1
|
Zhou W, Yuan W, Huang L, Wang P, Rong X, Tang J. Association of neonatal necrotizing enterocolitis with myeloid differentiation-2 and GM2 activator protein genetic polymorphisms. Mol Med Rep 2015; 12:974-80. [PMID: 25816011 PMCID: PMC4438969 DOI: 10.3892/mmr.2015.3499] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the association of neonatal necrotizing enterocolitis (NEC) with myeloid differentiation-(MD-2) and GM2 activator protein (GM2A) genetic polymorphisms. Gene resequencing of the MD-2 and GM2A gene exons was performed on 42 neonates, diagnosed with NEC (NEC group), as well as in the rs11465996 locus, located in the MD-2 gene promoter region. The aim was to detect the genetic polymorphisms present in the neonates with NEC and compare the functional polymorphic loci with 83 neonates without NEC (control group), who had been born during the same period. A polymorphic locus with abnormal frequency was detected in the exon region of the MD-2 gene. In the NEC group, the frequency of genotypes carrying the low frequency allele (G) in the rs11465996 locus (MD-2 promoter region) was significantly higher compared with the control group (χ(2)=4.388, P=0.036). Furthermore, the frequencies of genotypes carrying the low frequency A and C alleles in the rs1048719 (GM2A gene exon 1) and rs2075783 loci (GM2A intron), respectively, were significantly higher in the NEC group compared with the control group (χ(2)=4.316, P=0.038; and χ(2)=13.717, P=0.000, respectively). In addition, the rs11465996 polymorphism in the MD-2 gene promoter region was found to be associated with the severity of NEC. Furthermore, the rs2075783 polymorphism in the GM2A gene exon 1 and the rs1048719 polymorphism in the intron region of this gene, were associated with the occurrence of NEC. The present study demonstrated that gene polymorphisms of MD-2 and GM2A were associated with the occurrence or severity of NEC; however, further in-depth exploration is required to clarify the associations between genetic predispositions to polymorphisms, and NEC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Weiming Yuan
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Longguang Huang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiao Rong
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Juan Tang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
2
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
3
|
Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett 2009; 584:1700-12. [PMID: 19836391 DOI: 10.1016/j.febslet.2009.10.021] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/09/2009] [Indexed: 01/05/2023]
Abstract
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.
Collapse
Affiliation(s)
- Thomas Kolter
- LiMES - Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
GM2 activator protein inhibits platelet activating factor signaling in rats. Biochem Biophys Res Commun 2009; 385:576-80. [PMID: 19486886 DOI: 10.1016/j.bbrc.2009.05.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/24/2009] [Indexed: 10/20/2022]
Abstract
Platelet activating factor (PAF), an endogenous bioactive phospholipid, has been documented as a pivotal mediator in the inflammatory cascade underlying the pathogenesis of many diseases including necrotizing enterocolitis. Much effort has been directed towards finding an effective in vivo inhibitor of PAF signaling. Here, we report that a small, highly stable, lysosomal lipid transport protein, the GM2 activator protein (GM2AP) is able to inhibit the inflammatory processes otherwise initiated by PAF in a rat model of necrotizing enterocolitis. Based on behavioral observations, gross anatomical observations at necropsy, histopathology and immunocytochemistry, the administration of recombinant GM2AP inhibits the devastating gastrointestinal necrosis resulting from the injection of rats with LPS and PAF. Recombinant GM2AP treatment not only markedly decrease tissue destruction, but also helped to maintain tight junction integrity at the gastrointestinal level as judged by contiguous Zonula Occludens-1 staining of the epithelial layer lining the crypts.
Collapse
|
5
|
Bruce AF, Gares MP, Selkirk ME, Gounaris K. Functional characterisation of a nematode secreted GM2-activator protein. Mol Biochem Parasitol 2006; 147:224-9. [PMID: 16569450 DOI: 10.1016/j.molbiopara.2006.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/14/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
We have identified a GM2-activator protein (GM2AP) with highly unusual properties secreted by the nematode parasite Trichinella spiralis. Expression in Pichia pastoris resulted in a hyperglycosylated protein of 28 kDa, but the 18 kDa native protein was not glycosylated. The parasite GM2AP does not facilitate degradation of GM2 ganglioside by N-acetyl-beta-hexosaminidase A, although it does inhibit phospholipase D activity. Lack of the former activity might be explained by the absence of a domain implicated in binding to hexosaminidase. In addition, and contrary to data on the human GM2AP, the nematode homologue does not inhibit platelet activating factor-induced calcium mobilisation in neutrophils, but actually enhances mediator-induced chemotaxis.
Collapse
Affiliation(s)
- Alexandra F Bruce
- Division of Cell and Molecular Biology, Biochemistry Building, Imperial College London, South Kensington Campus, London SW7 2AY, UK
| | | | | | | |
Collapse
|
6
|
Liu NG, Zhang SC, Liu ZH, Liang YJ, Xue JY. Identification and tissue-specific expression of amphioxus GM2 activator protein gene from amphioxus Branchiostoma belcheri. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2006; 17:122-8. [PMID: 17076254 DOI: 10.1080/10425170600724683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An amphioxus cDNA, AmphiGM2AP, encoding GM2 activator protein was isolated from the gut cDNA library of Branchiostoma belcheri. It is 907 bp long, and its longest open reading frame codes for a precursor protein consisting of 242 amino acid residues with a signal peptide of 14 amino acids. The deduced amino acid sequence includes a conserved domain typical of GM2APs between residues 53 and 224, a single N-linked glycosylation site at position 65 and 8 conserved cysteines. Phylogenetic analysis showed that amphiGM2AP forms a club together with invertebrate GM2APs, indicating that AmphiGM2AP is evolutionarily closely related to invertebrate GM2APs rather than vertebrate ones. Both Northern blotting and in situ hybridization histochemistry analyses revealed a tissue-specific expression pattern of AmphiGM2AP in adult amphioxus with the strongest expression in the digestive system, which is in contrast to the widespread expression pattern of human, mouse and sheep GM2AP genes. It is suggested that AmphiGM2AP is possibly involved in the take-in of digested food components like lipid molecules.
Collapse
Affiliation(s)
- Nai-Guo Liu
- Laboratory 202, Department of Marine Biology, Ocean Universiy of China, 5 Yushan Road, Qingdao 266003, People's Republic of China.
| | | | | | | | | |
Collapse
|
7
|
Wright CS, Mi LZ, Rastinejad F. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor. J Mol Biol 2004; 342:585-92. [PMID: 15327957 DOI: 10.1016/j.jmb.2004.07.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/27/2004] [Accepted: 07/11/2004] [Indexed: 10/26/2022]
Abstract
GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2A crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement of two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals' contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.
Collapse
Affiliation(s)
- Christine S Wright
- Department of Pharmacology, X-ray Crystallography Laboratory, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | | | |
Collapse
|
8
|
Dong WG, Liu SP, Zhu HH, Luo HS, Yu JP. Abnormal function of platelets and role of angelica sinensis in patients with ulcerative colitis. World J Gastroenterol 2004; 10:606-9. [PMID: 14966927 PMCID: PMC4716990 DOI: 10.3748/wjg.v10.i4.606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To explore the abnormal function of platelets and the role of angelica sinensis injection (ASI) in patients with ulcerative colitis (UC).
METHODS: In 39 patients with active UC, 25 patients with remissive UC and 30 healthy people, α-granule membrane protein (GMP-140) and thromboxane B2 (TXB2) were detected by means of ELISA, 6-keto-PGF1a was detected by radioimmunoassay, platelet count (PC) and 1 min platelet aggregation rate (1 min PAR) were detected by blood automatic tester and platelet aggregation tester respectively, and von Willebrand factor related antigen (vWF:Ag) was detected by the means of monoclonal-ELISA. The 64 patients with UC were divided into two therapy groups. After routine treatment and angelica sinensis injection (ASI) + routine treatment respectively for 3 weeks, all these parameters were also detected.
RESULTS: The PC, 1 min PAR and levels of GMP-140, TXB2, and vWF:Ag in active UC were significanrly higher than those in remissive UC and normal controls (P < 0.05-0.01).Meanwhile, 1 min PAR and levels of GMP-140, TXB2, and vWF:Ag in remissive UC were still significantly higher than those in normal controls (P < 0.05). Furthermore, 6-keto-PGF1a level in active and remissive UC was remarkably lower than that in normal control (P < 0.05-0.01). These parameters except 6-keto-PGF1a were significantly improved after the treatment in ASI therapy group (P < 0.05-0.01), whereas they all were little changed in routine therapy group (P > 0.05).
CONCLUSION: Platelets can be significantly activated in UC, which might be related with vascular endothelium injury and imbalance between TXB2 and 6-keto-PGF1a in blood. ASI can significantly inhibit platelet activation, relieve vascular endothelial cell injury, and improve microcirculation in UC.
Collapse
Affiliation(s)
- Wei-Guo Dong
- Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei Province, China.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The GM2-activator protein (GM2-AP) is a small lysosomal lipid transfer protein essential for the hydrolytic conversion of ganglioside GM2 to GM3 by beta-hexosaminidase A. The crystal structure of human apo-GM2-AP is known to consist of a novel beta-cup fold with a spacious hydrophobic interior. Here, we present two new structures of GM2-AP with bound lipids, showing two different lipid-binding modes within the apolar pocket. The 1.9A structure with GM2 bound shows the position of the ceramide tail and significant conformational differences among the three molecular copies in the asymmetric unit. The tetrasaccharide head group is not visible and is presumed to be disordered. However, its general position could be established through modeling. The structure of a low-pH crystal, determined at 2.5A resolution, has a significantly enlarged hydrophobic channel that merges with the apolar pocket. Electron density inside the pocket and channel suggests the presence of a trapped phospholipid molecule. Structure alignments among the four crystallographically unique monomers provide information on the potential role for lipid binding of flexible chain segments at the rim of the cavity opening. Two discrete orientations of the S130-T133 loop define an open and a closed configuration of the hydrophobic channel that merges with the apolar pocket. We propose: (i) that the low-pH structure represents an active membrane-binding conformation; (ii) that the mobile S130-T133 loop serves as a gate for passage of ligand into the apolar pocket; and (iii) that this loop and the adjacent apolar V59-W63 loop form a surface patch with two exposed tryptophan residues that could interface with lipid bilayers.
Collapse
Affiliation(s)
- Christine Schubert Wright
- Department of Pharmacology, X-ray Laboratory and University of Virginia Health System, PO Box 800735, Charlottesville, VA 22908-0735, USA.
| | | | | |
Collapse
|
10
|
Shimada Y, Li YT, Li SC. Effect of GM2 activator protein on the enzymatic hydrolysis of phospholipids and sphingomyelin. J Lipid Res 2003; 44:342-8. [PMID: 12576516 DOI: 10.1194/jlr.m200234-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GM2 activator protein (GM2AP) is a specific protein cofactor that stimulates the enzymatic hydrolysis of the GalNAc from GM2, a sialic acid containing glycosphingolipid, both in vitro and in lysosomes. While phospholipids together with glycosphingolipids are important membrane constituents, little is known about the possible effect of GM2AP on the hydrolysis of phospholipids. Several recent reports suggest that GM2AP might have functions other than stimulating the conversion of GM2 into GM3 by beta-hexosaminidase A, such as inhibiting the activity of platelet activating factor and enhancing the degradation of phosphatidylcholine by phospholipase D (PLD). We therefore examined the effect of GM2AP on the in vitro hydrolyses of a number of phospholipids and sphingomyelin by microbial (Streptomyces chromofuscus) and plant (cabbage) PLD. GM2AP, at the concentration as low as 1.08 microM (1 microg/50 microl) was found to inhibit about 70% of the hydrolyses of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol by PLD, whereas the same concentration of GM2AP only inhibited about 20-25% of the hydrolysis of sphingomyelin by sphingomyelinase and had no effect on the hydrolysis of sphingosylphosphorylcholine by PLD. Thus, GM2AP exerts strong and broad inhibitory effects on the hydrolysis of phospholipids carried out by plant and microbial PLDs. High ammonium sulfate concentration (1.6 M or 21.1%) masks this inhibitory effect, possibly due to the alteration of the ionic property of GM2AP.
Collapse
Affiliation(s)
- Yoshimi Shimada
- Department of Biochemistry, Tulane University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
11
|
Zelenika D, Adams E, Humm S, Graca L, Thompson S, Cobbold SP, Waldmann H. Regulatory T cells overexpress a subset of Th2 gene transcripts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1069-79. [PMID: 11801640 DOI: 10.4049/jimmunol.168.3.1069] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is now compelling evidence for subpopulations of CD4+ T cells whose role is to prevent immune pathology in both autoimmunity and transplantation. We have cloned CD4+ T cells against a male transplantation Ag that, unlike Th1 or Th2 clones, suppresses the rejection of male skin grafts and are therefore considered examples of regulatory T cells. We have identified, using serial analysis of gene expression, transcripts that are overexpressed in regulatory T cells compared with Th1 and Th2 clones. Some of these transcripts are increased in tolerated rather than rejecting skin grafts and in addition are expressed by the natural regulatory CD4+CD25+ subpopulation of naive mice. These genes include prepro-enkephalin, GM2 ganglioside activator protein, glucocorticoid-induced TNFR superfamily member 18, and integrin alpha(E)beta(7). They seem to represent a subset of transcripts shared with Th2 cells, suggesting that transplantation tolerance and normal immunoregulation may represent a unique form of Th2-like differentiation.
Collapse
Affiliation(s)
- Diana Zelenika
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Wright CS, Li SC, Rastinejad F. Crystal structure of human GM2-activator protein with a novel beta-cup topology. J Mol Biol 2000; 304:411-22. [PMID: 11090283 DOI: 10.1006/jmbi.2000.4225] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GM2 activator protein (GM2-AP) belongs to a small group of non- enzymatic lysosomal proteins that act as cofactors in the sequential degradation of gangliosides. It has been postulated that GM2-AP extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-d-galactosamine and conversion to GM3. The high affinity of GM2-AP for GM2 is based on specfic recognition of the oligosaccharide moiety as well as the ceramide lipid tail. Genetic defects in GM2-AP result in an atypical form of Tay-Sachs disease known as variant AB GM2 gangliosidosis. The 2.0 A resolution crystal structure of GM2-AP reported here reveals a previously unobserved fold whose main feature is an eight-stranded cup-shaped anti-parallel beta-pleated sheet. The striking feature of the GM2-AP structure is that it possesses an accessible central hydrophobic cavity rather than a buried hydrophobic core. The dimensions of this cavity (12 Ax14 Ax22 A) are suitable for binding 18-carbon lipid acyl chains. Flexible surface loops and a short alpha-helix decorate the mouth of the beta-cup and may control lipid entry to the cavity.
Collapse
Affiliation(s)
- C S Wright
- Department of Pharmacology, X-ray Crystallography Laboratory, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | | | |
Collapse
|