic and non-enzymatic functions in signalling in various pathological conditions. Here, we examined whether CTSK participates in cancer-induced skeletal muscle loss and dysfunction, focusing on protein metabolic imbalance. METHODS Male 9-week-old wild-type (CTSK+/+ , n = 10) and CTSK-knockout (CTSK-/- , n = 10) mice were injected subcutaneously with Lewis lung carcinoma cells (LLC; 5 × 105 ) or saline, respectively. The mice were then subjected to muscle mass and muscle function measurements. HE staining, immunostaining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting were used to explore the CTSK expression and IRS1/Akt pathway in the gastrocnemius muscle at various time points. In vitro measurements included CTSK expression, IRS1/Akt pathway-related target molecule expressions, and the diameter of C2C12 myotubes with or without LLC-conditioned medium (LCM). An IRS1 ubiquitin assay, and truncation, co-immunoprecipitation, and co-localization experiments were also performed. RESULTS CTSK+/+ cachectic animals exhibited loss of skeletal muscle mass (muscle weight loss of 15%, n = 10, P < 0.01), muscle dysfunction (grip strength loss > 15%, n = 10, P < 0.01), and fibre area (average area reduction > 30%, n = 5, P < 0.01). Compared with that of non-cachectic CTSK+/+ mice, the skeletal muscle of cachectic CTSK+/+ mice exhibited greater degradation of insulin receptor substrate 1 (IRS1, P < 0.01). In this setting, cachectic muscles exhibited decreases in the phosphorylation levels of protein kinase B (Akt308 , P < 0.01; Akt473 , P < 0.05) and anabolic-related proteins (the mammalian target of rapamycin, P < 0.01) and increased levels of catabolism-related proteins (muscle RING-finger protein-1, P < 0.01; MAFbx1, P < 0.01) in CTSK+/+ mice (n = 3). Although there was no difference in LLC tumour growth (n = 10, P = 0.44), CTSK deletion mitigated the IRS1 degradation, loss of the skeletal muscle mass (n = 10, P < 0.01), and dysfunction (n = 10, P < 0.01). In vitro, CTSK silencing prevented the IRS1 ubiquitination and loss of the myotube myosin heavy chain content (P < 0.01) induced by LCM, and these changes were accelerated by CTSK overexpression even without LCM. Immunoprecipitation showed that CTSK selectively acted on IRS1 in the region of amino acids 268 to 574. The results of co-transfection of IRS1-N-FLAG or IRS1-C-FLAG with CTSK suggested that CTSK selectively cleaves IRS1 and causes ubiquitination-related degradation of IRS1. CONCLUSIONS These results demonstrate that CTSK plays a novel role in IRS1 ubiquitination in LLC-induced muscle wasting, and suggest that CTSK could be an effective therapeutic target for cancer-related cachexia.
Collapse
Affiliation(s)
- Xiangkun Meng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zhe Huang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China.,Department of Human Cord Stem Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hailong Wang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ying Wan
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xueling Yue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shengnan Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xueying Jin
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China.,Department of Human Cord Stem Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Li L, Wang Y, Wang Q, Qu J, Wei X, Xu J, Wang Y, Suo F, Zhang Y. High developmental pluripotency‑associated 4 expression promotes cell proliferation and glycolysis, and predicts poor prognosis in non‑small‑cell lung cancer. Mol Med Rep 2019; 20:445-454. [PMID: 31180527 PMCID: PMC6580026 DOI: 10.3892/mmr.2019.10272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
The developmental pluripotency‑associated 4 (Dppa4) gene serves critical roles in cell self‑renewal, as well as in cancer development and progression. However, the regulatory role of Dppa4 in non‑small‑cell lung cancer (NSCLC) and its underlying mechanisms remain elusive. The aim of the present study was to investigate the biological function of Dppa4 in NSCLC and its underlying mechanism of action. Dppa4 expression was measured in NSCLC tissue samples and cell lines, and its effect on cell proliferation and the expression of glycolytic enzymes was determined. In addition, the underlying mechanisms of Dppa4‑induced alterations in glycolysis were analyzed. Univariate and multivariate analyses were also performed to analyze the prognostic significance of clinicopathological characteristics. Dppa4 was found to be highly expressed in NSCLC tissues and cell lines. Furthermore, it was observed that Dppa4 was correlated with the degree of tumor differentiation and TNM stage. Univariate and multivariate analyses identified Dppa4 expression and clinical stage as prognostic factors for NSCLC patients. Kaplan‑Meier analysis further revealed that patients with lower Dppa4 expression exhibited a better prognosis. In NSCLC cells, Dppa4 knockdown inhibited cell proliferation, while Dppa4 overexpression enhanced cell proliferation, which was likely mediated by glycolysis promotion. Dppa4 knockdown had no evident effect on the majority of enzymes examined; however, glucose transporter type 4 (GLUT‑4) and pyruvate kinase isozyme M2 were significantly upregulated, and hexokinase II (HK‑II) and lactate dehydrogenase B (LDHB) were downregulated following Dppa4 knockdown. By contrast, Dppa4 overexpression resulted in downregulation of GLUT‑4, and upregulation of HK‑II, enolase and LDHB, whereas it had no effect on other enzymes. Since the most evident effect was observed on LDHB, further functional experiments demonstrated that this enzyme reversed the promoting effects of Dppa4 in NSCLC. In conclusion, Dppa4 promotes NSCLC progression, partly through glycolysis by LDHB. Thus, the Dppa4‑LDHB axis critically contributes to glycolysis in NSCLC cells, thereby promoting NSCLC development and progression.
Collapse
Affiliation(s)
- Longfei Li
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yufeng Wang
- Department of Nuclear Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Qiang Wang
- Department of Radiotherapy and Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jingming Qu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiangju Wei
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jilei Xu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yuanjin Wang
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Feng Suo
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yangjie Zhang
- Department of Orthopedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
4
|
Miksza DR, de Souza CO, de Morais H, da Rocha AF, Borba-Murad GR, Bazotte RB, de Souza HM. Effect of infliximab on metabolic disorders induced by Walker-256 tumor in rats. Pharmacol Rep 2013; 65:960-9. [DOI: 10.1016/s1734-1140(13)71077-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 03/11/2013] [Indexed: 11/30/2022]
|
5
|
Abstract
Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies.
Collapse
|
6
|
Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277:1531-7. [PMID: 11606564 DOI: 10.1074/jbc.m101521200] [Citation(s) in RCA: 715] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.
Collapse
Affiliation(s)
- Vincent Aguirre
- Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|