1
|
da Silva ANG, de Oliveira JRS, Madureira ÁNDM, Lima WA, Lima VLDM. Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2417-2429. [PMID: 36115728 DOI: 10.1016/j.ultrasmedbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.
Collapse
Affiliation(s)
- Ayala Nathaly Gomes da Silva
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Ricardhis Saturnino de Oliveira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Álvaro Nóbrega de Melo Madureira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Wildberg Alencar Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
2
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Hirayama J, Hoshi N, Mochizuki T. Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells. Mol Med Rep 2021; 23:173. [PMID: 33398373 PMCID: PMC7821223 DOI: 10.3892/mmr.2020.11812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 11/05/2022] Open
Abstract
Although low‑intensity ultrasound (LIUS) is a clinically established procedure, the early cellular effect of LIUS on a genetic level has not yet been studied. The current study investigated the early response genes elicited by LIUS in bone marrow stromal cells (BMSCs) using global‑scale microarrays and computational gene expression analysis tools. Mouse ST2 BMSCs were treated with LIUS [ISATA, 25 mW/cm2 for 20 min with a frequency of 1.11 MHz in a pulsed‑wave mode (0.2‑s burst sine waves repeated at 1 kHz)], then cultured for 0.5, 1 and 3 h at 37˚C. The time course of changes in gene expression was evaluated using GeneChip® high‑density oligonucleotide microarrays and Ingenuity® Pathway Analysis tools. The results were verified by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A single exposure of LIUS did not affect cell morphology, cell growth or alkaline phosphatase activity. However, 61 upregulated and 103 downregulated genes were identified from 0.5 to 3 h after LIUS treatment. Two significant gene networks, labeled E and H, were identified from the upregulated genes, while a third network, labeled T, was identified from the downregulated genes. Gene network E or H containing the immediate‑early genes FBJ osteosarcoma oncogene and early growth response 1 or the heat shock proteins heat shock protein 1a/b was associated mainly with the biological functions of bone physiology and protein folding or apoptosis, respectively. Gene network T containing transcription factors fos‑like antigen 1 and serum response factor was also associated with the biological functions of the gene expression. RT‑qPCR indicated that the expression of several genes in the gene networks E and H were elevated in LIUS‑treated cells. LIUS was demonstrated to induce gene expression after short application in mouse ST2 BMSCs. The results of the present study provide a basis for the elucidation of the detailed molecular mechanisms underlying the cellular effects of LIUS.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Hideyuki Hasegawa
- Graduate School of Science and Engineering, University of Toyama, Toyama 930‑8555, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927‑0553, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Nagaoka
- Graduate School of Science and Engineering, University of Toyama, Toyama 930‑8555, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu 923‑0961, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe 657‑8501, Japan
| | | |
Collapse
|
4
|
Abstract
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14.
Collapse
|
5
|
Kaur H, El-Bialy T. Shortening of Overall Orthodontic Treatment Duration with Low-Intensity Pulsed Ultrasound (LIPUS). J Clin Med 2020; 9:jcm9051303. [PMID: 32370099 PMCID: PMC7290339 DOI: 10.3390/jcm9051303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this retrospective clinical study was to determine if there is a reduction in the overall treatment duration in orthodontic patients using low-intensity pulsed ultrasound (LIPUS) and Invisalign SmartTrack® clear aligners. Data were collected from the first thirty-four patients (9 males, 25 females; average age 41.37 ± 15.02) who finished their orthodontic treatment using an intraoral LIPUS device and Invisalign clear aligners in a private clinic. The LIPUS parameters used by patients at home for 20 min/day were: ultrasonic frequency 1.5 MHz, pulse duration 200µs, pulse repetition rate 1 kHz, and spatial average-temporal average intensity 30mW/cm2. A control group (11 males, 23 females; average age 31.36 ± 14.41) matching for the same malocclusions was randomly selected from finished treatment cases of the same clinician. The date of first Invisalign attachment placement and first use of LIPUS application was recorded as T0, and the date of retainer delivery was recorded as T1. The treatment duration (T1–T0) and treatment reduction percentage with LIPUS device were collected and analyzed using two-sample t-test in Microsoft Excel. Treatment duration was significantly reduced in the LIPUS group (541.44 ± 192.23 days) compared to control group (1061.05 ± 455.64 days) (p < 0.05). The LIPUS group showed on average 49% reduction in the overall treatment time as compared to the control group. The average compliance of the patients using LIPUS was 66.02%. Patients who used LIPUS showed a clinically significant reduction in the overall orthodontic treatment duration compared to the control group who used Invisalign clear aligners only.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Division of Oral Biology, School of Dentistry, Katz Group for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Tarek El-Bialy
- Division of Orthodontics, School of Dentistry, Katz Group for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: ; Tel.: +1-780-492-2751
| |
Collapse
|
6
|
Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Takeuchi SI, Shiiba M, Mochizuki T. Low-intensity pulsed ultrasound promotes the expression of immediate-early genes in mouse ST2 bone marrow stromal cells. J Med Ultrason (2001) 2020; 47:193-201. [PMID: 32026128 DOI: 10.1007/s10396-020-01007-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The effects of low-intensity pulsed ultrasound (LIPUS) on the expression of immediate-early genes (IEGs) in bone marrow stromal cells (BMSCs) were evaluated to elucidate the early cellular response to LIPUS. METHODS Mouse ST2 BMSCs were treated with LIPUS (ISATA, 12-34 mW/cm2 for 20 min), then cultured at 37 °C. The expression levels of four IEGs (Fos, Egr1, Jun, and Ptgs2) and ERK1/2, a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), were assessed using real-time quantitative PCR and Western blot analyses, respectively. RESULTS A single exposure of LIPUS at an intensity of 25 mW/cm2 significantly and transiently increased the expression levels of all four IEGs, and the peak expression was detected at 30-60 min after LIPUS stimulation. LIPUS exposure also significantly increased the phosphorylation level of ERK1/2. U0126, an inhibitor of MAPK/ERK, significantly prevented LIPUS-induced expression of Fos and Egr1, but not that of Jun and Ptgs2. On the other hand, treatment of the cells with LIPUS did not affect cell growth or alkaline phosphatase activity, a marker of osteoblast differentiation. CONCLUSION These results suggest that LIPUS exposure significantly induces expression of IEGs such as Fos and Egr1 via the MAPK/ERK pathway in ST2 BMSCs.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan. .,Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.
| | - Hideyuki Hasegawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryo Nagaoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Shin-Ichi Takeuchi
- Graduate School of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Michihisa Shiiba
- Faculty of Health Sciences, Nihon Institute of Medical Science, Saitama, Japan
| | | |
Collapse
|
7
|
Takeuchi K, Yamaguchi D, Ueno A, Kato D, Miyamae S, Murakami H. Low-Intensity Pulsed Ultrasound Accelerates Differentiation of Osteoblastic Cells on Roughened Titanium Surface. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kazuo Takeuchi
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Daisuke Yamaguchi
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | - Atsuko Ueno
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Daisuke Kato
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Shin Miyamae
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Hiroshi Murakami
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
8
|
Chen D, Xiang M, Gong Y, Xu L, Zhang T, He Y, Zhou M, Xin L, Li J, Song J. LIPUS promotes FOXO1 accumulation by downregulating miR-182 to enhance osteogenic differentiation in hPDLCs. Biochimie 2019; 165:219-228. [DOI: 10.1016/j.biochi.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
|
9
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
10
|
Cell type-specific suppression of mechanosensitive genes by audible sound stimulation. PLoS One 2018; 13:e0188764. [PMID: 29385174 PMCID: PMC5791945 DOI: 10.1371/journal.pone.0188764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound.
Collapse
|
11
|
Su Y, Denbeigh JM, Camilleri ET, Riester SM, Parry JA, Wagner ER, Yaszemski MJ, Dietz AB, Cool SM, van Wijnen AJ, Kakar S. Extracellular matrix protein production in human adipose-derived mesenchymal stem cells on three-dimensional polycaprolactone (PCL) scaffolds responds to GDF5 or FGF2. GENE REPORTS 2017; 10:149-156. [PMID: 29868646 DOI: 10.1016/j.genrep.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose The poor healing potential of intra-articular ligament injuries drives a need for the development of novel, viable 'neo-ligament' alternatives. Ex vivo approaches combining stem cell engineering, 3-dimensional biocompatible scaffold design and enhancement of biological and biomechanical functionality via the introduction of key growth factors and morphogens, represent a promising solution to ligament regeneration. Methods We investigated growth, differentiation and extracellular matrix (ECM) protein production of human adipose-derived mesenchymal stem/stromal cells (MSCs), cultured in 5% human platelet lysate (PL) and seeded on three-dimensional polycaprolactone (PCL) scaffolds, in response to the connective-tissue related ligands fibroblast growth factor 2 (basic) (FGF2) and growth and differentiation factor-5 (GDF5). Phenotypic alterations of MSCs under different biological conditions were examined using cell viability assays, real time qPCR analysis of total RNA, as well as immunofluorescence microscopy. Results Phenotypic conversion of MSCs into ECM producing fibroblastic cells proceeds spontaneously in the presence of human platelet lysate. Administration of FGF2 and/or GDF5 enhances production of mRNAs for several ECM proteins including Collagen types I and III, as well as Tenomodulin (e.g., COL1A1, TNMD), but not Tenascin-C (TNC). Differences in the in situ deposition of ECM proteins Collagen type III and Tenascin-C were validated by immunofluorescence microscopy. Summary Treatment of MSCs with FGF2 and GDF5 was not synergistic and occasionally antagonistic for ECM production. Our results suggest that GDF5 alone enhances the conversion of MSCs to fibroblastic cells possessing a phenotype consistent with that of connective-tissue fibroblasts.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Joshua A Parry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Eric R Wagner
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Biomedical Engineering and Physiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Ling L, Feng X, Wei T, Wang Y, Wang Y, Zhang W, He L, Wang Z, Zeng Q, Xiong Z. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Res Ther 2017; 8:283. [PMID: 29258619 PMCID: PMC5735876 DOI: 10.1186/s13287-017-0739-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human amnion-derived mesenchymal stem cells (hAD-MSCs) have the features of mesenchymal stem cells (MSCs). Low-intensity pulsed ultrasound (LIPUS) can promote the expression of various growth factors and anti-inflammatory molecules that are necessary to keep the follicle growing and to reduce granulosa cell (GC) apoptosis in the ovary. This study aims to explore the effects of LIPUS-pretreated hAD-MSC transplantation on chemotherapy-induced primary ovarian insufficiency (POI) in rats. METHODS The animals were divided into control, POI, hAD-MSC treatment, and LIPUS-pretreated hAD-MSC treatment groups. POI rat models were established by intraperitoneal injection of cyclophosphamide (CTX). The hAD-MSCs isolated from the amnion were exposed to LIPUS or sham irradiation for 5 consecutive days and injected into the tail vein of POI rats. Expression and secretion of growth factors promoted by LIPUS in hAD-MSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) in vitro. Estrous cycle, serum sex hormone levels, follicle counts, ovarian pathological changes, GC apoptosis, Bcl2 and Bax expression, and pro-inflammatory cytokine levels in ovaries were examined. RESULTS Primary hAD-MSCs were successfully isolated from the amnion. LIPUS promoted the expression and secretion of growth factors in hAD-MSCs in vitro. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation increased the body and reproductive organ weights, improved ovarian function, and reduced reproductive organ injuries in POI rats. Transplantation of hAD-MSCs increased the Bcl-2/Bax ratio and reduced GC apoptosis and ovarian inflammation induced by chemotherapy in ovaries. These effects could be improved by pretreatment with LIPUS on hAD-MSCs. CONCLUSION Both hAD-MSC transplantation and LIPUS-pretreated hAD-MSC transplantation can repair ovarian injury and improve ovarian function in rats with chemotherapy-induced POI. LIPUS-pretreated hAD-MSC transplantation is more advantageous for reducing inflammation, improving the local microenvironment, and inhibiting GC apoptosis induced by chemotherapy in ovarian tissue of POI rats.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Xiushan Feng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Tianqin Wei
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400010 China
| | - Yaping Wang
- Department of Histology and Embryology, Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400010 China
| | - Wenqian Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Lianli He
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital, Zunyi Medical College, Zunyi, 563000 Guizhou China
| | - Ziling Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Qianru Zeng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010 China
| |
Collapse
|
13
|
Abstract
Ultrasound is an inaudible form of acoustic sound wave at 20 kHz or above that is widely used in the medical field with applications including medical imaging and therapeutic stimulation. In therapeutic ultrasound, low-intensity pulsed ultrasound (LIPUS) is the most widely used and studied form that generally uses acoustic waves at an intensity of 30 mW/cm2, with 200 ms pulses and 1.5 MHz. In orthopaedic applications, it is used as a biophysical stimulus for musculoskeletal tissue repair to enhance tissue regeneration. LIPUS has been shown to enhance fracture healing by shortening the time to heal and reestablishment of mechanical properties through enhancing different phases of the healing process, including the inflammatory phase, callus formation, and callus remodelling phase. Reports from in vitro studies reveal insights in the mechanism through which acoustic stimulations activate cell surface integrins that, in turn, activate various mechanical transduction pathways including FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), PI3K, and Akt. It is then followed by the production of cyclooxygenase 2 and prostaglandin E2 to stimulate further downstream angiogenic, osteogenic, and chondrogenic cytokines, explaining the different enhancements observed in animal and clinical studies. Furthermore, LIPUS has also been shown to have remarkable effects on mesenchymal stem cells (MSCs) in musculoskeletal injuries and tissue regeneration. The recruitment of MSCs to injury sites by LIPUS requires the SDF-1 (stromal cell derived factor-1)/CXCR-4 signalling axis. MSCs would then differentiate differently, and this is regulated by the presence of different cytokines, which determines their fates. Other musculoskeletal applications including bone–tendon junction healing, and distraction osteogenesis are also explored, and the results are promising. However, the use of LIPUS is controversial in treating osteoporosis, with negative findings in clinical settings, which may be attributable to the absence of an injury entry point for the acoustic signal to propagate, strong attenuation effect of cortical bone and the insufficient intensity for penetration, whereas in some animal studies it has proven effective.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,The Chinese University of Hong Kong - Astronaut Center of China (CUHK-ACC) Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwok-Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,The Chinese University of Hong Kong - Astronaut Center of China (CUHK-ACC) Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
14
|
Lu H, Chen C, Qu J, Chen H, Chen Y, Zheng C, Wang Z, Xu D, Zhou J, Zhang T, Qin L, Hu J. Initiation Timing of Low-Intensity Pulsed Ultrasound Stimulation for Tendon-Bone Healing in a Rabbit Model. Am J Sports Med 2016; 44:2706-2715. [PMID: 27358283 DOI: 10.1177/0363546516651863] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Low-intensity pulsed ultrasound stimulation (LIPUS) has been proven to be a beneficial biophysical therapy for tendon-bone (T-B) healing. However, the optimal time to initiate LIPUS treatment has not been determined yet. LIPUS initiated at different stages of the inflammatory phase may profoundly affect T-B healing. PURPOSE An established rabbit model was used to preliminarily investigate the effect of LIPUS initiation timing on T-B healing. STUDY DESIGN Controlled laboratory study. METHODS A total of 112 mature rabbits that underwent partial patellectomy were randomly assigned to 4 groups: daily mock sonication (control group) and daily ultrasonication started immediately postoperatively (immediate group), on postoperative day 7 (7-day delayed group), or on postoperative day 14 (14-day delayed group). Peripheral leukocyte counts at the inflammatory phase were used to assess postoperative inflammation. The rabbits were sacrificed at 8 or 16 weeks postoperatively for microarchitectural, histological, and mechanical evaluations of the patella-patellar tendon (PPT) junction. RESULTS The biomechanical properties of the PPT junction were significantly improved in the LIPUS-treated groups. Significantly higher ultimate strength and stiffness were seen in the 7-day delayed group compared with the other groups at 8 weeks postoperatively (P < .05 for all). Newly formed bone expansion from the remaining patella in the ultrasonic treatment groups was significantly increased and remodeled compared with the control group. Micro-computed tomography analysis showed that the 7-day delayed group had significantly more bone volume and bone mineral content at the interface as compared with the other groups at 8 weeks postoperatively (P < .05 for all). Histologically, the ultrasonic treatment groups exhibited a significantly better PPT junction, as shown by more formation and remodeling of the fibrocartilage layer and newly formed bone. Additionally, peripheral leukocyte counts displayed a significant increase from postoperative day 1 to day 3 in the immediate group as compared with the other groups. Furthermore, postoperative hydrarthrosis was more likely in the immediate group. CONCLUSION LIPUS started at postoperative day 7 had a more prominent effect on T-B healing compared with the other treatment regimens in this study. CLINICAL RELEVANCE The findings of the study may help optimize the initiation timing of LIPUS for T-B healing.
Collapse
Affiliation(s)
- Hongbin Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Qu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Huabin Chen
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China Department of Pediatric Orthopaedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Zheng
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China Department of Orthopaedics, Hospital of Wuhan Sports University, Wuhan Sports University, Wuhan, China
| | - Zhanwen Wang
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Daqi Xu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyong Zhou
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianzhong Hu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China Department of Spine Surgery, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Yamaguchi D, Takeuchi K, Furuta H, Miyamae S, Murakami H, Hattori M. Gene Expression in Response to Low-Intensity Pulsed Ultrasound Treatment of Bone Marrow Cells under Osteogenic Conditions In Vitro. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Daisuke Yamaguchi
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
| | - Kazuo Takeuchi
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Hiroki Furuta
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Shin Miyamae
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Hiroshi Murakami
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Masami Hattori
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
16
|
Padilla F, Puts R, Vico L, Guignandon A, Raum K. Stimulation of Bone Repair with Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:385-427. [PMID: 26486349 DOI: 10.1007/978-3-319-22536-4_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews the different options available for the use of ultrasound in the enhancement of fracture healing or in the reactivation of a failed healing process: LIPUS, shock waves and ultrasound-mediated delivery of bioactive molecules, such as growth factors or plasmids. The main emphasis is on LIPUS, or Low Intensity Pulsed Ultrasound, the most widespread and studied technique. LIPUS has pronounced bioeffects on tissue regeneration, while employing intensities within a diagnostic range. The biological response to LIPUS is complex as the response of numerous cell types to this stimulus involves several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2 and iNOS/NO pathways, and activation of the ATI mechanoreceptor. Mechanisms at the origin of LIPUS biological effects remain intriguing, and analysis is hampered by the diversity of experimental systems used in-vitro. Data point to clear evidence that bioeffects can be modulated by direct and indirect mechanical effects, like acoustic radiation force, acoustic streaming, propagation of surface waves, heat, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. One of the future engineering challenge is therefore the design of dedicated experimental set-ups allowing control of these different mechanical phenomena, and to relate them to biological responses. Then, the derivation of an 'acoustic dose' and the cross-calibration of the different experimental systems will be possible. Despite this imperfect knowledge of LIPUS biophysics, the clinical evidence, although most often of low quality, speaks in favor of the clinical use of LIPUS, when the economics of nonunion and the absence of toxicity of this ultrasound technology are taken into account.
Collapse
Affiliation(s)
| | - Regina Puts
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Alain Guignandon
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| |
Collapse
|
17
|
Miyasaka M, Nakata H, Hao J, Kim YK, Kasugai S, Kuroda S. Low-Intensity Pulsed Ultrasound Stimulation Enhances Heat-Shock Protein 90 and Mineralized Nodule Formation in Mouse Calvaria-Derived Osteoblasts. Tissue Eng Part A 2015; 21:2829-39. [PMID: 26421522 DOI: 10.1089/ten.tea.2015.0234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) has demonstrated its positive effects on osteogenic differentiation of mesenchymal stem cells and the proliferation and differentiation of osteoblasts, negative effects on osteoclast growth, and promotion of angiogenesis, leading to improvement of the tissue perfusion. Heat-shock proteins (HSPs) are initially identified as molecules encouraged and expressed by heat stress or chemical stress to cells and involved in the balance between differentiation and apoptosis of osteoblasts. However, it remains unclear if the effect of LIPUS on osteoblast differentiation could involve HSP expression and contribution. In this study, mouse calvarial osteoblasts were exposed to LIPUS at a frequency of 3.0 MHz by 30 mW/cm(2) for 15 min or to 42°C heat shock for 20 min at day 3 of cell culture and examined for osteogenesis with pursuing induction of HSP27, HSP70, and HSP90. LIPUS as well as heat shock initially upregulated HSP90 and phosphorylation of Smad1 and Smad5, encouraging cell viability and proliferation at 24 h, enhancing mineralized nodule formation stronger by LIPUS after 10 days. However, HSP27, associated with BMP2-stimulated p38 mitogen-activated protein kinase during osteoblast differentiation, was downregulated by both stimulations at this early time point. Notably, these two stimuli maintained Smad1 phosphorylation with mineralized nodule formation even under BMP2 signal blockage. Therefore, LIPUS might be a novel inducer of osteoblastic differentiation through a noncanonical signal pathway. In conclusion, LIPUS stimulation enhanced cell viability and proliferation as early as 24 h after treatment, and HSP90 was upregulated, leading to dense mineralization in the osteoblast cell culture after 10 days.
Collapse
Affiliation(s)
- Munemitsu Miyasaka
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Jia Hao
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - You-Kyoung Kim
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| |
Collapse
|
18
|
Patel US, Ghorayeb SR, Yamashita Y, Atanda F, Walmsley AD, Scheven BA. Ultrasound field characterization and bioeffects in multiwell culture plates. J Ther Ultrasound 2015; 3:8. [PMID: 26146556 PMCID: PMC4490766 DOI: 10.1186/s40349-015-0028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ultrasound with frequencies in the kilohertz range has been demonstrated to promote biological effects and has been suggested as a non-invasive tool for tissue healing and repair. However, many challenges exist to characterize and develop kilohertz ultrasound for therapy. In particular there is a limited evidence-based guidance and standard procedure in the literature concerning the methodology of exposing biological cells to ultrasound in vitro. Methods This study characterized a 45-kHz low-frequency ultrasound at three different preset intensity levels (10, 25, and 75 mW/cm2) and compared this with the thermal and biological effects seen in a 6-well culture setup using murine odontoblast-like cells (MDPC-23). Ultrasound was produced from a commercially available ultrasound-therapy system, and measurements were recorded using a needle hydrophone in a water tank. The transducer was displaced horizontally and vertically from the hydrophone to plot the lateral spread of ultrasound energy. Calculations were performed using Fourier transform and average intensity plotted against distance from the transducer. During ultrasound treatment, cell cultures were directly exposed to ultrasound by submerging the ultrasound transducer into the culture media. Four groups of cell culture samples were treated with ultrasound. Three with ultrasound at an intensity level of 10, 25, and 75 mW/cm2, respectively, and the final group underwent a sham treatment with no ultrasound. Cell proliferation and viability were analyzed from each group 8 days after three ultrasound treatments, each separated by 48 h. Results The ultrasonic output demonstrated considerable lateral spread of the ultrasound field from the exposed well toward the adjacent culture wells in the multiwell culture plate; this correlated well with the dose-dependent increase in the number of cultured cells where significant biological effects were also seen in adjacent untreated wells. Significant thermal variations were not detected in adjacent untreated wells. Conclusions This study highlights the pitfalls of using multiwell plates when investigating the biological effect of kilohertz low-frequency ultrasound on adherent cell cultures.
Collapse
Affiliation(s)
- Upen S Patel
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA ; Immunology and Inflammation-FIMR, North Shore Hospital, Manhasset, NY USA
| | - Yuki Yamashita
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - Folorunsho Atanda
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - A Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Ben A Scheven
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| |
Collapse
|
19
|
Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann Biomed Eng 2015; 43:871-86. [PMID: 25672801 DOI: 10.1007/s10439-015-1274-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/04/2015] [Indexed: 02/04/2023]
Abstract
Oral and maxillofacial diseases affect millions of people worldwide and hence tissue engineering can be considered an interesting and clinically relevant approach to regenerate orofacial tissues after being affected by different diseases. Among several innovations for tissue regeneration, low-intensity pulsed ultrasound (LIPUS) has been used extensively in medicine as a therapeutic, operative, and diagnostic tool. LIPUS is accepted to promote bone fracture repair and regeneration. Furthermore, the effect of LIPUS on soft tissues regeneration has been paid much attention, and many studies have performed to evaluate the potential use of LIPUS to tissue engineering soft tissues. The present article provides an overview about the status of LIPUS stimulation as a tool to be used to enhance regeneration/tissue engineering. This review consists of five parts. Part 1 is a brief introduction of the acoustic description of LIPUS and mechanical action. In Part 2, biological problems in dentofacial tissue engineering are proposed. Part 3 explores biologic mechanisms of LIPUS to cells and tissues in living body. In Part 4, the effectiveness of LIPUS on cell metabolism and tissue regeneration in dentistry are summarized. Finally, Part 5 relates the possibility of clinical application of LIPUS in orthodontics. The present review brings out better understanding of the bioeffect of LIPUS therapy on orofacial tissues which is essential to the successful integration of management remedies for tissue regeneration/engineering. To develop an evidence-based approach to clinical management and treatment of orofacial degenerative diseases using LIPUS, we would like to be in full pursuit of LIPUS biotherapy. Still, there are many challenges for this relatively new strategy, but the up to date achievements using it promises to go far beyond the present possibilities.
Collapse
|
20
|
Nozaka K, Shimada Y, Miyakoshi N, Yamada S, Kasukawa Y, Noguchi A. Pathological fracture of the femur in Alagille syndrome that was treated with low-intensity pulsed ultrasound stimulation and an Ilizarov ring fixator: a case report. BMC Musculoskelet Disord 2014; 15:225. [PMID: 25004954 PMCID: PMC4109381 DOI: 10.1186/1471-2474-15-225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/04/2014] [Indexed: 01/20/2023] Open
Abstract
Background Alagille syndrome is a multisystem disorder, which is characterized by hypoplasia of the intrahepatic bile ducts, malformations of the cardiovascular system, eyes, and vertebral column, and abnormal facies. Several of the characteristics of Alagille syndrome may result in an especially high risk of fracture. The majority of patients suffer from chronic cholestasis, which can have a variety of adverse effects on bone metabolism. In Alagille syndrome, fractures primarily occur in the lower limb long bones in the absence of significant trauma. Case presentation A 9-year-old Japanese girl with Alagille syndrome was admitted to our institution with marked hyperbilirubinemia and a pathological fracture of the femur. She had been diagnosed with biliary atresia at the age of 1 month and treated with surgical bile duct reconstruction, vitamins D and K, and ursodeoxycholic acid. However, her liver dysfunction and hyperbilirubinemia worsened. The pathological fracture of the femur was treated with low-intensity pulsed ultrasound stimulation (LIPUS) and an Ilizarov ring fixator. Seventy-four days after surgery, the patient had anatomically and functionally recovered. There was no leg-length discrepancy and no angular malalignment of the lower extremities as measured clinically and radiographically. The range of motion of the hip, knee, and ankle of the patient’s operative leg matched the range of motion in the nonoperative leg. Conclusion To the best of our knowledge, there are no reports on use of the Ilizarov frame and LIPUS in diaphyseal femoral fractures in Alagille syndrome. This case report provides evidence that this procedure is successful for managing such diaphyseal fractures in Alagille syndrome.
Collapse
Affiliation(s)
- Koji Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. ULTRASONICS 2014; 54:1125-45. [PMID: 24507669 DOI: 10.1016/j.ultras.2014.01.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 05/15/2023]
Abstract
In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture dish walls and the formation of standing waves will greatly affect the local type and amplitude of the stimulus exerted on the cells. A future engineering challenge is therefore the design of dedicated experimental set-ups, in which the different mechanical phenomena induced by ultrasound can be controlled. This is a prerequisite to evaluate the biological effects of the different phenomena with respect to particular parameters, like intensity, frequency, or duty cycle. By relating the variations of these parameters to the induced physical effects and to the biological responses, it will become possible to derive an 'acoustic dose' and propose a quantification and cross-calibration of the different experimental systems. Improvements in bone healing management will probably also come from a combination of ultrasound with a 'biologic' components, e.g. growth factors, scaffolds, gene therapies, or drug delivery vehicles, the effects of which being potentiated by the ultrasound.
Collapse
Affiliation(s)
- Frédéric Padilla
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon, Lyon F-69003, France.
| | - Regina Puts
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Lyon, St-Etienne F-42023, France
| | - Kay Raum
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
22
|
Wang Y, Peng W, Liu X, Zhu M, Sun T, Peng Q, Zeng Y, Feng B, Zhi W, Weng J, Wang J. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater 2014; 10:2518-28. [PMID: 24394634 DOI: 10.1016/j.actbio.2013.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/05/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022]
Abstract
The level of formation of new bone and vascularization in bone tissue engineering scaffold implants is considered as a critical factor for clinical application. In this study, an approach using an RGD-grafted oxidized sodium alginate/N-succinyl chitosan (RGD-OSA/NSC) hydrogel as a scaffold and low-intensity pulsed ultrasound (LIPUS) as mechanical stimulation was proposed to achieve a high level of formation of new bone and vascularization. An in vitro study of endothelial and osteogenic differentiations of human-bone-marrow-derived mesenchymal stem cells (hMSCs) was conducted to evaluate it. The results showed that RGD-OSA/NSC composite hydrogels presented good biological properties in attachment, proliferation and differentiation of cells. The MTT cell viability assay showed that the total number of cells increased more significantly in the LIPUS-stimulated groups with RGD than that in the control ones; similar results were obtained for alkaline phosphatase activity/staining and mineralized nodule formation assay of osteogenic induction and immunohistochemical test of endothelial induction. The positive synergistic effect of LIPUS and RGD on the enhancement of proliferation and differentiation of hMSCs was observed. These findings suggest that the hybrid use of RGD modification and LIPUS might provide one approach to achieve a high level of formation of new bone and vascularization in bone tissue engineering scaffold implants.
Collapse
|
23
|
Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells. Int J Mol Sci 2013; 14:22721-40. [PMID: 24252911 PMCID: PMC3856087 DOI: 10.3390/ijms141122721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 12/12/2022] Open
Abstract
Although low-intensity pulsed ultrasound (LIPUS) has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm(2)) did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up) contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down), which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells.
Collapse
|
24
|
Rego EB, Takata T, Tanne K, Tanaka E. Current status of low intensity pulsed ultrasound for dental purposes. Open Dent J 2012; 6:220-5. [PMID: 23341848 PMCID: PMC3547311 DOI: 10.2174/1874210601206010220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/10/2012] [Accepted: 09/27/2012] [Indexed: 01/08/2023] Open
Abstract
Over the past few years, tissue engineering applied to the dental field has achieved relevant results. Tissue engineering can be described by actions taken to improve biological functions. Several methods have been described to enhance cellular performance and low intensity pulsed ultrasound (LIPUS) has shown to play an important role in cell metabolism. The present article provides an overview about the current status of LIPUS as a tissue engineering tool to be used to enhance tooth and periodontal regeneration.
Collapse
Affiliation(s)
- Emanuel Braga Rego
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical Sciences,
Hiroshima, Japan
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical
Sciences, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical Sciences,
Hiroshima, Japan
| | - Kazuo Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical
Sciences, Hiroshima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima
Graduate School, Tokushima, Japan
| |
Collapse
|
25
|
Li L, Yang Z, Zhang H, Chen W, Chen M, Zhu Z. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes. Biochem Biophys Res Commun 2012; 418:296-300. [PMID: 22266313 DOI: 10.1016/j.bbrc.2012.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 02/05/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE(2) and NO assay showed that LIPUS could enhance PGE(2) and NO secretion from MLO-Y4 cells at all time points within 24h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE(2) from osteocytes may play a role in this effect.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
26
|
Sakamoto J, Nakano J, Kataoka H, Origuchi T, Yoshimura T, Okita M. Continuous Therapeutic Ultrasound Inhibits Progression of Disuse Atrophy in Rat Gastrocnemius Muscles. J Phys Ther Sci 2012. [DOI: 10.1589/jpts.24.443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Junya Sakamoto
- Department of Rehabilitation, Nagasaki University Hospital
| | - Jiro Nakano
- Department of Physical Therapy, Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences
| | - Hideki Kataoka
- Department of Rehabilitation, Nagasaki Memorial Hospital
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomoki Origuchi
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Toshiro Yoshimura
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
27
|
Paskalev M, Goranov N, Sotirov L, Krastev S, Roydev R. Effect of therapeutic ultrasound on bone healing and blood bone markers in dogs with experimental tibial osteotomies. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s00580-011-1333-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Apolinário JDC, Coelho WMD, Louzada MJQ. Análise da influência do ultrassom de baixa intensidade na região de reparo ósseo em ratos sob ausência de carga. FISIOTERAPIA E PESQUISA 2011. [DOI: 10.1590/s1809-29502011000300013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Há evidências de que o ultrassom (US) de baixa intensidade pode acelerar a regeneração óssea. Este trabalho objetivou verificar a ação do US no defeito ósseo, criado experimentalmente em tíbias de ratos sob ausência de carga. Vinte Rattus novergicus albinus, Wistar adultos, divididos em: G1 (n=10), grupo experimental de 15 dias sem suspensão, e G2 (n=10), grupo experimental de 15 dias suspenso pela cauda, foram submetidos à osteotomia em ambas as tíbias e à aplicação do US, frequência de 1,5 MHz, ciclo de trabalho 1:4, 30 mW/cm², nas tíbias direitas por 12 sessões de 20 minutos. Após o sacrifício, as tíbias foram submetidas à análise da Densidade Mineral Óssea (DMO). Os resultados demonstraram DMO de 0,139±0,018 g/cm² para tíbia tratada; 0,131±0,009 g/cm² para tíbia controle no G1; e no G2 registrou-se 0,120±0,009 g/cm² para tíbia tratada e 0,106±0,017 g/cm² para tíbia controle. Houve diferença significante entre os grupos nos quais o G2 apresentou menor DMO, o que demonstra que a suspensão prejudica a manutenção das propriedades ósseas, e entre as tíbias tratadas e controles do G2, demonstrando que o US acelerou o processo de reparo, concluindo que a impossibilidade do estímulo mecânico causada pela não deambulação em um processo de reparo ósseo pode ser minimizada pela ação do US. No G1, a aplicação do US não teve influência significante no aumento da DMO, talvez pelo fato dos animais já terem estímulo mecânico suficiente à formação óssea.
Collapse
|
29
|
Watabe H, Furuhama T, Tani-Ishii N, Mikuni-Takagaki Y. Mechanotransduction activates α₅β₁ integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res 2011; 317:2642-9. [PMID: 21824471 DOI: 10.1016/j.yexcr.2011.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 10/17/2022]
Abstract
It is unclear how bone cells at different sites detect mechanical loading and how site-specific mechanotransduction affects bone homeostasis. To differentiate the anabolic mechanical responses of mandibular cells from those of calvarial and long bone cells, we isolated osteoblasts from C57B6J mouse bones, cultured them for 1week, and subjected them to therapeutic low intensity pulsed ultrasound (LIPUS). While the expression of the marker proteins of osteoblasts and osteocytes such as alkaline phosphatase and FGF23, as well as Wnt1 and β-catenin, was equally upregulated, the expression of mandibular osteoblast messages related to bone remodeling and apoptosis differed from that of messages of other osteoblasts, in that the messages encoding the pro-remodeling protein RANKL and the anti-apoptotic protein Bcl-2 were markedly upregulated from the very low baseline levels. Blockage of the PI3K and α(5)β(1) integrin pathways showed that the mandibular osteoblast required mechanotransduction downstream of α(5)β(1) integrin to upregulate expression of the proteins β-catenin, p-Akt, Bcl-2, and RANKL. Mandibular osteoblasts thus must be mechanically loaded to preserve their capability to promote remodeling and to insure osteoblast survival, both of which maintain intact mandibular bone tissue. In contrast, calvarial Bcl-2 is fully expressed, together with ILK and phosphorylated mTOR, in the absence of LIPUS. The antibody blocking α(5)β(1) integrin suppressed both the baseline expression of all calvarial proteins examined and the LIPUS-induced expression of all mandibular proteins examined. These findings indicate that the cellular environment, in addition to the tridermic origin, determines site-specific bone homeostasis through the remodeling and survival of osteoblastic cells. Differentiated cells of the osteoblastic lineage at different sites transmit signals through transmembrane integrins such as α(5)β(1) integrin in mandibular osteoblasts, whose signaling may play a major role in controlling bone homeostasis.
Collapse
Affiliation(s)
- H Watabe
- Department of Oral Medicine, Kanagawa Dental College, Japan
| | | | | | | |
Collapse
|
30
|
Angle SR, Sena K, Sumner DR, Virdi AS. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. ULTRASONICS 2011; 51:281-288. [PMID: 20965537 DOI: 10.1016/j.ultras.2010.09.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/24/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
Bone growth and repair are under the control of biochemical and mechanical signals. Low-intensity pulsed ultrasound (LIPUS) stimulation at 30mW/cm(2) is an established, widely used and FDA approved intervention for accelerating bone healing in fractures and non-unions. Although this LIPUS signal accelerates mineralization and bone regeneration, the actual intensity experienced by the cells at the target site might be lower, due to the possible attenuation caused by the overlying soft tissue. The aim of this study was to investigate whether LIPUS intensities below 30mW/cm(2) are able to provoke phenotypic responses in bone cells. Rat bone marrow stromal cells were cultured under defined conditions and the effect of 2, 15, 30mW/cm(2) and sham treatments were studied at early (cell activation), middle (differentiation into osteogenic cells) and late (biological mineralization) stages of osteogenic differentiation. We observed that not only 30mW/cm(2) but also 2 and 15mW/cm(2), modulated ERK1/2 and p38 intracellular signaling pathways as compared to the sham treatment. After 5 days with daily treatments of 2, 15 and 30mW/cm(2), alkaline phosphatase activity, an early indicator of osteoblast differentiation, increased by 79%, 147% and 209%, respectively, compared to sham, indicating that various intensities of LIPUS were able to initiate osteogenic differentiation. While all LIPUS treatments showed higher mineralization, interestingly, the highest increase of 225% was observed in cells treated with 2mW/cm(2). As the intensity increased to 15 and 30mW/cm(2), the increase in the level of mineralization dropped to 120% and 82%. Our data show that LIPUS intensities lower than the current clinical standard have a positive effect on osteogenic differentiation of rat bone marrow stromal cells. Although Exogen™ at 30mW/cm(2) continues to be effective and should be used as a clinical therapy for fracture healing, if confirmed in vivo, the increased mineralization at lower intensities might be the first step towards redefining the most effective LIPUS intensity for clinical use.
Collapse
Affiliation(s)
- S R Angle
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
31
|
Lim D, Ko CY, Seo DH, Woo DG, Kim JM, Chun KJ, Kim HS. Low-intensity ultrasound stimulation prevents osteoporotic bone loss in young adult ovariectomized mice. J Orthop Res 2011; 29:116-25. [PMID: 20607839 DOI: 10.1002/jor.21191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a disease characterized by low bone mass, increased bone fragility, and a greater risk for bone fracture. Currently, pharmacological intervention can generally aid in the prevention and treatment of osteoporosis, but these therapies are often accompanied by undesirable side effects. Therefore, alternative therapies that minimize side effects are necessary. Biophysical stimuli, especially low-intensity ultrasound stimulation (LIUS), may be potential alternatives to drug-based therapies for osteoporosis. Hence, we sought to address whether LIUS therapy can effectively prevent or treat osteoporotic bone loss induced by estrogen deficiency. LIUS (1.5 MHz frequency, 1.0 kHz pulse repetition on frequency, 30 mW/cm(2) intensity, 200 µs pulse length) was applied to right tibiae of eight 14-week-old ovariectomized virgin ICR female mice for 20 min per day, 5 days per week, over a 6-week period. Changes in 3D structural bone characteristics were detected using in vivo micro-computed tomography. Left tibiae served as controls. Structural characteristics including bone volume/tissue volume, trabecular number, trabecular bone pattern factor, and mean polar moment inertia were significantly enhanced 6 weeks after LIUS compared to the control, nonstimulated group (p < 0.05). In particular, the bone volume/tissue volume in the region exposed directly to LIUS was significantly higher in the treated group (p < 0.05). These findings indicate that new bone formation may be activated or that bone structure may be maintained by LIUS, and that LIUS may be effective for preventing estrogen deficiency-induced bone loss.
Collapse
Affiliation(s)
- Dohyung Lim
- Gerontechnology Center, Korea Institute of Industrial Technology, Cheonan, Chungnam 330-825, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Hwang YS, Jeon HJ, Shin SH, Chung IK, Kim GC, Kim CH, Kim UK. Effect of low intensity pulsed ultrasound (LIPUS) on bone healing around a titanium implant in the tibia of osteoporosis-induced rats. J Korean Assoc Oral Maxillofac Surg 2011. [DOI: 10.5125/jkaoms.2011.37.5.386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Young-Seob Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyun-Jun Jeon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - In-Kyo Chung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, Dong-A University Medical Center, Pusan, Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
33
|
Suto K, Urabe K, Naruse K, Uchida K, Matsuura T, Mikuni-Takagaki Y, Suto M, Nemoto N, Kamiya K, Itoman M. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank 2010; 13:71-80. [PMID: 21116722 PMCID: PMC3286509 DOI: 10.1007/s10561-010-9234-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/18/2010] [Indexed: 01/16/2023]
Abstract
Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze–thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze–thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze–thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze–thaw cycles. In patella tendons, the ultimate stress, Young’s modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze–thaw cycles. In conclusion, we identified that cells surviving after freeze–thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze–thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.
Collapse
Affiliation(s)
- Kaori Suto
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gleizal A, Ferreira S, Lavandier B, Simon B, Béziat JL, Béra JC. Ultrasons pulsés de faible intensité (LIPUS) : effets sur des cultures d’ostéoblastes crâniens de souris. ACTA ACUST UNITED AC 2010; 111:280-5. [DOI: 10.1016/j.stomax.2009.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/26/2009] [Accepted: 07/06/2009] [Indexed: 10/18/2022]
|
35
|
Diagnosis and treatment of osteoporosis in spinal cord injury patients: A literature review. Ann Phys Rehabil Med 2010; 53:655-68. [PMID: 21094110 DOI: 10.1016/j.rehab.2010.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 09/20/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To present an up-to-date literature review of osteoporosis in spinal cord injury (SCI) patients, in view of the seriousness of this complication (with a high risk of fractures) and the complexity of its diagnosis, evaluation and treatment. METHODS A Medline search with the following keywords: immobilization osteoporosis, spinal cord injury, bone loss, dual energy X-ray absorptiometry (DEXA), bisphosphonate. RESULTS Our analysis of the literature noted a bone metabolism imbalance in SCI patients, with accelerated early bone resorption (particularly during the first 6 months post-injury). Although dual energy X-ray absorptiometry constitutes the "gold standard" diagnostic method, the decrease in bone mineral density only becomes significant 12 months after the injury. Bisphosphonate therapy has proven efficacy. Despite the frequent use of various physical therapies, these methods have not been found to be effective. CONCLUSION Although our literature review did not identify any guidelines on the strategy for diagnosing and treating osteoporosis in SCI patients, several findings provide guidance on procedures for early diagnosis and preventive treatment.
Collapse
|
36
|
Osteoblast activity in the goldfish scale responds sensitively to mechanical stress. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:357-63. [DOI: 10.1016/j.cbpa.2010.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/28/2010] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
|
37
|
Naruse K, Sekiya H, Harada Y, Iwabuchi S, Kozai Y, Kawamata R, Kashima I, Uchida K, Urabe K, Seto K, Itoman M, Mikuni-Takagaki Y. Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1098-1108. [PMID: 20620697 DOI: 10.1016/j.ultrasmedbio.2010.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 03/15/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
To test whether mechanical loading produces faster healing in aged mice, fractured femurs of aged 1-year-old mice were subjected to low-intensity pulsed ultrasound (LIPUS), a treatment that is routinely used to help heal fractures in humans. Cyclooxygenase-2 knockout mice (COX-2(-/-)), which lack an immediate early mediator of mechanical stimulation, were also studied by histochemistry, microcomputed tomography and quantitative polymerase chain reaction to determine the role of COX-2. The healing in the aged COX-2(-/-) mice is slow during the endochondral bone remodeling (>30 d), a period generally prolonged in senescence. For aged wild-type mice, LIPUS halved the endochondral phase to about 10 d, whereas that was not the case for aged COX-2(-/-) mice, which showed no apparent shortening of the prolonged endochondral-phase healing time. Injecting prostaglandin E(2) receptor agonists, however, rescued the COX-2(-/-) callus from insensitivity to LIPUS. In conclusion, COX-2 is a limiting factor in the delayed endochondral bone healing and is induced by LIPUS, which normalizes healing rate to the wild-type level.
Collapse
Affiliation(s)
- Kouji Naruse
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rego EB, Inubushi T, Kawazoe A, Tanimoto K, Miyauchi M, Tanaka E, Takata T, Tanne K. Ultrasound stimulation induces PGE(2) synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:907-915. [PMID: 20447753 DOI: 10.1016/j.ultrasmedbio.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/25/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
The present study aims to provide insights into how ultrasound treatment (US) can affect the regenerative response of cementum by evaluating the role of prostaglandin E(2) induced by ultrasound stimulation on cementoblastic differentiation. The mouse cementoblast cell line OCCM-30 was exposed to low-intensity ultrasound and the cyclooxygenase-2 (COX-2) mRNA expression and prostaglandin E(2) (PGE(2)) production were quantified. The role of the US-induced PGE(2) in mineralization was examined using COX-2 inhibitor and prostaglandin receptors (EP-receptors) agonists and antagonists. In addition, gene expression of differentiation markers related to mineral metabolism was evaluated. Ultrasound significantly enhanced COX-2 mRNA expression and PGE(2) production. PGE(2) induced by US mediated mineral nodule formation, whereas COX-2 inhibitor treatment eliminated the enhancement of mineralization induced by US stimulation. Mineral deposition was also inhibited by treatment with EP2 or EP4 antagonist. Moreover, up-regulation of differentiation markers induced by US was suppressed by treatment with COX-2 inhibitor. The present findings provide evidence that US stimulation has a positive effect on mineralization ability of cementoblasts through the activation of EP2/EP4 pathway, suggesting that US can be a promising therapeutic tool for cementum repair.
Collapse
Affiliation(s)
- Emanuel Braga Rego
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shakouri K, Eftekharsadat B, Oskuie MR, Soleimanpour J, Tarzamni MK, Salekzamani Y, Hoshyar Y, Nezami N. Effect of low-intensity pulsed ultrasound on fracture callus mineral density and flexural strength in rabbit tibial fresh fracture. J Orthop Sci 2010; 15:240-4. [PMID: 20358338 DOI: 10.1007/s00776-009-1436-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 11/02/2009] [Indexed: 02/09/2023]
Abstract
BACKGROUND Low-intensity ultrasound is a biophysical intervention on a fracture repair process. However, the effect of low-intensity ultrasound therapy on fracture healing is controversial. The aim of the present study was to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) therapy on the fracture healing process, including mineral density and strength of callus using a rabbit model. METHODS A total of 30 rabbits underwent unilateral, transverse, and mid-tibia open osteotomies that were stabilized with external fixators. Then, the animals were divided into two study groups composed of 15 rabbits each: the case group (US), which were exposed to low-intensity pulsed ultrasound with 30 mW/cm(2) intensity and 1.5 MHz sine waves; and the control group (C), which underwent sham ultrasound treatment. Callus development and mineral density were evaluated using multidetector computed tomography at 2, 5, and 8 weeks, after which the animals were killed. Three-point bending tests of both healed and intact bones were assessed and compared. RESULTS The results demonstrated that the callus mineral density in the US group was higher than in the C group (1202.20 +/- 81.30 vs. 940.66 +/- 151.58 HU; P = 0.001) at the end of the 8th week. The mean recorded three-point bending test score of healed bones in the US group was not significantly different from that of the C group (359.35 +/- 173.39 vs. 311.02 +/- 80.58 N; P = 0.114). CONCLUSIONS The present study showed that low-intensity pulsed ultrasound enhanced callus mineral density with an insignificant increase in the strength of the fractured bone.
Collapse
Affiliation(s)
- Kazem Shakouri
- Department of Physical Medicine and Rehabilitation, Tabriz University (Medical Sciences), Tabriz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kitamura KI. Effects of Low-Intensity Ultrasound on Osteoblasts and Osteoclasts in Goldfish Scale. ACTA ACUST UNITED AC 2010. [DOI: 10.2187/bss.24.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Rutten S, Nolte PA, Korstjens CM, Klein-Nulend J. Low-intensity pulsed ultrasound affects RUNX2 immunopositive osteogenic cells in delayed clinical fracture healing. Bone 2009; 45:862-9. [PMID: 19631773 DOI: 10.1016/j.bone.2009.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Osteogenic cell proliferation and differentiation play an important role in adequate fracture healing, and is target for osteoinductive therapies in delayed fracture healing. The aim of this study was to investigate whether low-intensity pulsed ultrasound enhances fracture healing at the tissue level in patients with a delayed union of the osteotomized fibula through an effect on the presence of RUNX2 immunopositive osteogenic cells. The effect was studied in both atrophic and hypertrophic delayed unions. MATERIALS AND METHODS Biopsies were obtained from 6 female and 1 male patient (age 43-63) with a delayed union of the osteotomized fibula after a high tibial osteotomy treated for 2-4 months with or without low-intensity pulsed ultrasound in a randomized prospective double-blind placebo-controlled trial. Immunolocalization of RUNX2 protein was performed to identify osteogenic cells. Histomorphometrical analysis was performed to determine the number of cells expressing RUNX2 located within and around the newly formed woven bone at the fracture end (area of new bone formation), and up to 3 mm distant from the fracture end. RESULTS Cells expressing RUNX2 were present in all histological sections of control and low-intensity pulsed ultrasound-treated bone evaluated. Within the area of new bone formation, RUNX2 immunopositive cells were found in the undifferentiated soft connective tissue, at the bone surface (presumably osteoblasts), and within the newly formed woven bone. Low-intensity pulsed ultrasound treatment of fibula delayed unions significantly reduced the number of RUNX2 immunopositive cells within the soft connective tissue at the fracture ends, whereas the number of RUNX2 immunopositive cells at the bone surface was not affected. The number of RUNX2 immunopositive cells was similar for the atrophic and hypertrophic delayed unions. CONCLUSIONS Immunolocalization of RUNX2 positive cells in delayed unions of the fibula reveals that delayed clinical fracture healing does not result in impairment of osteogenic cell proliferation and/or differentiation at the tissue level, even if delayed unions are clinically regarded as atrophic. Reduced number of osteogenic RUNX2 immunopositive cells within the soft connective tissue, and unchanged number of RUNX2 immunopositive cells at the bone surface, implicate that low-intensity pulsed ultrasound does not increase osteogenic cell presence, but likely affects osteogenic cell differentiation.
Collapse
Affiliation(s)
- Sjoerd Rutten
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Wijdicks CA, Virdi AS, Sena K, Sumner DR, Leven RM. Ultrasound enhances recombinant human BMP-2 induced ectopic bone formation in a rat model. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1629-1637. [PMID: 19632764 DOI: 10.1016/j.ultrasmedbio.2009.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 04/16/2009] [Accepted: 04/23/2009] [Indexed: 05/28/2023]
Abstract
Two methods to improve bone repair include the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-intensity pulsed ultrasound (LIPUS). The present study was designed to determine if LIPUS enhances the effect of rhBMP-2-induced bone formation in a well characterized ectopic implant model. Absorbable collagen sponges loaded with 0-, 1-, 2.5- or 5-microg doses of rhBMP-2 were implanted subcutaneously in 11-week-old, male Long Evans rats, followed by daily 20-min LIPUS or sham LIPUS treatment beginning 1 d after surgery. Explanted sponges were assessed for bone volume, mineral density and mineral content by microcomputed tomography (microCT). At two weeks, LIPUS had no effect on rhBMP-2-induced bone formation, but at four weeks, LIPUS increased bone volume in the 1-microg rhBMP-2-treated implants 117.7-fold (0.02 +/- 0.04 mm(3)vs. 2.07(S.E.M.) +/- 1.67 mm(3);p = 0.028), and 2.3-fold in the 5-microg dose implants (5.96 +/- 3.68 mm(3)vs. 13.52 +/- 6.81 mm(3);p = 0.077) compared with sham LIPUS. Bone mineral density was not affected by LIPUS treatment. Total mineral content followed the same pattern as bone volume. Histologic staining for mineralized tissue was consistent with the microCT observations. The present study is the first to demonstrate that LIPUS enhances bone formation induced by rhBMP-2.
Collapse
Affiliation(s)
- Coen A Wijdicks
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
43
|
Hasegawa T, Miwa M, Sakai Y, Niikura T, Kurosaka M, Komori T. Osteogenic activity of human fracture haematoma-derived progenitor cells is stimulated by low-intensity pulsed ultrasound in vitro. ACTA ACUST UNITED AC 2009; 91:264-70. [PMID: 19190066 DOI: 10.1302/0301-620x.91b2.20827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this in vitro study, we investigated the effects of LIPUS on the osteogenic activity of HCs. Alkaline phosphatase activity, osteocalcin secretion, the expression of osteoblast-related genes and the mineralisation of HCs were shown to be significantly higher when LIPUS had been applied but without a change in the proliferation of the HCs. These findings provide evidence in favour of the use of LIPUS in the treatment of fractures.
Collapse
Affiliation(s)
- T Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Warden SJ, Komatsu DE, Rydberg J, Bond JL, Hassett SM. Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing. Bone 2009; 44:485-94. [PMID: 19071238 DOI: 10.1016/j.bone.2008.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/16/2022]
Abstract
Fracture healing is thought to be naturally optimized; however, recent evidence indicates that it may be manipulated to occur at a faster rate. This has implications for the duration of morbidity associated with bone injuries. Two interventions found to accelerate fracture healing processes are recombinant human parathyroid hormone [1-34] (PTH) and low-intensity pulsed ultrasound (LIPUS). This study aimed to investigate the individual and combined effects of PTH and LIPUS on fracture healing. Bilateral midshaft femur fractures were created in Sprague-Dawley rats, and the animals treated 7 days/week with PTH (10 microg/kg) or a vehicle solution. Each animal also had one fracture treated for 20 min/day with active-LIPUS (spatial-averaged, temporal-averaged intensity [I(SATA)]=100 mW/cm(2)) and the contralateral fracture treated with inactive-LIPUS (placebo). Femurs were harvested 35 days following injury to permit micro-computed tomography, mechanical property and histological assessments of the fracture calluses. There were no interactions between PTH and LIPUS indicating that their effects were additive rather than synergistic. These additive effects were contrasting with LIPUS primarily increasing total callus volume (TV) without influencing bone mineral content (BMC), and PTH having the opposite effect of increasing BMC without influencing TV. As a consequence of the effect of LIPUS on TV but not BMC, it decreased volumetric bone mineral density (vBMD) resulting in a less mature callus. The decreased maturity and persistence of cartilage at the fracture site when harvested offset any beneficial mechanical effects of the increased callus size with LIPUS. In contrast, the effect of PTH on callus BMC but not TV resulted in increased callus vBMD and a more mature callus. This resulted in PTH increasing fracture site mechanical strength and stiffness. These data suggest that PTH may have utility in the treatment of acute bone fractures, whereas LIPUS at an I(SATA) of 100 mW/cm(2) does not appear to be indicated in the management of closed, diaphyseal fractures.
Collapse
Affiliation(s)
- Stuart J Warden
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
45
|
Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2009; 41:108-15. [PMID: 19204827 DOI: 10.1093/abbs/gmn012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There were few studies investigating the effects of the mechanical stimulation provided by daily low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS is known to accelerate bone mineralization and regeneration; however, the precise cellular mechanism is unclear.Our purpose was to determine how daily LIPUS treatment affected cell viability, alkaline phosphatase activity, osteogenesis-related gene expression, and mineralized nodule formation in osteoblasts. The typical osteoblastic cell line ROS 17/2.8 cells were cultured in the absence or presence of LIPUS stimulation. Daily LIPUS treatments (1.5 MHz; 20 min) were administered at an intensity of 30 mW/cm(2) for 14 days. Expression of osteogenesis-related genes was examined at mRNA levels using real-time polymerase chain reaction and at protein levels using western blotting analysis. LIPUS stimulation did not affect the rate of cell viability. Alkaline phosphatase activity was increased after 10 days of culture with daily LIPUS stimulation. LIPUS significantly increased the expression of mRNAs encoding Runx2, Msx2, Dlx5, osterix, bone sialoprotein, and bone morphogenetic protein-2, whereas it significantly reduced the expression of mRNA encoding the transcription factor AJ18. Mineralized nodule formation was markedly increased on Day 14 of LIPUS stimulation. LIPUS stimulation directly affected osteogenic cells, leading to mineralized nodule formation. LIPUS is likely to have a fundamental influence on key functional activities of osteoblasts in alveolar bone.
Collapse
Affiliation(s)
- Akito Suzuki
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Naruse K, Mikuni-Takagaki Y, Urabe K, Uchida K, Itoman M. Therapeutic ultrasound induces periosteal ossification without apparent changes in cartilage. Connect Tissue Res 2009; 50:55-63. [PMID: 19212853 DOI: 10.1080/03008200802419855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low intensity pulsed ultrasound (LIPUS) is an extremely useful noninvasive treatment which halves the duration of fracture healing when the bone is exposed once a day for 20 min. To elucidate the direct reactions of bone and cartilage, dissected rat femora were immobilized in culture dish wells, exposed to LIPUS from a certain angle every day, and the local pattern of ossification was analyzed in relation to the ultrasound. Daily 20-min exposures were started 24 hr after isolation of the femora, and at days 5, 10, and 15, samples were harvested for measurements, morphological, and histochemical analyses. While the gross features of the samples were identical to the untreated controls, extended mineralization of the periosteum was observed with alizarin red staining, antiosteocalcin immunohistochemical staining, and micro-three dimensional computed tomography. Interestingly, the newly deposited mineral was found perpendicular to the ultrasound path, strongly suggesting that LIPUS accelerates periosteal bone formation. Zones of epiphyseal cartilage and hypertrophic and calcified cartilage did not exhibit any differences with and without this exposure. LIPUS also did not influence the secreted proteoglycan components or amounts in the culture medium. The absence of any additional longitudinal growth of the femur demonstrated that LIPUS did not accelerate endochondral bone formation. We conclude that cartilage alone does not directly respond to therapeutic ultrasound, whereas the periosteum does.
Collapse
Affiliation(s)
- Kouji Naruse
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan.
| | | | | | | | | |
Collapse
|
47
|
Watanuki M, Kishimoto KN, Kotajima S, Iwabuchi S, Kokubun S. Effect of low-intensity pulsed ultrasound on scaffold-free ectopic bone formation in skeletal muscle. Ups J Med Sci 2009; 114:242-8. [PMID: 19961269 PMCID: PMC2852778 DOI: 10.3109/03009730903226659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) is reported to have the effects of rapid appearance and early maturation of ossification in animal models. METHOD We examined the influence of LIPUS on bone formation in C57BL/6J mouse muscle induced by gene transfer of BMP-4 expression plasmid. Electroporation was employed to transfer plasmid DNA. First, an in vitro study was carried out to confirm that LIPUS has no effect on the forced expression of BMP-4 gene transferred by electroporation into C2C12 cells. Next, the BMP-4 plasmids were injected into mouse calf muscles, and transcutaneous electroporation was applied. LIPUS (30 mW/cm(2)) exposure was performed daily for 20 minutes on one side of hind limbs (LIPUS side). The contralateral limbs were not exposed to LIPUS (control side). Muscle samples were collected at 7, 10, 14, and 21 days after electroporation. Soft X-ray films of muscles were taken, and areas of bone formation were measured. After pepsin solubilization of the muscles, calcium and total collagen content were measured. RESULTS Radiographical measurements showed significantly more bone formation in the LIPUS side at Day 10. The area of bone was the maximum in both sides at Day 14. The LIPUS side exhibited significant increase in the calcium content at Day 10. The total collagen content with LIPUS exposure was increased significantly over control at Day 10 and 21. CONCLUSIONS According to these results, accelerated maturation of ectopic bone formation by LIPUS was confirmed at Day 10. Moreover, our results showed that LIPUS increases the total collagen content during osteogenesis.
Collapse
Affiliation(s)
- Munenori Watanuki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, SendaiJapan
| | - Koshi N. Kishimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, SendaiJapan
| | - Satoshi Kotajima
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, SendaiJapan
| | - Sadahiro Iwabuchi
- Bio-medical Engineering Laboratories, Teijin Pharma Ltd., TokyoJapan
| | - Shoichi Kokubun
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, SendaiJapan
| |
Collapse
|
48
|
Lu H, Qin L, Lee K, Cheung W, Chan K, Leung K. Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem Biophys Res Commun 2008; 378:569-73. [PMID: 19056340 DOI: 10.1016/j.bbrc.2008.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 11/18/2008] [Indexed: 11/24/2022]
Abstract
This study was designed to compare the temporal changes of gene expression profile in osteoblastic cell lines (SaOS-2) treated with low-intensity pulsed ultrasound stimulation (LIPUS) using complementary DNA (cDNA) microarrays. SaOS-2 cells were treated with LIPUS for 20min. Thereafter, cells were harvested and RNA was extracted twice at 4 and 24h, respectively. Using cDNA microarrays, 7488 genes with changes in expression in SaOS-2 cells were identified for comparison. Microarray analysis revealed a total of 165 genes in SaOS-2 cells were regulated at 4 and 24h after LIPUS treatment. Except for 30 known LIPUS-regulated genes, our study demonstrated for the first time that over 100 genes were related to the underlying molecular mechanism of LIPUS and suggested that LIPUS might regulate a transient expression of numerous critical genes in osteoblastic cells. These results provide further understanding of the role of LIPUS in the regulation of osteoblastic gene expression potentially involved in the molecular mechanism of osteogenesis in fracture repair.
Collapse
Affiliation(s)
- Hongbin Lu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Osteogenic effects of low-intensity pulsed ultrasound, extracorporeal shockwaves and their combination - an in vitro comparative study on human periosteal cells. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1957-1965. [PMID: 18771844 DOI: 10.1016/j.ultrasmedbio.2008.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/04/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Our previous studies have shown that on human periosteal cells, low-intensity pulsed ultrasound (LIPUS) has an immediate stimulatory effect whereas extracorporeal shockwaves (ESW) have an delayed stimulatory effect. Therefore, we hypothesized that a combined ESW and LIPUS treatment might provide additive or synergistic effects on periosteal cells, by using ESW to trigger a biological activity while using LIPUS to maintain the stimulated activity. Human periosteal cells were subjected to a single session of ESW treatment on day 0 and/or daily LIPUS treatments or no treatment (control). The cell viability, proliferation, and alkaline phosphatase activity on day 6 and day 18 as well as matrix mineralization on day 35 were measured. Results revealed that LIPUS alone had early positive effects on the activities on day 6 only. In contrast, ESW alone had an early destructive effect but exerted delayed stimulatory effects on the cellular activities on day 18. The combined treatment of ESW plus LIPUS produced effects that were comparable to the ESW treatment alone. Although these findings suggest that ESW and LIPUS stimulate the periosteal cells in two different ways and at different times, their additive or synergistic effects could not be proven.
Collapse
Affiliation(s)
- Kam-Fai Tam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
50
|
Huang TH, Tang CH, Chen HI, Fu WM, Yang RS. Low-intensity pulsed ultrasound-promoted bone healing is not entirely cyclooxgenase 2 dependent. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:1415-1423. [PMID: 18809951 DOI: 10.7863/jum.2008.27.10.1415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes bone healing through the cyclooxgenase 2 (COX-2) pathway. METHODS Each male Sprague Dawley rat (n = 48 total) in the study underwent bilateral drilled hole injury in the proximal tibiae. Then the animals were randomly assigned to 2 groups: a COX-2 inhibitor (COX-2in) group, treated with the selective COX-2 inhibitor rofecoxib (3 mg/kg/d), and a control (CON) group, treated with distilled water. Low-intensity pulsed ultrasound was applied to the injured site of a single limb of each rat for 20 min/d at a consistent intensity (30 mW/cm(2)) and frequency (1.5 MHz). Subsets of animals from both groups were killed after 3, 7, or 14 days of single-limb LIPUS treatment. Tissue sections were subjected to alcian blue staining, and the healing status was quantified according to a scoring system. RESULTS After 3 and 7 days, the CON group's LIPUS-treated limbs had significantly higher healing scores than its nontreated limbs and the COX-2in group's LIPUS-treated limbs (P < .05). Interestingly, after the 14-day treatment, the COX-2in group's LIPUS-treated limbs had significantly higher healing scores than its nontreated limbs (P < .05) but showed no difference when compared with the CON group. CONCLUSIONS Low-intensity pulsed ultrasound did show accelerative efficacy on bone healing. Selective inhibition of COX-2 could delay but not entirely block the benefits of LIPUS on bone healing. Low-intensity ultrasound treatment could promote bone healing through other, non-COX-2-dependent, pathways.
Collapse
Affiliation(s)
- Tsang-Hai Huang
- Institute of Physical Education, Health, and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|