1
|
Matta K, Koual M, Ploteau S, Coumoul X, Audouze K, Le Bizec B, Antignac JP, Cano-Sancho G. Associations between Exposure to Organochlorine Chemicals and Endometriosis: A Systematic Review of Experimental Studies and Integration of Epidemiological Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:76003. [PMID: 34310196 PMCID: PMC8312885 DOI: 10.1289/ehp8421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Growing epidemiological evidence suggests that organochlorine chemicals (OCCs), including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may play a role in the pathogenesis of endometriosis. OBJECTIVES We aimed to systematically review the experimental evidence (in vivo and in vitro) on the associations between exposure to OCCs and endometriosis-related end points. METHODS A systematic review protocol was developed following the National Toxicology Program /Office of Health Assessment and Translation (NTP/OHAT) framework and managed within a web-based interface. In vivo studies designed to evaluate the impact of OCCs on the onset or progression of endometriosis and proliferation of induced endometriotic lesions were eligible. Eligible in vitro studies included single-cell and co-culture models to evaluate the proliferation, migration, and/or invasion of endometrial cells. We applied the search strings to PubMed, Web of Science, and Scopus®. A final search was performed on 24 June 2020. Assessment of risk of bias and the level of evidence and integration of preevaluated epidemiological evidence was conducted using NTP/OHAT framework Results: Out of 812 total studies, 39 met the predetermined eligibility criteria (15 in vivo, 23 in vitro, and 1 both). Most studies (n=27) tested TCDD and other dioxin-like chemicals. In vivo evidence supported TCDD's promotion of endometriosis onset and lesion growth. In vitro evidence supported TCDD's promotion of cell migration and invasion, but there was insufficient evidence for cell proliferation. In vitro evidence further supported the roles of the aryl hydrocarbon receptor and matrix metalloproteinases in mediating steroidogenic disruption and inflammatory responses. Estrogen interactions were found across studies and end points. CONCLUSION Based on the integration of a high level of animal evidence with a moderate level of epidemiological evidence, we concluded that TCDD was a known hazard for endometriosis in humans and the conclusion is supported by mechanistic in vitro evidence. Nonetheless, there is need for further research to fill in our gaps in understanding of the relationship between OCCs and their mixtures and endometriosis, beyond the prototypical TCDD. https://doi.org/10.1289/EHP8421.
Collapse
Affiliation(s)
- Komodo Matta
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Meriem Koual
- Université de Paris, T3S, Institut national de la santé et de la recherche médicale (Inserm) UMR S-1124, Paris, France
- Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Stéphane Ploteau
- Service de gynécologie-obstétrique, Centre d’investigation clinique–Femme Enfant Adolescent, Hôpital Mère Enfant, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Xavier Coumoul
- Université de Paris, T3S, Institut national de la santé et de la recherche médicale (Inserm) UMR S-1124, Paris, France
| | - Karine Audouze
- Université de Paris, T3S, Institut national de la santé et de la recherche médicale (Inserm) UMR S-1124, Paris, France
| | - Bruno Le Bizec
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - German Cano-Sancho
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| |
Collapse
|
2
|
Baricza E, Tamási V, Marton N, Buzás EI, Nagy G. The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells. Cell Mol Life Sci 2016; 73:95-117. [PMID: 26511867 PMCID: PMC11108366 DOI: 10.1007/s00018-015-2056-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor, which plays an essential role in the xenobiotic metabolism in a wide variety of cells. The AHR gene is evolutionarily conserved and it has a central role not only in the differentiation and maturation of many tissues, but also in the toxicological metabolism of the cell by the activation of metabolizing enzymes. Several lines of evidence support that both AHR agonists and antagonists have profound immunological effects; and recently, the AHR has been implicated in antibacterial host defense. According to recent studies, the AHR is essential for the differentiation and activation of T helper 17 (Th17) cells. It is well known that Th17 cells have a central role in the development of inflammation, which is crucial in the defense against pathogens. In addition, Th17 cells play a major role in the pathogenesis of several autoimmune diseases such as rheumatoid arthritis. Therefore, the AHR may provide connection between the environmental chemicals, the immune regulation, and autoimmunity. In the present review, we summarize the role of the AHR in the Th17 cell functions.
Collapse
Affiliation(s)
- Eszter Baricza
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Viola Tamási
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nikolett Marton
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - György Nagy
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
- Department of Rheumatology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
4
|
Feng S, Cao Z, Wang X. Role of aryl hydrocarbon receptor in cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:197-210. [PMID: 23711559 DOI: 10.1016/j.bbcan.2013.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Abstract
Aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, belongs to the member of bHLH/PAS family of heterodimeric transcriptional regulators and is widely expressed in a variety of animal species and humans. Recent animal and human data suggested that AHR is involved in various signaling pathways critical to cell normal homeostasis, which covers multiple aspects of physiology, such as cell proliferation and differentiation, gene regulation, cell motility and migration, inflammation and others. Dysregulation of these physiological processes is known to contribute to events such as tumor initiation, promotion, and progression. Increasing epidemiological and experimental animal data provided substantial support for an association between abnormal AHR function and cancer, implicating AHR may be a novel drug-interfering target for cancers. The proposed underlying mechanisms of its actions in cancer involved multiple aspects, (a) inhibiting the functional expression of the key anti-oncogenes (such as p53 and BRCA1), (b) promoting stem cells transforming and angiogenesis, (c) altering cell survival, proliferation and differentiation by influencing the physiologic processes of cell-cycle, apoptosis, cell contact-inhibition, metabolism and remodel of extracellular matrix, and cell-matrix interaction, (d) cross-talking with the signaling pathways of estrogen receptor and inflammation. This review aims to provide a brief overview of recent investigations into the role of AHR and the underlying mechanisms of its actions in cancer, which were explored by the new technologies emerging in recent years.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | | | | |
Collapse
|
5
|
Fardel O. Cytokines as molecular targets for aryl hydrocarbon receptor ligands: implications for toxicity and xenobiotic detoxification. Expert Opin Drug Metab Toxicol 2012; 9:141-52. [PMID: 23230817 DOI: 10.1517/17425255.2013.738194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for regulating expression of several important drug-detoxifying proteins. Besides drug metabolism pathways, cytokines have been recently recognized as targeted by the AhR signaling cascade, which may contribute to toxicity and changes in xenobiotic detoxification caused by AhR agonists. AREAS COVERED This article summarizes the nature of the main cytokines regulated by AhR ligands and reviews their involvement in toxic effects of AhR ligands, especially in relation with inflammation. The article also discusses the potential implications for drug detoxification pathways. EXPERT OPINION Even if various cytokines, including inflammatory ones, have already been demonstrated to constitute robust targets for AhR, the exact role played by AhR with respect to inflammation remains to be determined. Further studies are also required to better characterize the molecular mechanisms implicated in regulation of cytokines by AhR ligands and to determine the role that may play AhR-targeted cytokines in alteration of xenobiotic detoxification. Finally, changes in cytokine receptor expression triggered by AhR ligands have additionally to be taken into account to better and more extensively comprehend the role played by AhR in the cytokine/inflammation area.
Collapse
Affiliation(s)
- Olivier Fardel
- Institut de Recherche en Environnement, Santé et Travail (IRSET)/INSERM U 1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France.
| |
Collapse
|
6
|
Do Y, Lee DK. Effects of polychlorinated biphenyls on the development of neuronal cells in growth period; structure-activity relationship. Exp Neurobiol 2012; 21:30-6. [PMID: 22438677 PMCID: PMC3294071 DOI: 10.5607/en.2012.21.1.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are accumulated in our body through food chain and cause a variety of adverse health effects including neurotoxicities such as cognitive deficits and motor dysfunction. In particular, neonates are considered as a high risk group for the neurotoxicity of PCBs exposure. The present study attempted to analyze the structure-activity relationship among PCB congeners and the mechanism of PCBs-induced neurotoxicity. We measured total protein kinase C (PKC) activities, PKC isoforms, reactive oxygen species (ROS), and induction of neurogranin (RC-3) and growth associated protein-43 (GAP-43) mRNA in cerebellar granule cells of neonatal rats with phorbol 12, 13-dibutyrate ([(3)H]PDBu) binding assay, western blot, ROS assay, and reverse transcription PCR (RT-PCR) analysis respectively following the different structural PCBs exposure. Only non-coplanar PCBs showed a significant increase of total PKC-α and βII activity as measured with [(3)H]PDBu binding assay. ROS were more increased with non-coplanar PCBs than coplanar PCBs. The mRNA levels of RC-3 and GAP-43 were more induced with non-coplanar PCBs than coplanar PCBs, indicating that these factors may be useful biomarkers for differentiating non-coplanar PCBs from coplanar PCBs. Non-coplanar PCBs may be more potent neurotoxic congeners than coplanar PCBs. This study provides evidences that non-coplanar PCBs, which have been neglected in the risk assessment processes, should be added in the future to improve the quality and accuracy of risk assessment on the neuroendocrinal adverse effects of PCBs exposures.
Collapse
Affiliation(s)
- Youngrok Do
- Department of Neurology, Catholic University of Daegu School of Medicine, Daegu 705-718, Korea
| | | |
Collapse
|
7
|
Li W, Vogel CFA, Wu D, Matsumura F. Non-genomic action of TCDD to induce inflammatory responses in HepG2 human hepatoma cells and in liver of C57BL/6J mice. Biol Chem 2011; 391:1205-19. [PMID: 20707612 DOI: 10.1515/bc.2010.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To assess the significance of the non-genomic signaling of TCDD (=dioxin) on liver of C57BL/6 mice and HepG2 human hepatoma cells, we first determined the group of markers that are susceptible to inhibition by parthenolide, a compound known to specifically suppress NF-κB-mediated inflammation. Of those, the most consistent marker turned out to be SOCS3 (a suppressor of cytokine signaling) known to respond to inflammation. An early diagnostic test on the action of TCDD on HepG2 cells in vitro within 3-6 h indicated that Cox-2 and SOCS3 are mainly induced via a non-genomic route, whereas PAI-2 appears to be induced through the classical action route. More detailed diagnostic tests at later stages of action of TCDD in HepG2 cells revealed that induction of IL-1β, BAFF, and iNOS are largely mediated by the protein kinase-dependent non-genomic route. An in vivo study on the 7 day action of TCDD on liver of AhR(NLS) mice showed that several early markers (e.g., Cox-2, MCP-1 and SOCS3) are induced, but not late markers such as IL-1β. Together, these results show that the non-genomic pathway contributes significantly to the early stress response reactions to TCDD that includes inflammation in hepatoma cells as well as in the liver.
Collapse
Affiliation(s)
- Wen Li
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
8
|
Hernández-Ochoa I, Karman BN, Flaws JA. The role of the aryl hydrocarbon receptor in the female reproductive system. Biochem Pharmacol 2009; 77:547-59. [PMID: 18977336 PMCID: PMC2657805 DOI: 10.1016/j.bcp.2008.09.037] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/28/2022]
Abstract
In recent years, many studies have emphasized how changes in aryl hydrocarbon receptor (AHR)-mediated gene expression result in biological effects, raising interest in this receptor as a regulator of normal biological function. This review focuses on what is known about the role of the AHR in the female reproductive system, which includes the ovaries, Fallopian tubes or oviduct, uterus and vagina. This review also focuses on the role of the AHR in reproductive outcomes such as cyclicity, senescence, and fertility. Specifically, studies using potent AHR ligands, as well as transgenic mice lacking the AHR-signaling pathway are discussed from a viewpoint of understanding the endogenous role of this ligand-activated transcription factor in the female reproductive lifespan. Based on findings highlighted in this paper, it is proposed that the AHR has a role in physiological functions including ovarian function, establishment of an optimum environment for fertilization, nourishing the embryo and maintaining pregnancy, as well as in regulating reproductive lifespan and fertility. The mechanisms by which the AHR regulates female reproduction are poorly understood, but it is anticipated that new models and the ability to generate specific gene deletions will provide powerful experimental tools for better understanding how alterations in AHR pathways result in functional changes in the female reproductive system.
Collapse
Affiliation(s)
- Isabel Hernández-Ochoa
- Department of Veterinary Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | | | | |
Collapse
|
9
|
Kung T, Murphy KA, White LA. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol 2008; 77:536-46. [PMID: 18940186 DOI: 10.1016/j.bcp.2008.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an orphan receptor in the basic helix-loop-helix PAS family of transcriptional regulators. Although the endogenous regulator of this pathway has not been identified, the AhR is known to bind and be activated by a variety of compounds ranging from environmental contaminants to flavanoids. The function of this receptor is still unclear; however, animal models indicate that the AhR is important for normal development. One hypothesis is that the AhR senses cellular stress and initiates the cellular response by altering gene expression and inhibiting cell cycle progression and that activation of the AhR by exogenous environmental chemicals results in the dysregulation of this normal function. In this review we will examine the role of the AhR in the regulation of genes and proteins involved in cell adhesion and matrix remodeling, and discuss the implications of these changes in development and disease. In addition, we will discuss evidence suggesting that the AhR pathway is responsive to changes in matrix composition as well as cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Tiffany Kung
- Department of Biochemistry and Microbiology, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
10
|
Bruner-Tran KL, Yeaman GR, Crispens MA, Igarashi TM, Osteen KG. Dioxin may promote inflammation-related development of endometriosis. Fertil Steril 2008; 89:1287-98. [PMID: 18394613 DOI: 10.1016/j.fertnstert.2008.02.102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/09/2023]
Abstract
Laboratory and population-based studies suggest that exposure to environmental toxicants may be one of several triggers for the development of endometriosis. We discuss evidence that modulation of the endometrial endocrine-immune interface could mechanistically link toxicant exposure to the development of this disease.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
11
|
Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR, Sartor MA, Puga A. Ligand-independent regulation of transforming growth factor beta1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol Cell Biol 2007; 27:6127-39. [PMID: 17606626 PMCID: PMC1952156 DOI: 10.1128/mcb.00323-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic effects of its xenobiotic ligands and acts as an environmental checkpoint during the cell cycle. We expressed stably integrated, Tet-Off-regulated AHR variants in fibroblasts from AHR-null mice to further investigate the AHR role in cell cycle regulation. Ahr+/+ fibroblasts proliferated significantly faster than Ahr-/- fibroblasts did, and exposure to a prototypical AHR ligand or deletion of the ligand-binding domain did not change their proliferation rates, indicating that the AHR function in cell cycle was ligand independent. Growth-promoting genes, such as cyclin and cyclin-dependent kinase genes, were significantly down-regulated in Ahr-/- cells, whereas growth-arresting genes, such as the transforming growth factor beta1 (TGF-beta1) gene, extracellular matrix (ECM)-related genes, and cyclin-dependent kinase inhibitor genes, were up-regulated. Ahr-/- fibroblasts secreted significantly more TGF-beta1 into the culture medium than Ahr+/+ fibroblasts did, and Ahr-/- showed increased levels of activated Smad4 and TGF-beta1 mRNA. Inhibition of TGF-beta1 signaling by overexpression of Smad7 reversed the proliferative and gene expression phenotype of Ahr-/- fibroblasts. Changes in TGF-beta1 mRNA accumulation were due to stabilization resulting from decreased activity of TTP, the tristetraprolin RNA-binding protein responsible for mRNA destabilization through AU-rich motifs. These results show that the Ah receptor possesses interconnected intrinsic cellular functions, such as ECM formation, cell cycle control, and TGF-beta1 regulation, that are independent of activation by either exogenous or endogenous ligands and that may play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Department of Environmental Health, University of Cincinnati Medical Center, and Shriners Hospital for Children, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Heiden TK, Carvan MJ, Hutz RJ. Inhibition of follicular development, vitellogenesis, and serum 17beta-estradiol concentrations in zebrafish following chronic, sublethal dietary exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2005; 90:490-9. [PMID: 16387744 DOI: 10.1093/toxsci/kfj085] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent endocrine disruptor with the ability to affect several biologic processes, including reproduction. In fish, sublethal exposure to TCDD is known to modulate overall reproductive capacity, but impacts on follicular development and vitellogenesis are unknown. Here we show that chronic, dietary exposure to 0.08, 0.32, or 0.80 ng TCDD female(-1) day(-1) decreased egg production by more than 50% and that spawning success was reduced by as much as 96%. Serum estradiol concentrations were decreased more than twofold, accounting, in part, for observed decreases in serum vitellogenin concentrations by as much as 29%. Our data suggest that decreased egg production is likely the result of TCDD-mediated inhibition of the transition from pre-vitellogenic stage follicles to vitellogenic stage follicles, as well as the induction of follicular atresia. The majority of reproductive toxicity of TCDD is likely due to direct impacts on the ovary, yet histopathologic observations suggest liver toxicity could also contribute to observed impacts on vitellogenesis. Importantly, even when overall egg production is not significantly affected, our data show that subtle physiologic changes induced by TCDD can lead to altered gonadogenesis. This suggests that long-term exposure to very low concentrations of TCDD could greatly affect fecundity and reproductive success in fishes.
Collapse
Affiliation(s)
- Tisha King Heiden
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, USA
| | | | | |
Collapse
|
13
|
Pocar P, Fischer B, Klonisch T, Hombach-Klonisch S. Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction. Reproduction 2005; 129:379-89. [PMID: 15798013 DOI: 10.1530/rep.1.00294] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dioxin/aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor responsive to both natural and man-made environmental compounds. AhR and its nuclear partner ARNT are expressed in the female reproductive tract in a variety of species and several indications suggest that the AhR might play a pivotal role in the physiology of reproduction. Furthermore, it appears to be the mediator of most, if not all, the adverse effects on reproduction of a group of highly potent environmental pollutants collectively called aryl hydrocarbons (AHs), including the highly toxic compound 2,3,7,8-tetrachlor-odibenzo-p-dioxin (TCDD). Although a large body of recent literature has implicated AhR in multiple signal transduction pathways, the mechanisms of action resulting in a wide spectrum of effects on female reproduction are largely unknown. Here we summarize the major types of molecular cross-talks that have been identified for the AhR and linked cell signaling pathways and that are relevant for the understanding of the role of this transcription factor in female reproduction.
Collapse
Affiliation(s)
- P Pocar
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097, Halle (Saale), Germany.
| | | | | | | |
Collapse
|
14
|
Stasinopoulos S, Tran H, Chen E, Sachchithananthan M, Nagamine Y, Medcalf RL. Regulation of protease and protease inhibitor gene expression: the role of the 3'-UTR and lessons from the plasminogen activating system. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:169-215. [PMID: 16164975 DOI: 10.1016/s0079-6603(05)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Stan Stasinopoulos
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Tamaki A, Hayashi H, Nakajima H, Takii T, Katagiri D, Miyazawa K, Hirose K, Onozaki K. Polycyclic aromatic hydrocarbon increases mRNA level for interleukin 1 beta in human fibroblast-like synoviocyte line via aryl hydrocarbon receptor. Biol Pharm Bull 2004; 27:407-10. [PMID: 14993811 DOI: 10.1248/bpb.27.407] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by proliferation of synoviocytes that produce proinflammatory cytokines, which is implicated in the pathogenesis of the disease. Among the cytokines, IL-1 is the critical mediator of the disease. When human fibroblast-like synoviocytes line, MH7A, was treated with 3-methylcholanthrene (3-MC), a polycyclic aromatic hydrocarbon (PAH), mRNA of IL-1beta was up-regulated. MH7A cells express functional aryl hydrocarbon receptor (AhR) as shown by 3-MC-inducible CYP1A1 mRNA expression. The effect of 3-MC was inhibited by alpha-napthoflavone, an AhR antagonist, indicating that the effect of 3-MC is mediated via AhR. Benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) also up-regulated mRNA level of IL-1beta in the cells via AhR. As PAHs are much contained in cigarette smoke, these findings provide the possible basis for epidemiological studies indicating a strong association between heavy cigarette smoking and outcome of RA.
Collapse
Affiliation(s)
- Ayako Tamaki
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mizuyachi K, Son DS, Rozman KK, Terranova PF. Alteration in ovarian gene expression in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin: reduction of cyclooxygenase-2 in the blockage of ovulation. Reprod Toxicol 2002; 16:299-307. [PMID: 12128104 DOI: 10.1016/s0890-6238(02)00024-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a reproductive toxicant and endocrine disrupter that is known to block ovulation. This study was designed to investigate alterations in relevant ovarian genes that may be involved in the blockage of ovulation by TCDD in immature intact rats primed with equine chorionic gonadotropin (eCG). In this ovulation model, rats were given either 32 microg/kg TCDD or corn oil by gavage on 25 days of age. The next day, eCG (5 IU) was injected subcutaneously (s.c.) to stimulate follicular development. Ovulation occurs 72 h after administration of eCG in controls of this model. TCDD blocked ovulation at the expected time and also reduced both ovarian and body weights. At 72 h after eCG (the morning after expected ovulation), TCDD did not alter significantly serum concentrations of progesterone (P4) and androstenedione (A4). However, estradiol (E2) was significantly higher at 72 h after eCG in TCDD-treated rats when compared with controls. Western blots revealed that ovarian CYP1A1 was induced by TCDD. In addition, the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) were down- and up-regulated by TCDD, respectively, indicating that AhR-mediated signal transduction was altered in the ovary. Ovarian estrogen receptor (ER)alpha, ER beta and progesterone receptor (PR) were not altered significantly by TCDD, but ovarian glucocorticoid receptor (GR) was increased at 24h after TCDD and decreased at 72 h after eCG when compared with controls. TCDD induced the early appearance of ovarian plasminogen activator inhibitor type-1 (PAI-1), plasminogen activator inhibitor type-2 (PAI-2), urokinase plasminogen activator (uPA), and tissue plasminogen activator (tPA) at 24h after dosing when compared with controls. On the morning after ovulation (72 h after eCG), no significant differences between control and TCDD-treated rats were observed except that TCDD had still increased tPA and decreased PAI-2 when compared with controls. Interestingly, ovarian COX-2 was induced on the morning after ovulation (72 h after eCG) in controls, but was greatly inhibited in TCDD-treated rats at that time. On the other hand, COX-1 was constitutively expressed throughout the ovulatory period and remained unaffected by TCDD. Immunolocalization of COX-2 in the ovary revealed that TCDD inhibited COX-2 expression in the granulosa cell layer when assessed in the morning of expected ovulation. In conclusion, AhR signaling is activated in the ovary by TCDD and inhibition of COX-2 appeared to be a critical step in the TCDD blockage of ovulation because blockage or reduction of COX-2 expression is well known to be associated with failure of ovulation.
Collapse
Affiliation(s)
- Kaori Mizuyachi
- Center of Reproductive Sciences and Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417, USA
| | | | | | | |
Collapse
|
17
|
Montuori N, Rossi G, Ragno P. Post-transcriptional regulation of gene expression in the plasminogen activation system. Biol Chem 2002; 383:47-53. [PMID: 11928821 DOI: 10.1515/bc.2002.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The urokinase-mediated plasminogen activation (PA) system has been shown to play a key role in cell migration and tissue invasion by regulating both cell-associated proteolysis and cell-cell and cell-matrix interactions. The expression and activity of the components of this complex system are strictly regulated. The control of the expression occurs both at transcriptional and post-transcriptional levels. This review is focused on the post-transcriptional regulation of gene expression of all components of the PA system.
Collapse
Affiliation(s)
- Nunzia Montuori
- Centro di Endocrinologia ed Oncologia Sperimentale (CEOS), Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | |
Collapse
|
18
|
Komura K, Hayashi S, Makino I, Poellinger L, Tanaka H. Aryl hydrocarbon receptor/dioxin receptor in human monocytes and macrophages. Mol Cell Biochem 2001; 226:107-18. [PMID: 11768231 DOI: 10.1023/a:1012762519424] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aryl hydrocarbon receptor (AhR) belongs to the bHLH/PAS transcription factor family and is activated by various polycyclic or halogenated aromatic hydrocarbons, e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3MC). In the present study, we showed that in U937 cells and human macrophages AhR, with its partner cofactor Arnt, is expressed and CYP1A1 mRNA expression is induced in the presence of AhR ligand 3MC. Moreover, we showed that AhR, associating with Arnt, binds to target DNA sequences and activates transcription. Since part of AhR is activated into DNA binding species in the absence of exogenous ligand and competitive AhR antagonist alpha-naphthoflavone inhibits this activation process with reducing CYP1A1 mRNA expression levels, the presence of endogenous ligand is indicated.
Collapse
Affiliation(s)
- K Komura
- Second Department of Internal Medicine, Asahikawa Medical College, Midorigaoka Higashi, Japan
| | | | | | | | | |
Collapse
|
19
|
Tierney MJ, Medcalf RL. Plasminogen activator inhibitor type 2 contains mRNA instability elements within exon 4 of the coding region. Sequence homology to coding region instability determinants in other mRNAs. J Biol Chem 2001; 276:13675-84. [PMID: 11278713 DOI: 10.1074/jbc.m010627200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor that inhibits urokinase. Constitutive and regulated PAI-2 gene expression involves post-transcriptional events, and an AU-rich mRNA instability motif within the 3'-untranslated region of PAI-2 mRNA is required for this process (Maurer, F., Tierney, M., and Medcalf, R. L. (1999) Nucleic Acids Res. 27, 1664-1673). Here we show that instability determinants are present within various exons of the PAI-2 coding region, most notably within exon 4. Deletion of exon 4 from the full-length PAI-2 cDNA results in a doubling in the half-life of PAI-2 mRNA, whereas a 28-nucleotide region within exon 4 contains binding sites for cytoplasmic proteins. Inducible stabilization of PAI-2 mRNA in HT-1080 cells treated with phorbol ester and tumor necrosis factor does not alter the binding of proteins to the exon 4 instability determinant, but resulted in a transient increase in the binding of factors to the AU-rich RNA instability element. Hence, PAI-2 mRNA stability is influenced by elements located within both the coding region and the 3'-untranslated region and that cytoplasmic mRNA binding factors may influence steady state and inducible PAI-2 mRNA expression. Finally a 10-nucleotide region flanking the exon 4 protein-binding site is homologous to instability elements within five other transcripts, suggesting that a common coding region determinant may exist.
Collapse
MESH Headings
- 3' Untranslated Regions/metabolism
- 3T3 Cells
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Carcinogens
- Cell Line
- Cytoplasm/metabolism
- DNA, Antisense/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Exons
- Gene Deletion
- Genes, Reporter
- Human Growth Hormone/genetics
- Human Growth Hormone/metabolism
- Humans
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
- Phorbol Esters
- Plasmids/metabolism
- Plasminogen Activator Inhibitor 2/chemistry
- Plasminogen Activator Inhibitor 2/genetics
- Promoter Regions, Genetic
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- M J Tierney
- Department of Medicine, Monash University, Box Hill Hospital, Box Hill 3128, Victoria, Australia
| | | |
Collapse
|
20
|
Tscheudschilsuren G, Hombach-Klonisch S, Küchenhoff A, Fischer B, Klonisch T. Expression of the arylhydrocarbon receptor and the arylhydrocarbon receptor nuclear translocator during early gestation in the rabbit uterus. Toxicol Appl Pharmacol 1999; 160:231-7. [PMID: 10544057 DOI: 10.1006/taap.1999.8773] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The arylhydrocarbon receptor (AhR) and the arylhydrocarbon receptor nuclear translocator (ARNT) are members of the PAS gene family mediating toxic effects of xenobiotics such as dioxin and polychlorinated biphenyls. We have analyzed the expression and cellular distribution of rabbit AhR and ARNT mRNA and protein level in the nonpregnant uterus and the pregnant and pseudopregnant uterus at Days 6 to 12 of gestation. In the preimplantation uterus at Day 6 of gestation and in the interimplantation and pseudopregnant uterus at Days 7, 8, 9, and 12 of gestation, low levels of AhR transcripts were detected in the glandular uterine epithelium. Upon attachment of the blastocyst at Day 7 of gestation, a strong expression of AhR and ARNT mRNA was observed in the luminal and glandular epithelium of the antimesometrial uterine compartment. In contrast, AhR and ARNT expression was low in the luminal epithelium of the paraplacental and the mesometrial placental fold. AhR mRNA was also detected in the trophoblast cells. During early placentation at Day 9 of gestation, expression of AhR and ARNT was first observed in the perivascular decidualized stromal cells and, at Day 12, extended to the decidualized stromal cells of the placental bed. Within the placenta, the syncytiotrophoblast expressed only low levels of AhR and ARNT mRNA and no protein. The specific expression patterns of AhR and ARNT during early gestation suggest functional roles for both transcription factors during feto-maternal interactions in the rabbit.
Collapse
Affiliation(s)
- G Tscheudschilsuren
- Department of Anatomy, Martin Luther University Faculty of Medicine, Halle (Saale), D-06097, Germany
| | | | | | | | | |
Collapse
|