Ikawa Y, Yoshioka W, Ohki Y, Shiraishi H, Inoue T. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
Genes Cells 2001;
6:411-20. [PMID:
11380619 DOI:
10.1046/j.1365-2443.2001.00437.x]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND
Group I introns share a conserved core region consisting of two domains, P8-P3-P7 and P4-P6, joined by four base-triples. We showed previously that the T4 td intron can perform phosphoester transfer reactions at two splice sites in the absence of both P4-P6 and the conserved base-triples, whereas it is barely able to perform the intact splicing reaction due to the difficulty of conducting the sequential reactions.
RESULTS
Based on previous findings, we constructed a bimolecular ribozyme lacking a large portion of P4-P6 and the base-triples from the Tetrahymena intron, on the assumption that the long-range interactions of the peripheral regions in the two RNAs can compensate for the deteriorated core. The bimolecular ribozyme performed the intact splicing reaction.
CONCLUSION
The present analysis indicates that the base-triples are nonessential, but that L4 and the distal part of P4 in P4-P6 are important for conducting the splicing reaction. The reconstituted self-splicing ribozyme provides an amenable system for analysing the role(s) of elements in the core region in the self-splicing reaction mechanism.
Collapse