1
|
Mukherjee A, Huang Y, Elgeti J, Oh S, Abreu JG, Neliat AR, Schüttler J, Su DD, Dupre C, Benites NC, Liu X, Peshkin L, Barboiu M, Stocker H, Kirschner MW, Basan M. Membrane potential as master regulator of cellular mechano-transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565386. [PMID: 37961564 PMCID: PMC10635089 DOI: 10.1101/2023.11.02.565386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane potential is a property of all living cells1. Nevertheless, its physiological role in non-excitable cells is poorly understood. Resting membrane potential is typically considered fixed and under tight homeostatic control2. Contrary to this paradigm, we find that membrane potential is a dynamic property that directly reflects mechanical forces acting on the cell and that cells use membrane potential to assess their biomechanical state. We show that several important mechano-sensitive signal transduction pathways, like MAPK and Hippo3-9, are directly controlled by membrane potential and this signaling is mediated by upstream membrane-bound receptors, including FAT1. We further show that mechano-transduction via membrane potential plays a critical role in the homeostasis of epithelial tissues, setting cellular biomass density and cell number density by controlling proliferation and cell elimination. In epithelial scratch wound assays, as well as Xenopus tadpole tail regeneration, we observe a wave of depolarization caused by a drop in cellular biomass density due to mechanical stretch and we show that this depolarization wave is critical for wound closure. Together, these data are explained by a first-principles biophysical model, which demonstrates that membrane potential is physically coupled to mechanical pressure and cellular biomass density. Membrane potential thereby provides a quasi-instantaneous, global readout of the biophysical state of the cell and in turn regulates cell growth, resulting in homeostatic feedback control of biomass density and cell number density in tissues. This interplay may be an ancient mechanism for growth control in multi-cellular organisms and its misregulation may play an important role in tumorigenesis.
Collapse
|
2
|
Yi Y, Qiu G, Liu H, Gao F, Liu X, Chen Y, Yang M. Hypotonic induction of aquaporin5 expression in rat astrocytes through p38 MAPK pathway. Anat Histol Embryol 2022; 51:769-780. [PMID: 36006764 DOI: 10.1111/ahe.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
Brain oedema is a common pathological phenomenon following many diseases and may lead to severe secondary damage. Astrocytes are the most numerous cells in the brain. Five aquaporins (AQPs) have been found in mature astrocytes, which play crucial roles in water transportation. However, most studies have focused on AQP4 or AQP9 and whether another aquaporin such as AQP5 involved in brain oedema is unclear. Here, we addressed the issue that the expression pattern of AQP5 in rat astrocytes in vitro was altered in the hypotonic condition through some mitogen-activated protein kinases (MAPK) pathways. Primary astrocytes were randomly divided into the control group and the hypotonic group. Cell viability was evaluated by MTT test. Immunofluorescence, Western blotting and real-time PCR were used to detect the expression of AQP5. Western blotting was used to detect the variation of MAPK pathway. The present study demonstrated that incubation of astrocytes in the hypotonic medium produced an increase inAQP5 expression, and AQP5 peaked at 6-12 h after hypotension solution exposure. In addition, MAPK pathways were set in motion under hypotension, but not all branches. Only the p38 inhibitor can inhibit AQP5 expression in cultured astrocytes. AQP5 is directly related to the extracellular hypotonic stimuli in astrocytes, which could be regulated through the p38 MAPK pathway.
Collapse
Affiliation(s)
- Yaoxing Yi
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Lab Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Guoping Qiu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Gao
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xueyuan Liu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yuqing Chen
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Mei Yang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ribeiro AS, Avelar A, Kassiano W, Nunes JP, Schoenfeld BJ, Aguiar AF, Trindade MCC, Silva AM, Sardinha LB, Cyrino ES. Creatine Supplementation Does Not Influence the Ratio Between Intracellular Water and Skeletal Muscle Mass in Resistance-Trained Men. Int J Sport Nutr Exerc Metab 2020; 30:405-411. [PMID: 32916658 DOI: 10.1123/ijsnem.2020-0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022]
Abstract
The authors aimed to compare the effects of creatine (Cr) supplementation combined with resistance training on skeletal muscle mass (SMM), total body water, intracellular water (ICW), and extracellular water (ECW) in resistance-trained men as well as to determine whether the SMM/ICW ratio changes in response to the use of this ergogenic aid. Twenty-seven resistance-trained men received either Cr (n = 14) or placebo (n = 13) over 8 weeks. During the same period, subjects performed two split resistance training routines four times per week. SMM was estimated from appendicular lean soft tissue assessed by dual-energy X-ray absorptiometry. Total body water, ICW, and ECW were determined by spectral bioelectrical impedance. Both groups showed improvements (p < .05) in SMM, total body water, and ICW, with greater values observed for the Cr group compared with placebo. ECW increased similarly in both groups (p < .05). The SMM/ICW ratio did not change in either group (p > .05), whereas the SMM/ECW ratio decreased only in the Cr group (p < .05). A positive correlation was observed (p < .05) between SMM and ICW changes (r = .71). The authors' results suggest that the increase in muscle mass induced by Cr combined with resistance training occurs without alteration of the ratio of ICW to SMM in resistance-trained men.
Collapse
|
4
|
Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Taruno A. Na + homeostasis by epithelial Na + channel (ENaC) and Na x channel (Na x): cooperation of ENaC and Na x. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S11. [PMID: 27867979 DOI: 10.21037/atm.2016.10.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan;; Department of Bio-Ionomics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan;; Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan
| | - Rie Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan;; Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Zhou X, Naguro I, Ichijo H, Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2037-52. [PMID: 27261090 DOI: 10.1016/j.bbagen.2016.05.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Marunaka Y. Characteristics and Pharmacological Regulation of Epithelial Na+ Channel (ENaC) and Epithelial Na+ Transport. J Pharmacol Sci 2014. [DOI: 10.1254/jphs.14r01sr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Kitagawa M, Niisato N, Shiozaki A, Ohta-Fujimoto M, Hosogi S, Miyazaki H, Ichikawa D, Otsuji E, Marunaka Y. A regulatory role of K(+)-Cl(-) cotransporter in the cell cycle progression of breast cancer MDA-MB-231 cells. Arch Biochem Biophys 2013; 539:92-8. [PMID: 23831333 DOI: 10.1016/j.abb.2013.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/22/2013] [Accepted: 06/22/2013] [Indexed: 01/19/2023]
Abstract
K(+)-Cl(-) cotransporter (KCC) has been shown to be involved in cell proliferation as well as cell volume regulation. A regulatory role of KCC in cell cycle progression of breast cancer MDA-MB-231 cells was explored by using synchronized MDA-MB-231 cells and dihydro-indenyloxy-alkanoic acid (DIOA), a potent inhibitor of KCC. MDA-MB-231 cells cultured in the presence of DIOA exhibited an increase in cell volume, a decrease in intracellular Cl(-) concentration, and reduction in cell proliferation with the G0/G1 phase arrest, which was accompanied with down-regulation of cyclin D1 and cyclin E2, and up-regulation of p21. Among these molecules, the expression of cyclin E2, a molecule essential for the transition from G1 to S phase, was markedly suppressed by DIOA treatment. DIOA-mediated up- or down-regulation of these molecules occurred at the transcriptional level. These findings suggest that KCC plays an important role in the early phase of cell cycle progression by regulating the expression of cyclin D1, cyclin E2, and p21, the molecules essential for the cell cycle progression.
Collapse
Affiliation(s)
- Maki Kitagawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakayama Y, Yoshimura K, Iida H. Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response. Nat Commun 2013; 3:1020. [PMID: 22910366 DOI: 10.1038/ncomms2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/18/2012] [Indexed: 01/13/2023] Open
Abstract
A key molecule of sensing machineries essential for survival upon hypo-osmotic shock is the mechanosensitive channel. The bacterial mechanosensitive channel MscS functions directly for this purpose by releasing cytoplasmic solutes out of the cell, whereas plant MscS homologues are found to function in chloroplast organization. Here we show that the fission yeast MscS homologues, designated Msy1 and Msy2, participate in the hypo-osmotic shock response by a mechanism different from that operated by the bacterial MscS. Upon hypo-osmotic shock, msy2(-) and msy1(-) msy2(-) cells display greater cell swelling than wild-type cells and undergo cell death. Cell swelling precedes an intracellular Ca(2+) increase, which was greater in msy1(-) and msy1(-) msy2(-) cells than in wild-type cells. Fluorescent microscopy showed that Msy1 and Msy2 localize mainly to the endoplasmic reticulum. These observations suggest that organellar Msy1 and Msy2 regulate intracellular Ca(2+) and cell volume for survival upon hypo-osmotic shock.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui Kita-machi, Koganei-shi, Tokyo 184-8501, Japan.
| | | | | |
Collapse
|
9
|
Whitehead A, Roach JL, Zhang S, Galvez F. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. ACTA ACUST UNITED AC 2012; 215:1293-305. [PMID: 22442367 DOI: 10.1242/jeb.062075] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.
Collapse
Affiliation(s)
- Andrew Whitehead
- University of California, Davis, Environmental Toxicology Department, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
10
|
Niisato N, Ohta M, Eaton DC, Marunaka Y. Hypotonic stress upregulates β- and γ-ENaC expression through suppression of ERK by inducing MKP-1. Am J Physiol Renal Physiol 2012; 303:F240-52. [PMID: 22573375 DOI: 10.1152/ajprenal.00198.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigated a physiological role for ERK, a member of the MAPK family, in the hypotonic stimulation of epithelial Na(+) channel (ENaC)-mediated Na(+) reabsorption in renal epithelial A6 cells. We show that hypotonic stress causes a major dephosphorylation of ERK following a rapid transient phosphorylation. PD98059 (a MEK inhibitor) increases dephosphorylated ERK and enhances the hypotonic-stress-stimulated Na(+) reabsorption. ERK dephosphorylation is mediated by MAPK phosphatase (MKP). Hypotonic stress activates p38, which in turn induces MKP-1 and to a lesser extent MKP-3 mRNA expression. Inhibition of p38 suppresses MKP-1 induction, preventing hypotonic stress from dephosphorylating ERK. Inhibition of MKP-1 and -3 by the inhibitor NSC95397 also suppresses the hypotonicity-induced dephosphorylation of ERK. NSC95397 reduces both β- and γ-ENaC mRNA expression and ENaC-mediated Na(+) reabsorption stimulated by hypotonic stress. In contrast, pretreatment with PD98059 significantly enhances mRNA and protein expression of β- and γ-ENaC even under isotonic conditions. However, PD98059 only stimulates Na(+) reabsorption in response to hypotonic stress, suggesting that ERK inactivation by itself (i.e., under isotonic conditions) is not sufficient to stimulate Na(+) reabsorption, even though ERK inactivation enhances β- and γ-ENaC expression. Based on these results, we conclude that hypotonic stress stimulates Na(+) reabsorption through at least two signaling pathways: 1) induction of MKP-1 that suppresses ERK activity and induces β- and γ-ENaC expression, and 2) promotion of translocation of the newly synthesized ENaC to the apical membrane.
Collapse
Affiliation(s)
- Naomi Niisato
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
11
|
Regulation of epithelial sodium transport via epithelial Na+ channel. J Biomed Biotechnol 2011; 2011:978196. [PMID: 22028593 PMCID: PMC3196915 DOI: 10.1155/2011/978196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/09/2011] [Accepted: 08/03/2011] [Indexed: 12/02/2022] Open
Abstract
Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane.
Collapse
|
12
|
Ji C, Ren F, Ma H, Xu M. The roles of p38MAPK and caspase-3 in DADS-induced apoptosis in human HepG2 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:50. [PMID: 20478073 PMCID: PMC2890544 DOI: 10.1186/1756-9966-29-50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022]
Abstract
Objectives To explore the function of p38MAPK and caspase-3 in DADS-induced apoptosis in human HepG2 cells, and discuss the signal transduetion mechanism of HepG2 cells in the apoptosis process induced by DADS by using the inhibitors of p38MAPK (SB203580) and caspase-3 (Z-DEVD-FMK). Methods After the human HepG2 cells had been treated with the DADS and inhibitors for 24 h, cell viability was determined by the MTT method, apoptosis was evaluated by flow cytometry (FCM) and the expressions of p38MAPK and caspase-3 were measured by western-blot. Results Our results indicated that DADS activities the p38MAPK and caspase-3, but the inhibitors, SB203580 and Z-DEVD-FMK (for p38MAPKand for caspase-3, respectively), both have the effect of inhibitory activity on P38MAPK and caspase-3. Furthermore, a combination treatment with both DADS and inhibitor (SB203580 or Z-DEVD-FMK) decreases the inhibitory and apoptotic activity of HepG2 cells increased compared with DADS-treated. Conclusions Our data indicate that p38MAPK and caspase-3 are involved in the process of DADS-induced apoptosis in human HepG2 cells and interact with each other.
Collapse
Affiliation(s)
- Chunxiao Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | | | | | | |
Collapse
|
13
|
Abstract
Maintenance of genomic stability is needed for cells to survive many rounds of division throughout their lifetime. Key to the proper inheritance of intact genome is the tight temporal and spatial coordination of cell cycle events. Moreover, checkpoints are present that function to monitor the proper execution of cell cycle processes. For instance, the DNA damage and spindle assembly checkpoints ensure genomic integrity by delaying cell cycle progression in the presence of DNA or spindle damage, respectively. A checkpoint that has recently been gaining attention is the antephase checkpoint that acts to prevent cells from entering mitosis in response to a range of stress agents. We review here what is known about the pathway that monitors the status of the cells at the brink of entry into mitosis when cells are exposed to insults that threaten the proper inheritance of chromosomes. We highlight issues which are unresolved in terms of our understanding of the antephase checkpoint and provide some perspectives on what lies ahead in the understanding of how the checkpoint functions.
Collapse
|
14
|
Gandhi A, Guo T, Ghose R. Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNF-.ALPHA.) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. J Toxicol Sci 2010; 35:163-73. [DOI: 10.2131/jts.35.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Adarsh Gandhi
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| | - Tao Guo
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| | - Romi Ghose
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| |
Collapse
|
15
|
Viengchareun S, Kamenicky P, Teixeira M, Butlen D, Meduri G, Blanchard-Gutton N, Kurschat C, Lanel A, Martinerie L, Sztal-Mazer S, Blot-Chabaud M, Ferrary E, Cherradi N, Lombès M. Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line. Mol Endocrinol 2009; 23:1948-62. [PMID: 19846540 DOI: 10.1210/me.2009-0095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11beta-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na(+) reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of tonicity-responsive enhancer binding protein, an osmoregulatory transcription factor capable of binding tonicity-responsive enhancer response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein that, by binding to the AU-rich sequences of the 3'-untranslated region of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and posttranscriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance.
Collapse
|
16
|
Sulyok E, Pál J, Vajda Z, Steier R, Dóczi T. Benzamil prevents brain water accumulation in hyponatraemic rats. Acta Neurochir (Wien) 2009; 151:1121-5. [PMID: 19415169 DOI: 10.1007/s00701-009-0354-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 01/19/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND It has been recently shown that A6 cells exposed to hyponatraemic stress respond with increased sodium uptake via activation of benzamil-sensitive sodium channels. This study was performed, therefore, to explore the possible involvement of benzamil-sensitive sodium channels and cellular sodium influx in brain oedema formation in hyponatraemic rats. METHODS Four groups of male Wistar rats were studied (n = 13 in each group). Animals in group I with normonatraemia received intracerebroventricular (icv) 0.9% NaCl; animals in group II-IV were made hyponatraemic by intraperitoneal administration of isotonic glucose solution in a dose of 20% per body weight. Rats were pretreated with icv 0.9% NaCl (group II), 120 microg arginine vasopressin (AVP) (group III) or 4 microg benzamil-hydrochloride (group IV). Plasma sodium (ion-selective electrode) plasma osmolality (vapour pressure osmometer) and brain sodium and potassium content (flame photometer) as well as brain water content (desiccation method) were measured after a 2-h hydration period. RESULTS Plasma sodium, osmolality and tissue sodium and potassium contents were markedly depressed in hyponatraemic rats (group II-IV, p < 0.0005 for each group) irrespective of drug pretreatment. Brain water content, however, responded to hyponatraemia with an increase from 77.55 +/- 1.00% to 78.45 +/- 0.94% (p < 0.01), and it was further augmented to 79.35 +/- 0.80% (p < 0.0005) by icv AVP pretreatment. By contrast, benzamil administration prevented the rise of brain water caused by hyponatraemia (77.61 +/- 1.04%). CONCLUSION Early in the course of hyponatraemia, brain sodium channels may be activated, and the subsequent cellular sodium uptake may generate osmotic gradient to allow passive water flow into the cells. The simultaneous reduction of osmotic water conductivity of brain-specific aquaporin-4 by hyponatraemia, however, may limit water accumulation.
Collapse
|
17
|
Tokuda S, Niisato N, Nagai T, Taruno A, Nakajima KI, Miyazaki H, Yamada T, Hosogi S, Ohta M, Nishio K, Iwasaki Y, Marunaka Y. Regulation of paracellular Na+ and Cl(-) conductances by hydrostatic pressure. Cell Biol Int 2009; 33:949-56. [PMID: 19524694 DOI: 10.1016/j.cellbi.2009.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 04/24/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
Abstract
The effect of hydrostatic pressure on the paracellular ion conductance (Gp) composed of the Na(+) conductance (G(Na)) and the Cl(-) conductance (G(Cl)) has been Investigated. Gp, G(Na) and G(Cl) were time-dependently increased after applying an osmotic gradient generated by NaCl with basolateral hypotonicity. Hydrostatic pressure (1-4cm H2O) applied from the basolateral side enhanced the osmotic gradient-induced increase in Gp, G(Na) and G(Cl) in a magnitude-dependent manner, while the hydrostatic pressure applied from the apical side diminished the osmotic gradient-induced increase in Gp, G(Na) and G(Cl). How the hydrostatic pressure influences Gp, G(Na) and G(Cl) under an isosmotic condition was also investigated. Gp, G(Na) and G(Cl) were stably constant under a condition with basolateral application of sucrose canceling the NaCl-generated osmotic gradient (an isotonic condition). Even under this stable condition, the basolaterally applied hydrostatic pressure drastically elevated Gp, G(Na) and G(Cl), while apically applied hydrostatic pressure had little effect on Gp, G(Na) or G(Cl). Taken together, these observations suggest that certain factors controlled by the basolateral osmolality and the basolaterally applied hydrostatic pressure mainly regulate the Gp, G(Na) and G(Cl).
Collapse
Affiliation(s)
- Shinsaku Tokuda
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1030] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
Are membrane tyrosine kinase receptors involved in osmotransduction? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18727249 DOI: 10.1007/0-387-23752-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
20
|
Wen J, Wang XC, Zhang YW, Nie YL, Talbot SG, Li GC, Xiao JB, Xu M. Mitogen-activated Protein Kinase Inhibitors Induce Apoptosis and Enhance the Diallyl Disulfide-induced Apoptotic Effect in Human CNE2 Cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jun Wen
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University
| | - Xiao Chun Wang
- Department of Medical Laboratories, Xiangya Medical College of Central-South University
| | - Yi Wei Zhang
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University
| | - Ya Li Nie
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University
| | - Simon G. Talbot
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center
| | - Gloria C. Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center
| | - Jian Bo Xiao
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University
| | - Ming Xu
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center
| |
Collapse
|
21
|
Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 2007; 32:219-28. [PMID: 17957000 DOI: 10.1152/physiolgenomics.00157.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Niisato N, Taruno A, Marunaka Y. Involvement of p38 MAPK in hypotonic stress-induced stimulation of beta- and gamma-ENaC expression in renal epithelium. Biochem Biophys Res Commun 2007; 358:819-24. [PMID: 17506993 DOI: 10.1016/j.bbrc.2007.04.192] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 04/28/2007] [Indexed: 12/13/2022]
Abstract
We investigated a role of p38 MAPK in the regulation of transepithelial Na(+) reabsorption by chronic application (20-24h) of hypotonicity (hypotonic stress) in renal epithelial A6 cells. Pretreatment with a specific p38 MAPK inhibitor (SB202190) significantly reduced the chronic hypotonicity-stimulated transepithelial Na(+) reabsorption by diminishing the Na(+) entry through epithelial Na(+) channel (ENaC) in the apical membrane and the Na(+) extrusion via the Na(+)/K(+) ATPase (pump), although the rate limiting step was still the Na(+) entry step. We further examined whether the inhibitory effects of SB202190 on the transepithelial Na(+) reabsorption is caused through suppression of mRNA expression of ENaC participating in the transepithelial Na(+) reabsorption as the Na(+) entry pathway. The chronic hypotonicity increased the mRNA expression of alpha-, beta-, and gamma-subunits of ENaC. Moreover, we found that inhibition of p38 MAPK by SB202190 diminished the mRNA expression of beta- and gamma-ENaC but not alpha-ENaC. Based on these observations, it is suggested that the chronic hypotonicity stimulates the renal transepithelial Na(+) reabsorption by upregulating the mRNA expression of beta- and gamma-ENaC via a p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Naomi Niisato
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
23
|
Abstract
Transcellular transport affects the paracellular flux through 2 distinct mechanisms: by determining the driving force and by altering the permeability of the paracellular pathway. Such coordination ensures efficient transepithelial transport by preventing the build-up of large electrical and osmotic gradients. The regulation of paracellular permeability was originally recognized as increased paracellular flux of water and solutes upon the activation of the intestinal Na+-coupled glucose uptake. Despite great advances in the molecular characterization of the tight junctions that form the structural basis of epithelial barrier functions, the mechanisms whereby apical transporters alter the paracellular pathways remains unresolved. Recent studies suggest that myosin-based contractility is central to this coupling. In this minireview, we summarize our current knowledge of paracellular permeability, its regulation by contractility, and the various signaling events that link apical Na+-glucose cotransport to myosin phosphorylation. While the role of myosin phosphorylation appears to be universal, the mechanism(s) whereby apical transport triggers this process is likely cell specific. The current model suggests that in intestinal cells, a key factor is a p38 MAP kinase-induced Na+/H+-exchanger-mediated alkalinization. We propose an alternative, nonexclusive mechanism in kidney tubular cells, in which the key event may be a Na+-cotransport-triggered plasma membrane depolarization, which in turn leads to Rho-mediated myosin phosphorylation.
Collapse
Affiliation(s)
- András Kapus
- The St. Michael's Hospital Research Institute and Department of Surgery, University of Toronto, 30 Bond Street, Queen Wing 7009, Toronto, ON M5B 1W8, Canada
| | | |
Collapse
|
24
|
Zhang YW, Wen J, Xiao JB, Talbot SG, Li GC, Xu M. Induction of apoptosis and transient increase of phosphorylated MAPKs by diallyl disulfide treatment in human nasopharyngeal carcinoma CNE2 cells. Arch Pharm Res 2007; 29:1125-31. [PMID: 17225462 DOI: 10.1007/bf02969303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study was undertaken to elucidate the effect of diallyl disulfide (DADS), an oil-soluble organosulfur compound found in garlic, in suppressing human nasopharyngeal carcinoma cells. A potent increase (of at least 9-fold) in apoptotic cells has accompanied 1) a decrease in cell viability, 2) a increase of the fraction of S-phase cells by up to 63.8%, and 3) a transient increase of the phospho-p38 and phospho-p42/44 (phosphorylated p38 MAPK and phosphorylated p42/44 MAPK) in a time- and concentration-dependent manner. These results indicate that DADS can induce apoptosis in human nasopharyngeal carcinoma cells via, at least partly, S-phase block of the cell cycle, related to a rise in MAPK phosphorylation.
Collapse
Affiliation(s)
- Yi Wei Zhang
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University, Changsha, Hunan 410083, China
| | | | | | | | | | | |
Collapse
|
25
|
Taruno A, Niisato N, Marunaka Y. Hypotonicity stimulates renal epithelial sodium transport by activating JNK via receptor tyrosine kinases. Am J Physiol Renal Physiol 2007; 293:F128-38. [PMID: 17344192 DOI: 10.1152/ajprenal.00011.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that hypotonic stress stimulated transepithelial Na(+) transport via a pathway dependent on protein tyrosine kinase (PTK; Niisato N, Van Driessche W, Liu M, Marunaka Y. J Membr Biol 175: 63-77, 2000). However, it is still unknown what type of PTK mediates this stimulation. In the present study, we investigated the role of receptor tyrosine kinase (RTK) in the hypotonic stimulation of Na(+) transport. In renal epithelial A6 cells, we observed inhibitory effects of AG1478 [an inhibitor of the EGF receptor (EGFR)] and AG1296 [an inhibitor of the PDGF receptor (PDGFR)] on both the hypotonic stress-induced stimulation of Na(+) transport and the hypotonic stress-induced ligand-independent activation of EGFR. We further studied whether hypotonic stress activates members of the MAP kinase family, ERK1/2, p38 MAPK, and JNK/SAPK, via an RTK-dependent pathway. The present study indicates that hypotonic stress induced phosphorylation of ERK1/2 and JNK/SAPK, but not p38 MAPK, that the hypotonic stress-induced phosphorylation of ERK1/2 and JNK/SAPK was diminished by coapplication of AG1478 and AG1296, and that only JNK/SAPK was involved in the hypotonic stimulation of Na(+) transport. A further study using cyclohexamide (a protein synthesis inhibitor) suggests that both RTK and JNK/SAPK contributed to the protein synthesis-independent early phase in hypotonic stress-induced Na(+) transport, but not to the protein synthesis-dependent late phase. The present study also suggests involvement of phosphatidylinositol 3-kinase (PI3-kinase) in RTK-JNK/SAPK cascade-mediated Na(+) transport. These observations indicate that 1) hypotonic stress activates JNK/SAPK via RTKs in a ligand-independent pathway, 2) the RTK-JNK/SAPK cascade acts as a mediator of hypotonic stress for stimulation of Na(+) transport, and 3) PI3-kinase is involved in the RTK-JNK/SAPK cascade for the hypotonic stress-induced stimulation of Na(+) transport.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Dept. of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
26
|
Pan Z, Capó-Aponte JE, Zhang F, Wang Z, Pokorny KS, Reinach PS. Differential dependence of regulatory volume decrease behavior in rabbit corneal epithelial cells on MAPK superfamily activation. Exp Eye Res 2007; 84:978-90. [PMID: 17397832 PMCID: PMC2747597 DOI: 10.1016/j.exer.2007.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/31/2007] [Accepted: 02/02/2007] [Indexed: 12/18/2022]
Abstract
We characterized the dependence of hypotonicity-induced regulatory volume decrease (RVD) responses on mitogen-activated protein kinase (MAPK) pathway signaling in SV40-immortalized rabbit corneal epithelial cells (RCEC). Following calcein-AM loading, RVD was monitored using a microplate fluorescence reader. Western blot analysis determined MAPK activation. After 30 min, the RVD response restored the relative cell volume to nearly isotonic values, whereas it was inhibited when cells were bathed either in a Cl- -free solution or with the Cl- -channel inhibitors: 5-nitro-2-(3-phenylpropylamino)benzoic acid or niflumic acid. Similar declines occurred with either a high-K+ (20 mM) supplemented solution or the K+ channel inhibitor 4-aminopyridine. Activation of extracellular signal-regulated kinase (ERK), p38, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) was time and tonicity-dependent. Stimulation of ERK and SAPK/JNK was maximized earlier than that of p38. Activation of ERK and SAPK/JNK was insensitive to Cl- and K+ channel inhibitors, whereas inhibition with either PD98059 or SP600125, respectively, blocked RVD. However, inhibition of p38 with SB203580had no effect on RVD. Suppression of RVD instead blocked p38 activation. Differences in the dependence of RVD activation on Erk1/2 and p38 signaling were validated in dominant negative (d/n)-Erk1 and d/n-p38 cells. Volume-sensitive Cl- and K+ channel activation contributes, in concert, to RVD in RCEC. Therefore, swelling-induced ERK and SAPK/JNK stimulation precedes Cl- and K+ channel activation, whereas p38 activation occurs as a consequence of RVD.
Collapse
Affiliation(s)
- Zan Pan
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - José E. Capó-Aponte
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - Fan Zhang
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - Zheng Wang
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
| | - Kathryn S. Pokorny
- The Institute of Ophthalmology and Visual Science, University of Medicine & Dentistry, New Jersey Medical School, Newark. NJ 07101
| | - Peter S. Reinach
- Department of Biological Sciences, State College of Optometry, State University of New York, New York, NY 10036, USA
- Corresponding Author. Peter S. Reinach, 33 West 42nd Street, New York, NY 10036, USA. Telephone: 1 212 938 5785, Fax: 1 212 938 5794, (P.S. Reinach)
| |
Collapse
|
27
|
Orellana JA, Palacios-Prado N, Sáez JC. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells. Toxicol Appl Pharmacol 2006; 213:187-97. [PMID: 16352326 DOI: 10.1016/j.taap.2005.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/14/2005] [Accepted: 10/28/2005] [Indexed: 12/27/2022]
Abstract
In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | |
Collapse
|
28
|
Pasantes-Morales H, Lezama RA, Ramos-Mandujano G. Tyrosine kinases and osmolyte fluxes during hyposmotic swelling. Acta Physiol (Oxf) 2006; 187:93-102. [PMID: 16734746 DOI: 10.1111/j.1748-1716.2006.01553.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence documents the involvement of protein tyrosine kinases (TK) in the signalling network activated by hyposmotic swelling and regulatory volume decrease. Both receptor type and cytosolic TK participate as signalling elements in the variety of cell adaptive responses to volume changes, which include adhesion reactions, reorganization of the cytoskeleton, temporal deformation/remodelling of the membrane and stress-detecting mechanisms. The present review refers to the influence of TK on the activation/operation of the osmolyte efflux pathways, ultimately leading to cell volume recovery, i.e. the osmosensitive Cl- channel (Cl-swell), the K+ channels activated by swelling in the different cell types and the taurine efflux pathway as representative of the organic osmolyte pathway.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico (UNAM), Mexico City, Mexico.
| | | | | |
Collapse
|
29
|
Ollivier H, Pichavant K, Puill-Stephan E, Roy S, Calvès P, Nonnotte L, Nonnotte G. Volume regulation following hyposmotic shock in isolated turbot (Scophthalmus maximus) hepatocytes. J Comp Physiol B 2006; 176:393-403. [PMID: 16395590 DOI: 10.1007/s00360-005-0061-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 11/28/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Regulatory volume decrease (RVD) following hyposmotic stimulation was studied in isolated turbot, Scophthalmus maximus, hepatocytes. Exposed to a reduced osmolality (from 320 to 240 mosm kg(-1)), cells first swelled and then exhibited a RVD. Volume regulation was significantly inhibited in presence of NPPB, 9-AC, acetazolamide, DIDS and barium. Taken together, these results could suggest that RVD operated via separate K+ and Cl- channels and probably Cl-/HCO3(-) exchanger in turbot hepatocytes. The K+/Cl- cotransporter could also be involved as furosemide and DIOA strongly inhibited the process whereas NEM, a K+/Cl- cotransporter activator, added under isosmotic conditions, led to cell shrinkage. RVD in turbot hepatocytes appeared also to depend on proteins p38 MAP kinase and tyrosine kinase but not on proteins ERK 1/2. Arachidonic acid and leukotrienes could also be involved since inhibition of synthesis of both these compounds by quinacrine and NDGA, respectively, inhibited the volume regulation. Likewise, Ca2+ has been proved to be an essential messenger as RVD was prevented in absence of Ca2+. Finally, this work provides bases for novel studies on cell volume regulation in marine teleosteans.
Collapse
Affiliation(s)
- Hélène Ollivier
- Unité de Physiologie Comparée et Intégrative, U.F.R. Sciences et Techniques, 6 Avenue Le Gorgeu CS 93837, 29238, Brest-Cedex 3, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 2005; 50:235-46. [PMID: 15739188 DOI: 10.1002/glia.20173] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The activation and function of c-Jun N-terminal kinases (JNKs) were investigated in primary microglia cultures from neonatal rat brain, which express all three JNK isoforms. Lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha), and thrombin preparations induced a rapid and lasting activation of JNKs in the cytoplasm. In the nucleus, the activation patterns were rather complex. In untreated microglia, the small pool of nuclear JNKs was strongly activated, while the high-affinity JNK substrate c-Jun was only weakly phosphorylated. Stimulation with LPS increased the total amount of nuclear JNKs and the phosphorylation of the transcription factor c-Jun. Levels of activated JNKs in the nucleus, however, rapidly decreased. Analysis of the nuclear JNK isoforms revealed that the amount of JNK1 declined, while JNK2 increased, and the weakly expressed JNK3 did not vary. This observation suggests that JNK2 is mainly responsible for the activation of c-Jun in this context. Upstream of JNKs, LPS induced a lasting activation of the constitutively present JNK kinase MKK4. The function of JNKs in LPS-triggered cellular reactions was investigated using SP600125 (0.5-5 microM), a direct inhibitor of JNKs. Inhibition of JNKs reduced the LPS-induced metabolic activity and induction of the AP-1 target genes cyclooxygenase-2 (Cox-2), TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in response to LPS, while ERK1/2 and p38 alpha had a more pronounced effect on LPS-induced cellular enlargement than JNKs. In summary, JNKs are essential mediators of relevant pro-inflammatory functions in microglia with different contributions of the JNK isoforms.
Collapse
Affiliation(s)
- Vicki Waetzig
- Institute of Pharmacology, University Hospital Kiel, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jans D, Simaels J, Larivière E, Steels P, Van Driessche W. Extracellular Ca2+regulates the stimulation of Na+transport in A6 renal epithelia. Am J Physiol Renal Physiol 2004; 287:F840-9. [PMID: 15345496 DOI: 10.1152/ajprenal.00388.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the involvement of intracellular and extracellular Ca2+in the stimulation of Na+transport during hyposmotic treatment of A6 renal epithelia. A sudden osmotic decrease elicits a biphasic stimulation of Na+transport, recorded as increase in amiloride-sensitive short-circuit current ( Isc) from 3.4 ± 0.4 to 24.0 ± 1.3 μA/cm2( n = 6). Changes in intracellular Ca2+concentration ([Ca2+]i) were prevented by blocking basolateral Ca2+entry with Mg2+and emptying the intracellular Ca2+stores before the hyposmotic challenge. This treatment did not noticeably affect the hypotonicity-induced stimulation of Isc. However, the absence of extracellular Ca2+severely attenuated Na+transport stimulation by the hyposmotic shock, and Iscmerely increased from 2.2 ± 0.3 to 4.8 ± 0.7 μA/cm2. Interestingly, several agonists of the Ca2+-sensing receptor, Mg2+(2 mM), Gd3+(0.1 mM), neomycin (0.1 mM), and spermine (1 mM) were able to substitute for extracellular Ca2+. When added to the basolateral solution, these agents restored the stimulatory effect of the hyposmotic solutions on Iscin the absence of extracellular Ca2+to levels that were comparable to control conditions. None of the above-mentioned agonists induced a change in [Ca2+]i. Quinacrine, an inhibitor of PLA2, overruled the effect of the agonists on Na+transport. In conclusion, we suggest that a Ca2+-sensing receptor in A6 epithelia mediates the stimulation of Na+transport without the interference of changes in [Ca2+]i.
Collapse
Affiliation(s)
- Danny Jans
- Laboratory of Physiology, Biomedical Research Institute, Limburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Belgium
| | | | | | | | | |
Collapse
|
32
|
Niisato N, Eaton DC, Marunaka Y. Involvement of cytosolic Cl- in osmoregulation of alpha-ENaC gene expression. Am J Physiol Renal Physiol 2004; 287:F932-9. [PMID: 15292045 DOI: 10.1152/ajprenal.00131.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypotonicity stimulates transepithelial Na(+) reabsorption in renal A6 cells, but the mechanism for this stimulation is not fully understood. In the present study, we found that hypotonicity stimulated Na(+) reabsorption through increases in mRNA expression of the alpha-subunit of the epithelial Na(+) channel (alpha-ENaC). Hypotonicity decreases cytosolic Cl(-) concentration; therefore, we hypothesized that hypotonicity-induced decreases in cytosolic Cl(-) concentration could act as a signal to regulate Na(+) reabsorption through changes in alpha-ENaC mRNA expression. Treatment with the flavone apigenin, which activates the Na(+)-K(+)-2Cl(-) cotransporter and increases cytosolic Cl(-) concentration, markedly suppressed the hypotonicity-induced increase in alpha-ENaC mRNA expression. On the other hand, blockade of the Na(+)-K(+)-2Cl(-) cotransporter decreases cytosolic Cl(-) concentration and increased alpha-ENaC mRNA expression and Na(+) reabsorption. Blocking Cl(-) channels with 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) inhibited the hypotonicity-induced decrease in cytosolic Cl(-) concentration and suppressed the hypotonicity-induced increase in alpha-ENaC mRNA expression. Coapplication of NPPB and apigenin synergistically suppressed alpha-ENaC mRNA expression. Thus, in every case, changes in cytosolic Cl(-) concentration were associated with changes in alpha-ENaC mRNA expression and changes in Na(+) reabsorption: decreases in cytosolic Cl(-) concentration increased alpha-ENaC mRNA and increased Na(+) reabsorption, whereas increases in cytosolic Cl(-) concentration decreased alpha-ENaC mRNA and decreased Na(+) reabsorption. These findings support the hypothesis that changes in cytosolic Cl(-) concentration are an important and novel signal in hypotonicity-induced regulation of alpha-ENaC expression and Na(+) reabsorption.
Collapse
Affiliation(s)
- Naomi Niisato
- Dept. of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
33
|
Wen J, Zhang Y, Chen X, Shen L, Li GC, Xu M. Enhancement of diallyl disulfide-induced apoptosis by inhibitors of MAPKs in human HepG2 hepatoma cells. Biochem Pharmacol 2004; 68:323-31. [PMID: 15194004 DOI: 10.1016/j.bcp.2004.03.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Accepted: 03/25/2004] [Indexed: 11/29/2022]
Abstract
We examined the effects of diallyl disulfide (DADS), an oil-soluble organosulfur compound found in garlic, on human HepG2 hepatoma cells to better understand its effect on apoptosis and apoptosis-related genes. Our study has demonstrated that DADS affects cell proliferation activity and viability and elicits typical apoptotic morphologic changes (chromatic condensation and nuclear fragmentation) in human HepG2 hepatoma cells. Also, treatment with DADS induces a temporary increase in phosphorylated p38 MAPK (phospho-p38) and phosphorylated p42/44 MAPK (phospho-p42/p44) in a time- and concentration-dependent manner. Inhibition of activated/phosphorylated mitogen-activated protein kinase (MAPK) with phospho-p38 or phospho-p42/44 specific inhibitors, SB203580 or U0126, induces apoptosis without DADS treatment, indicating that at least the endogenous activated forms of p38 MAPK and p42/p44 MAPK markedly exert cytoprotective roles from cell apoptosis in the HepG2 hepatoma cells. Combined treatment with these inhibitors followed by DADS further enhances the DADS-induced apoptosis. Taken together, these results show that both DADS and the specific inhibitors of MAPKs could induce apoptosis in HepG2 hepatoma cells and that the MAPKs inhibitors further enhance the apoptotic effect in DADS-treated HepG2 hepatoma cells.
Collapse
Affiliation(s)
- Jun Wen
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University, Changsha, Hunan 410083, China
| | | | | | | | | | | |
Collapse
|
34
|
Chiri S, Bogliolo S, Ehrenfeld J, Ciapa B. Activation of extracellular signal-regulated kinase ERK after hypo-osmotic stress in renal epithelial A6 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:224-9. [PMID: 15328055 DOI: 10.1016/j.bbamem.2004.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 05/18/2004] [Accepted: 06/09/2004] [Indexed: 01/06/2023]
Abstract
Activation of mitogen-activated protein (MAP) kinases has been reported to occur after a hypo-osmotic cell swelling in various types of cells. In renal epithelial A6 cells, the hypo-osmotic shock induced a rapid increase in the phosphorylation of an extracellular signal-regulated kinase (ERK)-like protein that was maximal 10 min after osmotic stress. Activation of ERK was significantly increased when hypo-osmotic stress was performed in the absence of extracellular Ca2+, a condition that inhibits regulatory volume decrease (RVD). Exposure of cells to PD98059, an inhibitor of the MAP kinase kinase MEK, at a concentration that fully cancelled ERK activation, did not inhibit RVD. On the contrary, RVD was abolished when osmotic shock was induced in the presence of SB203580, an inhibitor of stress-activated protein kinases (SAPKs). These results suggest that different MAP kinases are activated after hypo-osmotic stress in A6 cells. SAPKs would be involved in the control of RVD, while ERK would lead to later events, such as gene expression or energy metabolism.
Collapse
Affiliation(s)
- Sandrine Chiri
- UMR 7622 CNRS Biologie du développement, Université Paris 6, 9 Quai St Bernard, Bat C, case 24, 75252 Paris Cedex 05, France
| | | | | | | |
Collapse
|
35
|
Abstract
Perturbations of cell hydration as provoked by changes in ambient osmolarity or under isoosmotic conditions by hormones, second messengers, intracellular substrate accumulation, or reactive oxygen intermediates critically contribute to the physiological regulation of cell function. In general an increase in cell hydration stimulates anabolic metabolism and proliferation and provides cytoprotection, whereas cellular dehydration leads to a catabolic situation and sensitizes cells to apoptotic stimuli. Insulin produces cell swelling by inducing a net K+ and Na+ accumulation inside the cell, which results from a concerted activation of Na+/H+ exchange, Na+/K+/2Cl- symport, and the Na+/K(+)-ATPase. In the liver, insulin-induced cell swelling is critical for stimulation of glycogen and protein synthesis as well as inhibition of autophagic proteolysis. These insulin effects can largely be mimicked by hypoosmotic cell swelling, pointing to a role of cell swelling as a trigger of signal transduction. This article discusses insulin-induced signal transduction upstream of swelling and introduces the hypothesis that cell swelling as a signal amplifyer represents an essential component in insulin signaling, which contributes to the full response to insulin at the level of signal transduction and function. Cellular dehydration impairs insulin signaling and may be a major cause of insulin resistance, which develops in systemic hyperosmolarity, nutrient deprivation, uremia, oxidative challenges, and unbalanced production of insulin-counteracting hormones. Hydration changes affect cell functions at multiple levels (such as transcriptom, proteom, phosphoproteom, and the metabolom) and a system biological approach may allow us to develop a more holistic view on the hydration dependence of insulin signaling in the future.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
36
|
D'Alessandro M, Russell D, Morley SM, Davies AM, Lane EB. Keratin mutations of epidermolysis bullosa simplex alter the kinetics of stress response to osmotic shock. J Cell Sci 2002; 115:4341-51. [PMID: 12376565 DOI: 10.1242/jcs.00120] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The intermediate filament cytoskeleton is thought to confer physical resilience on tissue cells, on the basis of extrapolations from the phenotype of cell fragility that results from mutations in skin keratins. There is a need for functional cell assays in which the impact of stress on intermediate filaments can be induced and analyzed. Using osmotic shock, we have induced cytoskeleton changes that suggest protective functions for actin and intermediate filament systems. Induction of the resulting stress response has been monitored in keratinocyte cells lines carrying K5 or K14 mutations, which are associated with varying severity of epidermolysis bullosa simplex. Cells with severe mutations were more sensitive to osmotic stress and took longer to recover from it. Their stress-activated response pathways were induced faster, as seen by early activation of JNK, ATF-2 and c-Jun. We demonstrate that the speed of a cell's response to hypotonic stress, by activation of the SAPK/JNK pathway, is correlated with the clinical severity of the mutation carried. The response to hypo-osmotic shock constitutes a discriminating stress assay to distinguish between the effects of different keratin mutations and is a potentially valuable tool in developing therapeutic strategies for keratin-based skin fragility disorders.
Collapse
Affiliation(s)
- Mariella D'Alessandro
- Cancer Research UK Cell Structure Research Group, University of Dundee School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
37
|
Startchik I, Morabito D, Lang U, Rossier MF. Control of calcium homeostasis by angiotensin II in adrenal glomerulosa cells through activation of p38 MAPK. J Biol Chem 2002; 277:24265-73. [PMID: 11983686 DOI: 10.1074/jbc.m110947200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II-induced activation of aldosterone secretion in adrenal glomerulosa cells is mediated by an increase of intracellular calcium. We describe here a new Ca2+-regulatory pathway involving the inhibition by angiotensin II of calcium extrusion through the Na+/Ca2+ exchanger. Caffeine reduced both the angiotensin II-induced calcium signal and aldosterone production in bovine glomerulosa cells. These effects were independent of cAMP or calcium release from intracellular stores. The calcium response to angiotensin II was more sensitive to caffeine than the response to potassium, suggesting that the drug interacts with a pathway specifically elicited by the hormone. In calcium-free medium, calcium returned more rapidly to basal levels after angiotensin II stimulation in the presence of caffeine. Thapsigargin had no effect on these kinetics, but diltiazem, which inhibits the Na+/Ca2+ exchanger, markedly reduced the rate of calcium decrease and abolished caffeine action. The involvement of this exchanger was supported by the effect of cell depolarization and of a reduction of extracellular sodium on the rate of calcium extrusion. We also determined the mechanism of angiotensin II action on the exchanger. Phorbol esters reduced the rate of calcium extrusion, which was increased by baicalein, an inhibitor of lipoxygenases, and by SB 203580, an inhibitor of the p38 MAPK. Finally, we showed that angiotensin II acutely activates, in a caffeine-sensitive manner, p38 MAPK in glomerulosa cells. In conclusion, in bovine glomerulosa cells, the Na+/Ca2+ exchanger plays a crucial role in extruding calcium, and, by reducing its activity, angiotensin II influences the amplitude of the calcium signal. The hormone exerts its action on the exchanger through a caffeine-sensitive pathway involving the p38 MAPK and lipoxygenase products.
Collapse
Affiliation(s)
- Irina Startchik
- Division of Endocrinology and Diabetology, Department of Internal Medicine, and the Laboratory of Clinical Chemistry, Department of Pathology, University Hospital, CH-1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
38
|
Shen MR, Chou CY, Browning JA, Wilkins RJ, Ellory JC. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J Physiol 2001; 537:347-62. [PMID: 11731569 PMCID: PMC2278960 DOI: 10.1111/j.1469-7793.2001.00347.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
1. This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. 2. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. 3. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl- channel. 4. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl- channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. 5. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. 6. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells.
Collapse
Affiliation(s)
- M R Shen
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
39
|
Turner JR, Black ED. NHE3-dependent cytoplasmic alkalinization is triggered by Na(+)-glucose cotransport in intestinal epithelia. Am J Physiol Cell Physiol 2001; 281:C1533-41. [PMID: 11600416 DOI: 10.1152/ajpcell.2001.281.5.c1533] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoplasmic pH (pH(i)) was evaluated during Na(+)-glucose cotransport in Caco-2 intestinal epithelial cell monolayers. The pH(i) increased by 0.069 +/- 0.002 within 150 s after initiation of Na(+)-glucose cotransport. This increase occurred in parallel with glucose uptake and required expression of the intestinal Na(+)-glucose cotransporter SGLT1. S-3226, a preferential inhibitor of Na(+)/H(+) exchanger (NHE) isoform 3 (NHE3), prevented cytoplasmic alkalinization after initiation of Na(+)-glucose cotransport with an ED(50) of 0.35 microM, consistent with inhibition of NHE3, but not NHE1 or NHE2. In contrast, HOE-694, a poor NHE3 inhibitor, failed to significantly inhibit pH(i) increases at <500 microM. Na(+)-glucose cotransport was also associated with activation of p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pH(i) increases by 100 +/- 0.1 and 86 +/- 0.1%, respectively. Conversely, activation of p38 MAP kinase with anisomycin induced NHE3-dependent cytoplasmic alkalinization in the absence of Na(+)-glucose cotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediated Na(+)-glucose cotransport and that the mechanism of this NHE3 activation requires p38 MAP kinase activity. This coordinated regulation of glucose (SGLT1) and Na(+) (NHE3) absorptive processes may represent a functional activation of absorptive enterocytes by luminal nutrients.
Collapse
Affiliation(s)
- J R Turner
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
40
|
Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:385-99. [PMID: 11913452 DOI: 10.1016/s1095-6433(01)00429-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the precise mechanisms have yet to be elucidated, early events in osmotic signal transduction may involve the clustering of cell surface receptors, initiating downstream signaling events such as assembly of focal adhesion complexes, and activation of, e.g. Rho family GTPases, phospholipases, lipid kinases, and tyrosine- and serine/threonine protein kinases. In the present paper, we briefly review recent evidence regarding the possible relation between such signaling events, the F-actin cytoskeleton, and volume-regulatory membrane transporters, focusing primarily on our own work in Ehrlich ascites tumer cells (EATC). In EATC, cell shrinkage is associated with an increase, and cell swelling with a decrease in F-actin content, respectively. The role of the F-actin cytoskeleton in cell volume regulation in various cell types has largely been investigated using cytochalasins to disrupt F-actin and highly varying effects have been reported. Findings in EATC show that the effect of cytochalasin treatment cannot always be assumed to be F-actin depolymerization, and that, moreover, there is no well-defined correlation between effects of cytochalasins on F-actin content and their effects on F-actin organization and cell morphology. At a concentration verified to depolymerize F-actin, cytochalasin B (CB), but not cytochalasin D (CD), inhibited the regulatory volume decrease (RVD) and regulatory volume increase (RVI) processes in EATC. This suggests that the effect of CB is related to an effect other than F-actin depolymerization, possibly its F-actin severing activity.
Collapse
Affiliation(s)
- S F Pedersen
- Biochemistry Department, August Krogh Institute, Copenhagen, Denmark.
| | | | | |
Collapse
|
41
|
McDaid HM, Horwitz SB. Selective potentiation of paclitaxel (taxol)-induced cell death by mitogen-activated protein kinase kinase inhibition in human cancer cell lines. Mol Pharmacol 2001; 60:290-301. [PMID: 11455016 PMCID: PMC4039042 DOI: 10.1124/mol.60.2.290] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the mitogen-activated protein kinase (MAPK) pathway in HeLa and Chinese hamster ovary cells after treatment with paclitaxel (Taxol) and other microtubule interacting agents has been investigated. Using a trans-reporting system, the phosphorylation of the nuclear transcription factors Elk-1 and c-jun was measured. Concentration- and time-dependent activation of the Elk-1 pathway, mediated primarily by the extracellular signal-regulated kinase (ERK) component of the MAPK family, was observed. Inactive drug analogs and other cytotoxic compounds that do not target microtubules failed to induce similar levels of activation, thereby indicating that an interaction between these drugs and the microtubule is essential for the activation of MAPKs. Evaluation of the endogenous levels of MAPK expression revealed cell-dependent expression of the ERK, c-jun N-terminal kinase, and p38 pathways. In the case of HeLa cells, time-dependent activation of ERK coincided with increased poly(ADP-ribose) polymerase (PARP) cleavage, phosphatidylserine externalization, and increased accumulation of cells in G2/M. In both cell lines, inhibition of ERK activity potentiated paclitaxel-induced PARP cleavage and phosphatidylserine externalization, suggesting that ERK activity coincided with, but did not mediate, the cytotoxic effects of paclitaxel. We evaluated the nature of the interaction between paclitaxel and the MAPK kinase inhibitor U0126 in three cell lines, on the basis of a potential chemotherapeutic advantage of paclitaxel plus ERK inhibition. Our data confirmed additivity in those cells lines that undergo paclitaxel-induced ERK activation, and antagonism in cells with low ERK activity, suggesting that in tumors with high ERK activity, there may be an application for this strategy in therapy.
Collapse
Affiliation(s)
- H M McDaid
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
42
|
Op 't Eijnde B, Ursø B, Richter EA, Greenhaff PL, Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes 2001; 50:18-23. [PMID: 11147785 DOI: 10.2337/diabetes.50.1.18] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate the effect of oral creatine supplementation on muscle GLUT4 protein content and total creatine and glycogen content during muscle disuse and subsequent training. A double-blind placebo-controlled trial was performed with 22 young healthy volunteers. The right leg of each subject was immobilized using a cast for 2 weeks, after which subjects participated in a 10-week heavy resistance training program involving the knee-extensor muscles (three sessions per week). Half of the subjects received creatine monohydrate supplements (20 g daily during the immobilization period and 15 and 5 g daily during the first 3 and the last 7 weeks of rehabilitation training, respectively), whereas the other 11 subjects ingested placebo (maltodextrine). Muscle GLUT4 protein content and glycogen and total creatine concentrations were assayed in needle biopsy samples from the vastus lateralis muscle before and after immobilization and after 3 and 10 weeks of training. Immobilization decreased GLUT4 in the placebo group (-20%, P < 0.05), but not in the creatine group (+9% NS). Glycogen and total creatine were unchanged in both groups during the immobilization period. In the placebo group, during training, GLUT4 was normalized, and glycogen and total creatine were stable. Conversely, in the creatine group, GLUT4 increased by approximately 40% (P < 0.05) during rehabilitation. Muscle glycogen and total creatine levels were higher in the creatine group after 3 weeks of rehabilitation (P < 0.05), but not after 10 weeks of rehabilitation. We concluded that 1) oral creatine supplementation offsets the decline in muscle GLUT4 protein content that occurs during immobilization, and 2) oral creatine supplementation increases GLUT4 protein content during subsequent rehabilitation training in healthy subjects.
Collapse
Affiliation(s)
- B Op 't Eijnde
- Faculty of Physical Education and Physiotherapy, Exercise Physiology and Biomechanics Laboratory, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
43
|
Pasantes-Morales H, Cardin V, Tuz K. Signaling events during swelling and regulatory volume decrease. Neurochem Res 2000; 25:1301-14. [PMID: 11059803 DOI: 10.1023/a:1007652330703] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain cell swelling compromises neuronal function and survival by the risk of generation of ischemia episodes as compression of small vessels occurs due to the limits to expansion imposed by the rigid skull. External osmolarity reductions or intracellular accumulation of osmotically active solutes result in cell swelling which can be counteracted by extrusion of osmolytes through specific efflux pathways. Characterization of these pathways has received considerable attention, and there is now interest in the understanding of the intracellular signaling events involved in their activation and regulation. Calcium and calmodulin, phosphoinositides and cAMP may act as second messengers, carrying the information about a cell volume change into signaling enzymes. Small GTPases, protein tyrosine kinases and phospholipases, also appear to be part of the signaling cascades ultimately modulating the osmolyte efflux pathways. This review focus on i) the influence of hyposmotic and isosmotic swelling on these signaling events and molecules and ii) the effects of manipulating their function on the osmolyte fluxes, particularly K+, CI- and amino acids, and on the consequent efficiency of cell volume adjustment.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico, Mexico City.
| | | | | |
Collapse
|
44
|
Kumar VB, Franko MW, Farr SA, Armbrecht HJ, Morley JE. Identification of age-dependent changes in expression of senescence-accelerated mouse (SAMP8) hippocampal proteins by expression array analysis. Biochem Biophys Res Commun 2000; 272:657-61. [PMID: 10860810 DOI: 10.1006/bbrc.2000.2719] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aging is associated with extensive cognitive impairments, although the biochemical and physiological basis of these deficits are unknown. As the hippocampus plays a vital role in cognitive functions, we have selected this tissue to analyze changes in gene expression at two different ages. Array technology is utilized to explore how gene expression in hippocampus is affected by accelerated cognitive impairment in Senescence-Accelerated Mouse (SAM P8) strain. We show that the expression of genes associated with stress response and xenobiotic metabolism are strongly affected at a time when cognitive impairment occurs. Affected genes include those involved both in signaling and chaperone function. The effector and regulator family of chaperones, which play an important role in protein folding, and also the xenobiotic metabolizing enzymes that play crucial role in antioxidant systems, show significant changes in gene expression between 4 and 12 months.
Collapse
Affiliation(s)
- V B Kumar
- Geriatric Research, Education, and Clinical Center, St. Louis VA Medical Center, Missouri 63125, USA.
| | | | | | | | | |
Collapse
|