1
|
Zhang Y, Li Y, Zhang Y, Wang Z, Zhao M, Su N, Zhang T, Chen L, Wei W, Luo J, Zhou Y, Xu Y, Xu P, Li W, Tao Y. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis. J Proteome Res 2015; 15:68-85. [DOI: 10.1021/acs.jproteome.5b00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yao Zhang
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
- State
Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanchang Li
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yongguang Zhang
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
| | - Zhiqiang Wang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry
of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Mingzhi Zhao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Na Su
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, P. R. China
| | - Wei Wei
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Jing Luo
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Zhou
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Hebei
Province Key Lab of Research and Application on Microbial Diversity,
College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongru Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, P. R. China
| | - Ping Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry
of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
- Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Wenjun Li
- State
Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
- Key
Laboratory of Microbial Diversity in Southwest China, Ministry of
Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yong Tao
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ranganathan S, Bowser R. Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:823-35. [PMID: 12598317 PMCID: PMC1868100 DOI: 10.1016/s0002-9440(10)63879-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2002] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of the motor neurons in the cerebral cortex, brain stem, and spinal cord. However, the mechanisms that regulate the initiation and/or progression of motor neuron loss in this disease remain enigmatic. Cell-cycle proteins and transcriptional regulators such as cyclins, cyclin-associated kinases, the retinoblastoma gene product (pRb), and E2F-1 function during cellular proliferation, differentiation, and cell death pathways. Recent data has implicated increased expression and activation of various cell-cycle proteins in neuronal cell death. We have examined the expression and subcellular distribution of G(1) to S phase cell-cycle regulators in the spinal cord, motor cortex, and sensory cortex from clinically and neuropathologically diagnosed sporadic ALS cases and age-matched controls. Our results indicate hyperphosphorylation of the retinoblastoma protein in motor neurons during ALS, concurrent with increased levels of cyclin D, and redistribution of E2F-1 into the cytoplasm of motor neurons and glia. These data suggest that G(1) to S phase activation occurs during ALS and may participate in molecular mechanisms regulating motor neuron death.
Collapse
Affiliation(s)
- Srikanth Ranganathan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
4
|
Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000; 256:34-41. [PMID: 10739649 DOI: 10.1006/excr.2000.4836] [Citation(s) in RCA: 516] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, our understanding of apoptosis, or programmed cell death, has increased greatly, with the identification of some of the major components of the apoptotic programme and the processes regulating their activation. Although apoptosis is an intrinsic process present in all cells, it can be regulated by extrinsic factors, including hormones, growth factors, cell surface receptors, and cellular stress. The actions of both pro- and antiapoptotic factors are often affected by modulation of the phosphorylation status of key elements of the apoptotic process. This minireview will focus on the role of protein kinases in apoptosis. Apoptosis is a multistep process and protein kinases have been implicated both in the upstream induction phase of apoptosis and in the downstream execution stage, as the direct targets for caspases. Due to the space constraints of this review it is not possible to discuss all of the kinases involved in the apoptotic process and we have focused here on the role of the serine/threonine protein kinases. The kinases of this family that have been suggested to play a role in apoptosis are the mitogen-activated protein kinase (MAPK) family, specifically p42/44 ERK, p38 MAPK and c-Jun N-terminal kinase (JNK), cyclic AMP-dependent protein kinase (PKA), protein kinase B (PKB), or Akt and protein kinase C (PKC). We have also considered briefly the potential for the regulation of these kinases by tyrosine protein kinases, such as c-abl.
Collapse
Affiliation(s)
- T G Cross
- MRC Centre for Immune Regulation, The Medical School, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|