1
|
Song T, Li C, Jin K, Xia Y. The Forkhead Box Gene, MaSep1, Negatively Regulates UV- and Thermo-Tolerances and Is Required for Microcycle Conidiation in Metarhizium acridum. J Fungi (Basel) 2024; 10:544. [PMID: 39194870 DOI: 10.3390/jof10080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Insect pathogenic fungi have shown great potential in agricultural pest control. Conidiation is crucial for the survival of filamentous fungi, and dispersal occurs through two methods: normal conidiation, where conidia differentiate from mycelium, and microcycle conidiation, which involves conidial budding. The conidiation process is related to cell separation. The forkhead box gene Sep1 in Schizosaccharomyces pombe plays a crucial role in cell separation. Nevertheless, the function of Sep1 has not been clarified in filamentous fungi. Here, MaSep1, the homolog of Sep1 in Metarhizium acridum, was identified and subjected to functional analysis. The findings revealed that conidial germination of the MaSep1-deletion strain (ΔMaSep1) was accelerated and the time for 50% germination rate of conidial was shortened by 1 h, while the conidial production of ΔMaSep1 was considerably reduced. The resistances to heat shock and UV-B irradiation of ΔMaSep1 were enhanced, and the expression of some genes involved in DNA damage repair and heat shock response was significantly increased in ΔMaSep1. The disruption of MaSep1 had no effect on the virulence of M. acridum. Interestingly, ΔMaSep1 conducted the normal conidiation on the microcycle conidiation medium, SYA. Furthermore, 127 DEGs were identified by RNA-Seq between the wild-type and ΔMaSep1 strains during microcycle conidiation, proving that MaSep1 mediated the conidiation pattern shift by governing some genes associated with conidiation, cell division, and cell wall formation.
Collapse
Affiliation(s)
- Tiantian Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Chan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
2
|
Otsubo Y, Yamashita A, Goto Y, Sakai K, Iida T, Yoshimura S, Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J Cell Sci 2023; 136:jcs261292. [PMID: 37990810 DOI: 10.1242/jcs.261292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.
Collapse
Affiliation(s)
- Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsushi Iida
- Gene Engineering Division, RIKEN BioResource Research Center (BRC), 3-1-1 Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Shinji Yoshimura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
| | - Katsuki Johzuka
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Astrobiology Center, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:963-975. [PMID: 27353472 PMCID: PMC6638265 DOI: 10.1111/mpp.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/15/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)-box-containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)-based gene silencing was employed to alter the expression of SsFkh1. RNA-silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis-related laccase genes and a polyketide synthase-encoding gene were significantly down-regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi-silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.
Collapse
Affiliation(s)
- Huidong Fan
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Gang Yu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanzhi Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Xianghui Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | | | - Fengjie Sun
- School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleGA30024USA
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchun130062China
| |
Collapse
|
4
|
fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway. Curr Genet 2016; 63:91-101. [PMID: 27165118 DOI: 10.1007/s00294-016-0607-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
Environmental changes, such as nutrient limitation or starvation induce different signal transducing pathways, which require coordinated cooperation of several genes. Our previous data revealed that the fhl1 fork-head type transcription factor of the fission yeast could be involved in sporulation, which was typically induced under poor conditions. Since the exact role of Fhl1 in this process was not known, we wanted to identify its downstream targets and to investigate its possible cooperation with another known regulator of sporulation. Gene expression and Northern blot analysis of the fhl1∆ mutant strain revealed the target genes involved in mating and sporulation. Our results also showed that Fhl1 could regulate nutrient sensing, the transporter and permease genes. Since the majority of these genes belonged to the nitrogen starvation response, the possible cooperation of fhl1 and tor2 was also investigated. Comparison of their microarray data and the expression of fhl1 + from a strong promoter in the tor2-ts mutant cells suggested that one part of the target genes are commonly regulated by Fhl1 and Tor2. Since the expression of fhl1 + from a strong promoter could rescue rapamycin and temperature sensitivity and suppressed the hyper-sporulation defect of the tor2-ts mutant cells, we believe that Fhl1 acts in TOR signaling, downstream of Tor2. Thus, this work shed light on certain novel details of the regulation of the sexual processes and a new member of the TOR pathway, but further experiments are needed to confirm the involvement of Fhl1 in nutrient sensing.
Collapse
|
5
|
Zhao S, Yan YS, He QP, Yang L, Yin X, Li CX, Mao LC, Liao LS, Huang JQ, Xie SB, Nong QD, Zhang Z, Jing L, Xiong YR, Duan CJ, Liu JL, Feng JX. Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:203. [PMID: 27688806 PMCID: PMC5035457 DOI: 10.1186/s13068-016-0616-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/14/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and secretomic profiling of P. oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106 were employed to screen for novel regulators of cellulase and xylanase gene expression. RESULTS The 30.62 Mb P. oxalicum HP7-1 genome was sequenced, and 9834 protein-coding genes were annotated. Re-sequencing of the mutant EU2106 genome identified 274 single nucleotide variations and 12 insertion/deletions. Comparative genomic, transcriptomic and secretomic profiling of HP7-1 and EU2106 revealed four candidate regulators of cellulase and xylanase gene expression. Deletion of these candidate genes and measurement of the enzymatic activity of the resultant mutants confirmed the identity of three regulatory genes. POX02484 and POX08522, encoding a putative Zn(II)2Cys6 DNA-binding domain and forkhead protein, respectively, were found to be novel, while PoxClrB is an ortholog of ClrB, a key transcriptional regulator of cellulolytic enzyme gene expression in filamentous fungi. ΔPOX02484 and ΔPOX08522 mutants exhibited significantly reduced β-glucosidase activity, increased carboxymethylcellulose cellulase and xylanase activities, and altered transcription level of cellulase and xylanase genes compared with the parent strain ΔPoxKu70, with Avicel as the sole carbon source. CONCLUSIONS Two novel genes, POX02484 and POX08522, were found and characterized to regulate the expression of cellulase and xylanase genes in P. oxalicum. These findings are important for engineering filamentous fungi to improve cellulase and xylanase production.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi-Peng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lin Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xin Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Li-Chun Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jin-Qun Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Shang-Bo Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qing-Dong Nong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Zheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lei Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Ya-Ru Xiong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Jie Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jun-Liang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
6
|
Suárez MB, Alonso-Nuñez ML, del Rey F, McInerny CJ, Vázquez de Aldana CR. Regulation of Ace2-dependent genes requires components of the PBF complex in Schizosaccharomyces pombe. Cell Cycle 2015; 14:3124-37. [PMID: 26237280 DOI: 10.1080/15384101.2015.1078035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The division cycle of unicellular yeasts is completed with the activation of a cell separation program that results in the dissolution of the septum assembled during cytokinesis between the 2 daughter cells, allowing them to become independent entities. Expression of the eng1(+) and agn1(+) genes, encoding the hydrolytic enzymes responsible for septum degradation, is activated at the end of each cell cycle by the transcription factor Ace2. Periodic ace2(+) expression is regulated by the transcriptional complex PBF (PCB Binding Factor), composed of the forkhead-like proteins Sep1 and Fkh2 and the MADS box-like protein Mbx1. In this report, we show that Ace2-dependent genes contain several combinations of motifs for Ace2 and PBF binding in their promoters. Thus, Ace2, Fkh2 and Sep1 were found to bind in vivo to the eng1(+) promoter. Ace2 binding was coincident with maximum level of eng1(+) expression, whereas Fkh2 binding was maximal when mRNA levels were low, supporting the notion that they play opposing roles. In addition, we found that the expression of eng1(+) and agn1(+) was differentially affected by mutations in PBF components. Interestingly, agn1(+) was a major target of Mbx1, since its ectopic expression resulted in the suppression of Mbx1 deletion phenotypes. Our results reveal a complex regulation system through which the transcription factors Ace2, Fkh2, Sep1 and Mbx1 in combination control the expression of the genes involved in separation at the end of the cell division cycle.
Collapse
Affiliation(s)
- M Belén Suárez
- a Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca ; Salamanca , Spain
| | | | - Francisco del Rey
- a Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca ; Salamanca , Spain
| | | | | |
Collapse
|
7
|
Garg A, Futcher B, Leatherwood J. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res 2015; 43:6874-88. [PMID: 25908789 PMCID: PMC4538799 DOI: 10.1093/nar/gkv274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors, which have not previously been connected to cell cycle control. Sak1 binds upstream of mitotic genes in close proximity to Fkh2, a forkhead transcription factor previously implicated in regulation of mitotic genes. We show that Sak1 is the major activator of mitotic gene expression and also confirm the role of Fkh2 as the opposing repressor. Sep1, another forkhead transcription factor, is an activator for a small subset of mitotic genes involved in septation. From yeasts to humans, forkhead transcription factors are involved in mitotic gene expression and it will be interesting to see whether RFX transcription factors may also be involved in other organisms.
Collapse
Affiliation(s)
- Angad Garg
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Futcher
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Janet Leatherwood
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Nakazawa N, Sajiki K, Xu X, Villar-Briones A, Arakawa O, Yanagida M. RNA pol II transcript abundance controls condensin accumulation at mitotically up-regulated and heat-shock-inducible genes in fission yeast. Genes Cells 2015; 20:481-99. [PMID: 25847133 PMCID: PMC4471619 DOI: 10.1111/gtc.12239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Condensin plays fundamental roles in chromosome dynamics. In this study, we determined the binding sites of condensin on fission yeast (Schizosaccharomyces pombe) chromosomes at the level of nucleotide sequences using chromatin immunoprecipitation (ChIP) and ChIP sequencing (ChIP-seq). We found that condensin binds to RNA polymerase I-, II- and III-transcribed genes during both mitosis and interphase, and we focused on pol II constitutive and inducible genes. Accumulation sites for condensin are distinct from those of cohesin and DNA topoisomerase II. Using cell cycle stage and heat-shock-inducible genes, we show that pol II-mediated transcripts cause condensin accumulation. First, condensin's enrichment on mitotically activated genes was abolished by deleting the sep1(+) gene that encodes an M-phase-specific forkhead transcription factor. Second, by raising the temperature, condensin accumulation was rapidly induced at heat-shock protein genes in interphase and even during mid-mitosis. In interphase, condensin accumulates preferentially during the postreplicative phase. Pol II-mediated transcription was neither repressed nor activated by condensin, as levels of transcripts per se did not change when mutant condensin failed to associate with chromosomal DNA. However, massive chromosome missegregation occurred, suggesting that abundant pol II transcription may require active condensin before proper chromosome segregation.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Alejandro Villar-Briones
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Orie Arakawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
9
|
Modulating the level of the Rpb7 subunit of RNA polymerase II affects cell separation in Schizosaccharomyces pombe. Res Microbiol 2015; 166:20-7. [DOI: 10.1016/j.resmic.2014.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 12/17/2022]
|
10
|
Park J, Kong S, Kim S, Kang S, Lee YH. Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2014; 30:136-50. [PMID: 25288996 PMCID: PMC4174854 DOI: 10.5423/ppj.oa.02.2014.0018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 05/24/2023]
Abstract
Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.
Collapse
Affiliation(s)
- Jaejin Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Seryun Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
11
|
|
12
|
Copy number suppressors of the Aspergillus nidulans nimA1 mitotic kinase display distinctive and highly dynamic cell cycle-regulated locations. EUKARYOTIC CELL 2008; 7:2087-99. [PMID: 18931041 DOI: 10.1128/ec.00278-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Aspergillus nidulans NIMA kinase is essential for mitosis and is the founding member of the conserved NIMA-related kinase (Nek) family of protein kinases. To gain insight into NIMA function, a copy number suppression screen has been completed that defines three proteins termed MCNA, MCNB, and MCNC (multi-copy-number suppressor of nimA1 A, B, and C). All display a distinctive and dynamic cell cycle-specific distribution. MCNC has weak similarity to Saccharomyces cerevisiae Def1 within a shared CUE-like domain. MCNC, like Def1, is a cytoplasmic protein with slow mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its deletion causes polarization defects and a small colony phenotype. MCNC enters nuclei during mitosis. In contrast, MCNB is a nuclear protein displaying increased nuclear levels as cells progress through interphase but is lost from nuclei at mitosis. MCNB is highly related to the Schizosaccharomyces pombe forkhead transcription factor Sep1 and is likely a transcriptional activator of nimA. Most surprisingly, MCNA, a protein restricted to the aspergilli and pathogenic systemic dimorphic fungi (the Eurotiomycetes), defines a nuclear body located near nucleoli at the nuclear periphery of G(2) nuclei. During progression through mitosis, the MCNA body is excluded from nuclei. Cytoplasmic MCNA bodies then diminish during early stages of interphase, and single MCNA bodies are formed within nuclei as interphase progresses. Three sites of MCNA phosphorylation were mapped and mutated to implicate proline-directed phosphorylation in the equal segregation of MCNA during the cell cycle. The data indicate all three MCN proteins likely have cell cycle functions.
Collapse
|
13
|
Shimada M, Yamada-Namikawa C, Murakami-Tonami Y, Yoshida T, Nakanishi M, Urano T, Murakami H. Cdc2p controls the forkhead transcription factor Fkh2p by phosphorylation during sexual differentiation in fission yeast. EMBO J 2007; 27:132-42. [PMID: 18059475 DOI: 10.1038/sj.emboj.7601949] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Accepted: 11/15/2007] [Indexed: 01/03/2023] Open
Abstract
In most eukaryotes, cyclin-dependent kinases (Cdks) play a central role in control of cell-cycle progression. Cdks are inactivated from the end of mitosis to the start of the next cell cycle as well as during sexual differentiation. The forkhead-type transcription factor Fkh2p is required for the periodic expression of many genes and for efficient mating in the fission yeast Schizosaccharomyces pombe. However, the mechanism responsible for coordination of cell-cycle progression with sexual differentiation is still unknown. We now show that Fkh2p is phosphorylated by Cdc2p (Cdk1) and that phosphorylation of Fkh2p on T314 or S462 by this Cdk blocks mating in S. pombe by preventing the induction of ste11+ transcription, which is required for the onset of sexual development. We propose that functional interaction between Cdks and forkhead transcription factors may link the mitotic cell cycle and sexual differentiation.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In cell-walled organisms, a cross wall (septum) is produced during cytokinesis, which then splits in certain organisms to allow the daughter cells to separate. The formation and the subsequent cleavage of the septum require wall synthesis and wall degradation, which need to be strictly coordinated in order to prevent cell lysis. The dividing fission yeast (Schizosaccharomyces) cell produces a three-layered septum in which the middle layer and a narrow band of the adjacent cell wall can be degraded without threatening the integrity of the separating daughter cells. This spatially very precise process requires the activity of the Agn1p 1,3-alpha-glucanase and the Eng1p 1,3-beta-glucanase, which are localized to the septum by a complex mechanism involving the formation of a septin ring and the directed activity of the exocyst system. The Sep1p-Ace2p transcription-factor cascade regulates the expression of many genes producing proteins for this complex process. Recent advances in research into the molecular mechanisms of separation and its regulation are discussed in this review.
Collapse
|
15
|
Beskow A, Wright APH. Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 2007; 23:929-35. [PMID: 17072884 DOI: 10.1002/yea.1413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulatory transcription factors (rTFs), which bind specific DNA sequences in the regulatory regions of genes and subsequently activate or repress transcription, play a central role in programming genomic expression. The number of rTFs in a species might therefore reflect its functional complexity. For simple organisms like yeast, a relatively small number of rTFs might be expected that is fairly constant between yeast species. We show that the budding yeast, Saccharomyces cerevisiae, contains 201 rTfs, which is one of the largest rTF numbers found in yeast species for which genome sequences are available. This is a much higher number than the 129 rTFs found in the fission yeast, Schizosaccharomyces pombe, which is currently the yeast with the lowest number of rTFs. Comparative analysis of several different budding yeast species shows that most of the 'extra' rTFs found in S. cerevisiae were probably acquired as a result of a whole genome duplication (WGD) event that occurred in an ancestor of a subset of budding yeast species. However, we also show that budding yeast species that have not been affected by the WGD contain a greater number of rTFs than S. pombe (mean = 145). Thus, two or more mechanisms have led to the 60% increase in rTFs in S. cerevisiae compared to S. pombe. This difference may correlate with a more extensive functional divergence in budding yeasts compared to fission yeasts. The relatively small number of rTFs in S. pombe make this organism an attractive model for global studies of mechanisms that programme gene expression.
Collapse
Affiliation(s)
- Anne Beskow
- School of Life Sciences, Södertörns Högskola, SE-141 89, Huddinge, Sweden
| | | |
Collapse
|
16
|
Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U. Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Genet Genomics 2006; 275:492-503. [PMID: 16482473 DOI: 10.1007/s00438-006-0107-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/20/2006] [Indexed: 11/26/2022]
Abstract
Sordaria macrospora is a homothallic ascomycete which is able to form fertile fruiting bodies without a mating partner. To analyze the molecular basis of homothallism and the role of mating products during fruiting body development, we have deleted the mating type gene Smta-1 encoding a high-mobility group domain (HMG) protein. The DeltaSmta-1 deletion strain is morphologically wild type during vegetative growth, but it is unable to produce perithecia or ascospores. To identify genes expressed under control of Smta-1, we performed a cross-species microarray analysis using Neurospora crassa cDNA microarrays hybridized with S. macrospora targets. We identified 107 genes that are more than twofold up- or down-regulated in the mutant. Functional classification revealed that 81 genes have homologues with known or putative functions. Comparison of array data from DeltaSmta-1 with those from three phenotypically similar mutants revealed that only a limited set of ten genes is deregulated in all mutants. Remarkably, the ppg2 gene encoding a putative lipopeptide pheromone is 500-fold down-regulated in the DeltaSmta-1 mutant while in all other sterile mutants this gene is up-regulated.
Collapse
Affiliation(s)
- S Pöggeler
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Santos B, Martín-Cuadrado AB, Vázquez de Aldana CR, del Rey F, Pérez P. Rho4 GTPase is involved in secretion of glucanases during fission yeast cytokinesis. EUKARYOTIC CELL 2005; 4:1639-45. [PMID: 16215171 PMCID: PMC1265894 DOI: 10.1128/ec.4.10.1639-1645.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rho GTPases are regulators of signaling pathways that control actin organization and cell polarity processes in all eukaryotic cells. In Schizosaccharomyces pombe, Rho4p is involved in the regulation of septum degradation during cytokinesis. Here we show that Rho4p participates in the secretion of the glucanases Eng1p and Agn1p, which are responsible for the septum degradation. First, eng1+ or agn1+ overexpression suppressed the rho4delta multiseptation phenotype, and simultaneous overproduction of Rho4p and Eng1p or of Rho4p and Agn1p caused a dramatic lysis. Second, Rho4p was not necessary for Eng1p-mediated glucanase activity as measured in cell extracts; however, rho4delta cells have a lower level of (1,3)-beta-D-glucanase activity in the culture medium. Additionally, Eng1- or Agn1-green fluorescent protein did not properly localize to the septum in rho4delta cells grown at 37 degrees C. There was a decreased amount of these enzymes in the cell wall and in the culture medium of rho4delta cells at 37 degrees C. These results provide evidence that Rho4p is involved in the regulation of Eng1p and Agn1p secretion during cytokinesis.
Collapse
Affiliation(s)
- Beatriz Santos
- Instituto Microbiología-Bioquímica, Departamento de Microbiología-Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Campus Unamuno, 37007 Salamanca, Spain.
| | | | | | | | | |
Collapse
|
18
|
Petit CS, Mehta S, Roberts RH, Gould KL. Ace2p contributes to fission yeast septin ring assembly by regulating mid2+ expression. J Cell Sci 2005; 118:5731-42. [PMID: 16317047 DOI: 10.1242/jcs.02687] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The fission yeast Schizosaccharomyces pombe divides through constriction of an actomyosin-based contractile ring followed by formation and degradation of a medial septum. Formation of an organized septin ring is also important for the completion of S. pombe cell division and this event relies on the production of Mid2p. mid2+ mRNA and protein accumulate in mitosis. Recent microarray analyses identified mid2+ as a target of the Ace2p transcription factor, and ace2+ as a target of the Sep1p transcription factor. In this study, we find that Mid2p production is controlled by Ace2p functioning downstream of Sep1p. Consequently, both Sep1p and Ace2p are required for septin ring assembly and genetic analyses indicate that septin rings function in parallel with other Ace2p targets to achieve efficient cell division. Conversely, forced overproduction of Sep1p or Ace2p prevents septin ring disassembly. We find that Ace2p levels peak during anaphase and Ace2p is post-translationally modified by phosphorylation and ubiquitylation. Ace2p localizes symmetrically to dividing nuclei and functions independently of the septation initiation network.
Collapse
Affiliation(s)
- Claudia S Petit
- Howard Hughes Medical Institute, and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
19
|
Bulmer R, Pic-Taylor A, Whitehall SK, Martin KA, Millar JBA, Quinn J, Morgan BA. The forkhead transcription factor Fkh2 regulates the cell division cycle of Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 3:944-54. [PMID: 15302827 PMCID: PMC500873 DOI: 10.1128/ec.3.4.944-954.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In eukaryotes the regulation of gene expression plays a key role in controlling cell cycle progression. Here, we demonstrate that a forkhead transcription factor, Fkh2, regulates the periodic expression of cdc15(+) and spo12(+) in the M and G(1) phases of the cell division cycle in the fission yeast Schizosaccharomyces pombe. We also show that Fkh2 is important for several cell cycle processes, including cell morphology and cell separation, nuclear structure and migration, and mitotic spindle function. We find that the expression of fkh2(+) is itself regulated in a cell cycle-dependent manner in G(1) coincident with the expression of cdc18(+), a Cdc10-regulated gene. However, fkh2(+) expression is independent of Cdc10 function. Fkh2 was found to be phosphorylated during the cell division cycle, with a timing that suggests that this posttranslational modification is important for cdc15(+) and spo12(+) expression. Related forkhead proteins regulate G(2) and M phase-specific gene expression in the evolutionarily distant Saccharomyces cerevisiae, suggesting that these proteins play conserved roles in regulating cell cycle processes in eukaryotes.
Collapse
Affiliation(s)
- Richard Bulmer
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee KM, Miklos I, Du H, Watt S, Szilagyi Z, Saiz JE, Madabhushi R, Penkett CJ, Sipiczki M, Bähler J, Fisher RP. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol Biol Cell 2005; 16:2734-45. [PMID: 15829570 PMCID: PMC1142420 DOI: 10.1091/mbc.e04-11-0982] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fission yeast Mcs6-Mcs2-Pmh1 complex, homologous to metazoan Cdk7-cyclin H-Mat1, has dual functions in cell division and transcription: as a partially redundant cyclin-dependent kinase (CDK)-activating kinase (CAK) that phosphorylates the major cell cycle CDK, Cdc2, on Thr-167; and as the RNA polymerase (Pol) II carboxyl-terminal domain (CTD) kinase associated with transcription factor (TF) IIH. We analyzed conditional mutants of mcs6 and pmh1, which activate Cdc2 normally but cannot complete cell division at restrictive temperature and arrest with decreased CTD phosphorylation. Transcriptional profiling by microarray hybridization revealed only modest effects on global gene expression: a one-third reduction in a severe mcs6 mutant after prolonged incubation at 36 degrees C. In contrast, a small subset of transcripts ( approximately 5%) decreased by more than twofold after Mcs6 complex function was compromised. The signature of repressed genes overlapped significantly with those of cell separation mutants sep10 and sep15. Sep10, a component of the Pol II Mediator complex, becomes essential in mcs6 or pmh1 mutant backgrounds. Moreover, transcripts dependent on the forkhead transcription factor Sep1, which are expressed coordinately during mitosis, were repressed in Mcs6 complex mutants, and Mcs6 also interacts genetically with Sep1. Thus, the Mcs6 complex, a direct activator of Cdc2, also influences the cell cycle transcriptional program, possibly through its TFIIH-associated kinase function.
Collapse
Affiliation(s)
- Karen M Lee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alonso-Nuñez ML, An H, Martín-Cuadrado AB, Mehta S, Petit C, Sipiczki M, del Rey F, Gould KL, de Aldana CRV. Ace2p controls the expression of genes required for cell separation in Schizosaccharomyces pombe. Mol Biol Cell 2005; 16:2003-17. [PMID: 15689498 PMCID: PMC1073678 DOI: 10.1091/mbc.e04-06-0442] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission through contraction of an actomyosin ring and deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Here we describe the identification of seven genes (adg1(+), adg2(+), adg3(+), cfh4(+), agn1(+), eng1(+), and mid2(+)) whose expression is induced by the transcription factor Ace2p. The expression of all of these genes varied during the cell cycle, maximum transcription being observed during septation. At least three of these proteins (Eng1p, Agn1p, and Cfh4p) localize to a ring-like structure that surrounds the septum region during cell separation. Deletion of the previously uncharacterized genes was not lethal to the cells, but produced defects or delays in cell separation to different extents. Electron microscopic observation of mutant cells indicated that the most severe defect is found in eng1Delta agn1Delta cells, lacking the Eng1p endo-beta-1,3-glucanase and the Agn1p endo-alpha-glucanase. The phenotype of this mutant closely resembled that of ace2Delta mutants, forming branched chains of cells. This suggests that these two proteins are the main activities required for cell separation to be completed.
Collapse
Affiliation(s)
- Maria Luisa Alonso-Nuñez
- Departamento de Microbiología y Genética, Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peng X, Karuturi RKM, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu J. Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 2004; 16:1026-42. [PMID: 15616197 PMCID: PMC551471 DOI: 10.1091/mbc.e04-04-0299] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.
Collapse
Affiliation(s)
- Xu Peng
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kürnsteiner H, Kück U. Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum. EUKARYOTIC CELL 2004; 3:121-34. [PMID: 14871943 PMCID: PMC329499 DOI: 10.1128/ec.3.1.121-134.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 10/20/2003] [Indexed: 11/20/2022]
Abstract
Winged helix transcription factors, including members of the forkhead and the RFX subclasses, are characteristic for the eukaryotic domains in animals and fungi but seem to be missing in plants. In this study, in vitro and in vivo approaches were used to determine the functional role of the RFX transcription factor CPCR1 from the filamentous fungus Acremonium chrysogenum in cephalosporin C biosynthesis. Gel retardation analyses were applied to identify new binding sites of the transcription factor in an intergenic promoter region of cephalosporin C biosynthesis genes. Here, we illustrate that CPCR1 recognizes and binds at least two sequences in the intergenic region between the pcbAB and pcbC genes. The in vivo relevance of the two sequences for gene activation was demonstrated by using pcbC promoter-lacZ fusions in A. chrysogenum. The deletion of both CPCR1 binding sites resulted in an extensive reduction of reporter gene activity in transgenic strains (to 12% of the activity level of the control). Furthermore, Acremonium transformants with multiple copies of the cpcR1 gene and knockout strains support the idea of CPCR1 being a regulator of cephalosporin C biosynthesis gene expression. Significant differences in pcbC gene transcript levels were obtained with the knockout transformants. More-than-twofold increases in the pcbC transcript level at 24 and 36 h of cultivation were followed by a reduction to approximately 80% from 48 to 96 h in the knockout strain. The overall levels of the production of cephalosporin C were identical in transformed and nontransformed strains; however, the knockout strains showed a striking reduction in the level of the biosynthesis of intermediate penicillin N to less than 20% of that of the recipient strain. We were able to show that the complementation of the cpcR1 gene in the knockout strains reverses pcbC transcript and penicillin N amounts to levels comparable to those in the control. These results clearly indicate the involvement of CPCR1 in the regulation of cephalosporin C biosynthesis. However, the complexity of the data points to a well-controlled or even functional redundant network of transcription factors, with CPCR1 being only one player within this process.
Collapse
Affiliation(s)
- Esther K Schmitt
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Ribar B, Izumi T, Mitra S. The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res 2004; 32:115-26. [PMID: 14704348 PMCID: PMC373264 DOI: 10.1093/nar/gkh151] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The abasic (AP) sites, the major mutagenic and cytotoxic genomic lesions, induced directly by oxidative stress and indirectly after excision of damaged bases by DNA glycosylases, are repaired by AP-endonucleases (APEs). Among two APEs in Saccharomyces cerevisiae, Apn1 provides the major APE activity, and Apn2, the ortholog of the mammalian APE, provides back-up activity. We have cloned apn1 and apn2 genes of Schizosaccharomyces pombe, and have shown that inactivation of Apn2 and not Apn1 sensitizes this fission yeast to alkylation and oxidative damage-inducing agents, which is further enhanced by Apn1 inactivation. We also show that Uve1, present in S.pombe but not in S.cerevisiae, provides the back-up APE activity together with Apn1. We confirmed the presence of APE activity in recombinant Apn2 and in crude cell extracts. Thus S.pombe is distinct from S.cerevisiae, and is similar to mammalian cells in having Apn2 as the major APE.
Collapse
Affiliation(s)
- Balazs Ribar
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.148 Medical Research Building, Galveston, TX 77555, USA
| | | | | |
Collapse
|
25
|
Martín-Cuadrado AB, Dueñas E, Sipiczki M, Vázquez de Aldana CR, del Rey F. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 2003; 116:1689-98. [PMID: 12665550 DOI: 10.1242/jcs.00377] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission throughout contraction of an actomyosin ring and deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Although many studies have focused on the actomoysin ring and septum assembly, little information is available concerning the mechanism of cell separation. Here we describe the characterization of eng1+, a new gene that encodes a protein with detectable endo-beta-1,3-glucanase activity and whose deletion is not lethal to the cells but does interfere in their separation. Electron microscopic observation of mutant cells indicated that this defect is mainly due to the failure of the cells to degrade the primary septum, a structure rich in beta-1,3-glucans, that separates the two sisters cells. Expression of eng1+ varies during the cell cycle, maximum expression being observed before septation, and the protein localizes to a ring-like structure that surrounds the septum region during cell separation. This suggests that it could also be involved in the cleavage of the cylinder of the cell wall that covers the division septum. The expression of eng1+ during vegetative growth is regulated by a C2H2 zinc-finger protein (encoded by the SPAC6G10.12c ORF), which shows significant sequence similarity to the Saccharomyces cerevisiae ScAce2p, especially in the zinc-finger region. Mutants lacking this transcriptional regulator (which we have named ace2+) show a severe cell separation defect, hyphal growth being observed. Thus, ace2p may regulate the expression of the eng1+ gene together with that of other genes whose products are also involved in cell separation.
Collapse
Affiliation(s)
- Ana Belén Martín-Cuadrado
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, CSIC/ Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
26
|
Tasto JJ, Morrell JL, Gould KL. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J Cell Biol 2003; 160:1093-103. [PMID: 12668659 PMCID: PMC2172762 DOI: 10.1083/jcb.200211126] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anillin is a conserved protein required for cell division (Field, C.M., and B.M. Alberts. 1995. J. Cell Biol. 131:165-178; Oegema, K., M.S. Savoian, T.J. Mitchison, and C.M. Field. 2000. J. Cell Biol. 150:539-552). One fission yeast homologue of anillin, Mid1p, is necessary for the proper placement of the division site within the cell (Chang, F., A. Woollard, and P. Nurse. 1996. J. Cell Sci. 109(Pt 1):131-142; Sohrmann, M., C. Fankhauser, C. Brodbeck, and V. Simanis. 1996. Genes Dev. 10:2707-2719). Here, we identify and characterize a second fission yeast anillin homologue, Mid2p, which is not orthologous with Mid1p. Mid2p localizes as a single ring in the middle of the cell after anaphase in a septin- and actin-dependent manner and splits into two rings during septation. Mid2p colocalizes with septins, and mid2 Delta cells display disorganized, diffuse septin rings and a cell separation defect similar to septin deletion strains. mid2 gene expression and protein levels fluctuate during the cell cycle in a sep1- and Skp1/Cdc53/F-box (SCF)-dependent manner, respectively, implying that Mid2p activity must be carefully regulated. Overproduction of Mid2p depolarizes cell growth and affects the organization of both the septin and actin cytoskeletons. In the presence of a nondegradable Mid2p fragment, the septin ring is stabilized and cell cycle progression is delayed. These results suggest that Mid2p influences septin ring organization at the site of cell division and its turnover might normally be required to permit septin ring disassembly.
Collapse
Affiliation(s)
- Joseph J Tasto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
27
|
Bensen ES, Filler SG, Berman J. A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. EUKARYOTIC CELL 2002; 1:787-98. [PMID: 12455696 PMCID: PMC126749 DOI: 10.1128/ec.1.5.787-798.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is an important pathogen of immunocompromised patients which grows with true hyphal, pseudohyphal, and yeast morphologies. The dynamics of cell cycle progression are markedly different in true hyphal relative to pseudohyphal and yeast cells, including nuclear movement and septin ring positioning. In Saccharomyces cerevisiae, two forkhead transcription factors (ScFKH1 and ScFKH2) regulate the expression of B-cyclin genes. In both S. cerevisiae and Schizosaccharomyces pombe, forkhead transcription factors also influence morphogenesis. To explore the molecular mechanisms that connect C. albicans morphogenesis with cell cycle progression, we analyzed CaFKH2, the single homolog of S. cerevisiae FKH1/FKH2. C. albicans cells lacking CaFkh2p formed constitutive pseudohyphae under all yeast and hyphal growth conditions tested. Under hyphal growth conditions levels of hyphae-specific mRNAs were reduced, and under yeast growth conditions levels of several genes encoding proteins likely to be important for cell wall separation were reduced. Together these results imply that Fkh2p is required for the morphogenesis of true hyphal as well as yeast cells. Efglp and Cphlp, two transcription factors that contribute to C. albicans hyphal growth, were not required for the pseudohyphal morphology of fkh2 mutants, implying that Fkh2p acts in pathways downstream of and/or parallel to Efglp and Cphlp. In addition, cells lacking Fkh2p were unable to damage human epithelial or endothelial cells in vitro, suggesting that Fkh2p contributes to C. albicans virulence.
Collapse
Affiliation(s)
- Eric S Bensen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
28
|
Karagiannis J, Oulton R, Young PG. The Scw1 RNA-Binding Domain Protein Regulates Septation and Cell-Wall Structure in Fission Yeast. Genetics 2002; 162:45-58. [PMID: 12242222 PMCID: PMC1462257 DOI: 10.1093/genetics/162.1.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractLoss of the nonessential RNA-binding domain protein, Scw1, increases resistance to cell-wall-degrading enzymes in fission yeast. Surprisingly, scw1 null mutations also suppress the lethality of mutations (cdc11-136, cdc7-24, cdc14-118, sid1-239, sid2-250, sid3-106, sid4-A1, and mob1-1) at all levels of the sid pathway. This pathway forms part of the septation initiation network (SIN), which regulates the onset of septum formation and ensures the proper coupling of mitosis to cytokinesis. In contrast, scw1- mutations do not suppress ts alleles of the rng genes, cdc12 or cdc15. These mutations also prevent the formation of a septum and in addition block assembly and/or function of the contractile acto-myosin ring. sid mutants exhibit a hyper-sensitivity to cell-wall-degrading enzymes that is suppressed by loss of Scw1. Furthermore, scw1--mediated rescue of sid mutants is abolished in the presence of calcofluor white, a compound that interferes with cell-wall synthesis. These data suggest that Scw1 acts in opposition to the SIN as a negative regulator of cell-wall/septum deposition. Unlike components of the SIN, Scw1 is predominantly a cytoplasmic protein and is not localized to the spindle pole body.
Collapse
Affiliation(s)
- Jim Karagiannis
- Department of Biology, Queen's University, Kingston, Ontario K7L-3N6, Canada
| | | | | |
Collapse
|
29
|
Kim KH, Cho YM, Kang WH, Kim JH, Byun KH, Park YD, Bae KS, Park HM. Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochem Biophys Res Commun 2001; 289:1237-42. [PMID: 11741326 DOI: 10.1006/bbrc.2001.6128] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a full-length cDNA clone that encodes for a Schizosaccharomyces pombe homolog of the dual-specificity protein kinase of the LAMMER family, lkh1 (lammer kinase homolog). The proposed Lkh1 protein contains 575 amino acids. The lkh1(+) null mutant is viable, but exhibits flocculation upon reaching stationary phase in liquid media and filamentous adhesion growth on solid media. Analysis of the flocculation activity of the lkh1(+) null mutant indicates that asexual aggregation of S. pombe cells into floccules is divalent cation-dependent and galactose-specific. We also demonstrate that the Saccharomyces cerevisiae LAMMER kinase homolog, Kns1, can substitute for the Lkh1 function in S. pombe.
Collapse
Affiliation(s)
- K H Kim
- Department of Microbiology, Chungnam National University, Taejon, 305-764, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zilahi E, Salimova E, Simanis V, Sipiczki M. The S. pombe sep1 gene encodes a nuclear protein that is required for periodic expression of the cdc15 gene. FEBS Lett 2000; 481:105-8. [PMID: 10996305 DOI: 10.1016/s0014-5793(00)01990-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Schizosaccharomyces pombe sep1 gene encodes a putative transcription factor that is required for cell separation. Among the genes required for septum formation and cytokinesis in fission yeast examined to date, the only one whose mRNA fluctuates significantly during the cell cycle is cdc15. In this study we have examined cdc15 mRNA levels in sep1 mutant and null backgrounds and have found that sep1p function is required for periodic accumulation of cdc15 mRNA. We have also localised sep1p and find that it is a nuclear protein, consistent with its proposed role as a transcription factor.
Collapse
Affiliation(s)
- E Zilahi
- Department of Genetics, University of Debrecen, PO Box 56, Debrecen, Hungary
| | | | | | | |
Collapse
|
31
|
Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD, Dalton S. Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 2000; 10:896-906. [PMID: 10959837 DOI: 10.1016/s0960-9822(00)00618-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The 'CLB2 cluster' in Saccharomyces cerevisiae consists of approximately 33 genes whose transcription peaks in late G2/early M phase of the cell cycle. Many of these genes are required for execution of the mitotic program and then for cytokinesis. The transcription factor SFF (SWI5 factor) is thought to regulate a program of mitotic transcription in conjunction with the general transcription factor Mcm1p. The identity of SFF has yet to be determined; hence further understanding of the mechanisms that regulate entry to M phase at the transcriptional level requires characterization of SFF at the molecular level. RESULTS We have purified the biochemical activity corresponding to SFF and identified it as the forkhead transcription factor Fkh2p. Fkh2p assembles into ternary complexes with Mcm1p on both the SWI5 and CLB2 cell-cycle-regulated upstream activating sequence (UAS) elements in vitro, and in an Mcm1 p-dependent manner in vivo. Another closely related forkhead protein, Fkh1p, is also recruited to the CLB2 promoter in vivo. We show that both FKH1 and FKH2 play essential roles in the activation of the CLB2 cluster genes during G2-M and in establishing their transcriptional periodicity. Hence, Fkh1p and Fkhp2 show the properties expected of SFF, both in vitro and in vivo. CONCLUSIONS Forkhead transcription factors have redundant roles in the control of CLB2 cluster genes during the G2-M period of the cell cycle, in collaboration with Mcm1p.
Collapse
Affiliation(s)
- R Kumar
- Department of Molecular Biosciences, University of Adelaide, North Terrace, South Australia, Australia
| | | | | | | | | | | |
Collapse
|