1
|
Edwards SL, Erdenebat P, Morphis AC, Kumar L, Wang L, Chamera T, Georgescu C, Wren JD, Li J. Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development. Cell Rep 2021; 36:109623. [PMID: 34469721 PMCID: PMC8442575 DOI: 10.1016/j.celrep.2021.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Germline development is sensitive to nutrient availability and environmental perturbation. Heat shock transcription factor 1 (HSF1), a key transcription factor driving the cellular heat shock response (HSR), is also involved in gametogenesis. The precise function of HSF1 (HSF-1 in C. elegans) and its regulation in germline development are poorly understood. Using the auxin-inducible degron system in C. elegans, we uncovered a role of HSF-1 in progenitor cell proliferation and early meiosis and identified a compact but important transcriptional program of HSF-1 in germline development. Interestingly, heat stress only induces the canonical HSR in a subset of germ cells but impairs HSF-1 binding at its developmental targets. Conversely, insulin/insulin growth factor 1 (IGF-1) signaling dictates the requirement for HSF-1 in germline development and functions through repressing FOXO/DAF-16 in the soma to activate HSF-1 in germ cells. We propose that this non-cell-autonomous mechanism couples nutrient-sensing insulin/IGF-1 signaling to HSF-1 activation to support homeostasis in rapid germline growth.
Collapse
Affiliation(s)
- Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Purevsuren Erdenebat
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lalit Kumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lai Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jian Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Yang X, Gao Y, Zhao M, Wang X, Zhou H, Zhang A. Cloning and identification of grass carp transcription factor HSF1 and its characterization involving the production of fish HSP70. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1933-1945. [PMID: 32627093 DOI: 10.1007/s10695-020-00842-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In mammals, heat shock transcription factor 1 (HSF1) is well documented as the critical transcript factor to regulate heat shock protein 70 (HSP70) expression under different stresses, such as heat shock or bacterial infection. In fish, Hsf1 responses to physiological and environmental stresses and regulates Hsp70 expression under thermal exposure. However, the functional role of Hsf1 in Hsp70 production is still elusive under bacterial infection. In the present study, a coding sequence of grass carp hsf1 (gchsf1) gene was cloned and identified. Using Ctenopharyngodon idellus kidney (CIK) cells as the model, we found that lipopolysaccharide (LPS) exerted stimulatory effects on the expression of grass carp hsp70 (gchsp70) and hsf1, implying possible relationship of Hsp70 and Hsf1 under immune stimulation in fish. To validate the hypothesis, overexpression of gcHsf1 was performed in CIK cells, and the effects of overexpressing gcHsf1 on the expression of gcHsp70 in the absence or presence of LPS were examined. Results showed that LPS significantly upregulated the transcription and protein synthesis of gcHsp70, and these stimulatory effects were further amplified when overexpression of gcHsf1 was performed. Furthermore, luciferase reporter assays in CIK cells revealed that both overexpression of Hsf1 and LPS upregulated gchsp70 transcription, and their combined treatment further enhanced the gchsp70 promoter activity. Moreover, the regions responsive to these treatments were mapped to the promoter of gchsp70. Besides transcriptional level and cellular protein contents, gcHsp70 secretion was measured by competitive ELISA, uncovering that gcHsf1 enhanced the release of gcHsp70 induced by LPS in the same cells. These data not only demonstrated the enhancement of Hsf1 in Hsp70 production but also initially revealed the involvement of Hsf1-Hsp70 axis in mediating inflammatory response in fish.
Collapse
Affiliation(s)
- Xinrui Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Biology, Lawrence University, Appleton, WI, USA
| | - Yajun Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Minghui Zhao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
3
|
Neueder A, Achilli F, Moussaoui S, Bates GP. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription. J Biol Chem 2014; 289:19894-906. [PMID: 24855652 PMCID: PMC4106310 DOI: 10.1074/jbc.m114.570739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The heat shock response, resulting in the production of heat shock proteins or molecular chaperones, is triggered by elevated temperature and a variety of other stressors. Its master regulator is heat shock transcription factor 1 (HSF1). Heat shock factors generally exist in multiple isoforms. The two known isoforms of HSF1 differ in the inclusion (HSF1α) or exclusion (HSF1β) of exon 11. Although there are some data concerning the differential expression patterns and transcriptional activities of HSF2 isoforms during development, little is known about the distinct properties of the HSF1 isoforms. Here we present evidence for two novel HSF1 isoforms termed HSF1γα and HSF1γβ, and we show that the HSF1 isoform ratio differentially regulates heat shock protein gene transcription. Hsf1γ isoforms are expressed in various mouse tissues and are translated into protein. Furthermore, after heat shock, HSF1γ isoforms are exported from the nucleus more rapidly or degraded more quickly than HSF1α or HSF1β. We also show that each individual HSF1 isoform is sufficient to induce the heat shock response and that expression of combinations of HSF1 isoforms, in particular HSF1α and HSF1β, results in a synergistic enhancement of the transcriptional response. In addition, HSF1γ isoforms potentially suppress the synergistic effect of HSF1α and HSF1β co-expression. Collectively, our observations suggest that the expression of HSF1 isoforms in a specific ratio provides an additional layer in the regulation of heat shock protein gene transcription.
Collapse
Affiliation(s)
- Andreas Neueder
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| | - Francesca Achilli
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| | - Saliha Moussaoui
- Neuroscience Discovery, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Gillian P Bates
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| |
Collapse
|
4
|
Abstract
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Collapse
Affiliation(s)
- Ryma Abane
- CNRS, UMR7216 Epigenetics and Cell Fate, Paris, France
| | | |
Collapse
|
5
|
|
6
|
Ojima N, Yamashita M. Cloning and characterization of two distinct isoforms of rainbow trout heat shock factor 1. ACTA ACUST UNITED AC 2004; 271:703-12. [PMID: 14764086 DOI: 10.1111/j.1432-1033.2003.03972.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the molecular mechanism underlying the heat shock response in cold-water fish species, genes encoding heat shock transcription factors (HSFs) were cloned from RTG-2 cells of the rainbow trout Oncorhynchus mykiss. Consequently, two distinct HSF1 genes, named HSF1a and HSF1b, were identified. The predicted amino acid sequence of HSF1a shows 86.4% identity to that of HSF1b. The two proteins contained the general structural motifs of HSF1, i.e. a DNA-binding domain, hydrophobic heptad repeats and nuclear localization signals. Southern blot analysis showed that each HSF1 is encoded by a distinct gene. The two HSF1 mRNAs were coexpressed in unstressed rainbow trout RTG-2 cells and in various tissues. In an electrophoretic mobility shift assay, each in vitro translated HSF1 bound to the heat shock element. Chemical cross-linking and immunoprecipitation analysis showed that HSF1a and HSF1b form heterotrimers as well as homotrimers. Taken together, these results demonstrate that in rainbow trout cells there are two distinct HSF1 isoforms that can form heterotrimers, suggesting that a unique molecular mechanism underlies the stress response in tetraploid and/or cold-water fish species.
Collapse
Affiliation(s)
- Nobuhiko Ojima
- Cell Biology Section, Physiology and Molecular Biology Division, National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan.
| | | |
Collapse
|
7
|
Buckley BA, Hofmann GE. Thermal acclimation changes DNA-binding activity of heat shock factor 1(HSF1) in the gobyGillichthys mirabilis: implications for plasticity in the heat-shock response in natural populations. J Exp Biol 2002; 205:3231-40. [PMID: 12235201 DOI: 10.1242/jeb.205.20.3231] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of a family of evolutionarily conserved proteins called heat shock proteins (Hsps) that act as molecular chaperones, protecting the cell against the aggregation of denatured proteins. The transcriptional regulation of heat shock genes by heat shock factor 1(HSF1) has been extensively studied in model systems, but little research has focused on the role HSF1 plays in Hsp gene expression in eurythermal organisms from broadly fluctuating thermal environments. The threshold temperature for Hsp induction in these organisms shifts with the recent thermal history of the individual but the mechanism by which this plasticity in Hsp induction temperature is achieved is unknown. We examined the effect of thermal acclimation on the heat-activation of HSF1 in the eurythermal teleost Gillichthys mirabilis. After a 5-week acclimation period (at 13, 21 or 28°C) the temperature of HSF1 activation was positively correlated with acclimation temperature. HSF1 activation peaked at 27°C in fish acclimated to 13°C, at 33°C in the 21°C group, and at 36°C in the 28°C group. Concentrations of both HSF1 and Hsp70 in the 28°C group were significantly higher than in the colder acclimated fish. Plasticity in HSF1 activation may be important to the adjustable nature of the heat shock response in eurythermal organisms and the environmental control of Hsp gene expression.
Collapse
Affiliation(s)
- Bradley A Buckley
- Department of Biology, Arizona State University, Tempe 85287-1501, USA
| | | |
Collapse
|
8
|
Mezquita B, Mezquita J, Durfort M, Mezquita C. Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. J Cell Biochem 2001; 82:480-90. [PMID: 11500924 DOI: 10.1002/jcb.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The constitutive and heat shock induced expression of Hsp70 mRNA was investigated in normal adult chicken testis and in adult testis after testicular regression induced by diethylstilbestrol (DES) treatment. In addition to the canonical form of Hsp70 mRNA, we have detected transcripts with an extended 5'UTR and transcripts containing, in the 5'UTR, sequences of the 18S ribosomal RNA. Hsp70 was expressed in unstressed male gonads in adult and regressed testis, being the expression much lower in regressed testis. Upon heat shock at 44 degrees C or 46 degrees C, Hsp70 was highly induced in both tissues. However, when testicular seminiferous tubules were incubated at the chicken internal temperature of 39 degrees C, no induction of Hsp70 was observed in mature testis, while the expression markedly increased in regressed testis. Induction at 39 degrees C was completely inhibited in the presence of 6 mM aspirin. Aspirin in the range 3-10 mM decreases the expression of Hsp70 in unstressed and stressed testicular cells, in striking contrast with the effect observed in other tissues as liver. These data suggest that the expression of Hsp70 is regulated in a specific manner in chicken testis and particularly in the male gonad undergoing regression.
Collapse
Affiliation(s)
- B Mezquita
- Laboratori de Genètica Molecular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|