1
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
2
|
Characterisation and Bioactivity Analysis of Peridinin-Chlorophyll a-Protein (PCP) Isolated from Symbiodinium tridacnidorum CS-73. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peridinin-Chlorophyll a-Proteins (PCP) are the major light harvesting proteins in photosynthetic dinoflagellates. PCP shows great variation in protein length, pigment ratio, sequence, and spectroscopic properties. PCP conjugates (PerCP) are widely used as fluorescent probes for cellular and tissue analysis in the biomedical field. PCP consists of a peridinin carotenoid; thereby, it can potentially be used as a bioactive compound in pharmaceutical applications. However, the biological activities of PCP are yet to be explored. In this study, we extracted, purified, and partially characterised the PCP from Symbiodinium tridacnidorum (CS-73) and explored its antioxidant, anti-cancer and anti-inflammation bioactivities. The PCP was purified using an ÄKTA™ PURE system and predicted to be of 17.3 kDa molecular weight (confirmed as a single band on SDS-PAGE) with an isoelectric point (pI) 5.6. LC-MS/MS and bioinformatic analysis of purified PCP digested with trypsin indicated it was 164 amino acids long with >90% sequence similarity to PCP of SymA3.s6014_g3 (belonging to clade A of Symbiodinium sp.) confirmed with 59 peptide combinations matched across its protein sequence. The spectroscopic properties of purified PCP showed a slight shift in absorption and emission spectra to previously documented analysis in Symbiodinium species possibly due to variation in amino acid sequences that interact with chl a and peridinin. Purified PCP consisted of a 19-amino-acid-long signal peptide at its N terminal and nine helixes in its secondary structure, with several protein binding sites and no DNA/RNA binding site. Furthermore, purified PCP exhibited antioxidant and in vitro anti-inflammation bioactivities, and anti-cancer activities against human metastatic breast adenocarcinoma (MDA-MB-231) and human colorectal (HTC-15) cancer cell lines. Together, all these findings present PCP as a promising candidate for continued investigations for pharmaceutical applications to cure chronic diseases, apart from its existing application as a fluorescent-probe.
Collapse
|
3
|
Khair KU, Farid M, Ashraf U, Zubair M, Rizwan M, Farid S, Ishaq HK, Iftikhar U, Ali S. Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27010-27022. [PMID: 32385815 DOI: 10.1007/s11356-020-08978-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Phytoremediation is considered one of the well-established and sustainable techniques for the removal of heavy metals and metalloids from contaminated sites. The metal extraction ability of the plants can be enhanced by using suitable organic materials in combination with metal-tolerant plants. This experiment was carried out to investigate the phytoextraction potential of Mentha piperita L. for nickel (Ni) with and without citric acid (CA) amendment in hydroponic experiment. The experiment was performed in controlled glass containers with continuous aeration in complete randomized design (CRD). Juvenile M. piperita plants were treated with different concentrations of Ni (100, 250, and 500 μM) alone and/or combined with CA (5 mM). After harvesting the plants, the morpho-physiological and biochemical attributes as well as Ni concentrations in different tissues of M. piperita plants were measured. Results revealed that Ni stress significantly decreased the plant agronomic traits, photosynthesis in comparison to control. Nickel stress enhanced the antioxidant enzymes activities and caused the production of reactive oxygen species (ROS) in M. piperita. The CA treatment under Ni stress significantly improved the plant morpho-physiological and biochemical characteristics when compared with Ni treatments alone. The results demonstrated that CA enhanced the Ni concentrations in roots, stems, and leaves up to 138.2%, 54.2%, and 38%, respectively, compared to Ni-only-treated plants. The improvement in plant growth with CA under Ni stress indicated that CA is beneficial for Ni phytoextraction by using tolerant plant species. Graphical abstract.
Collapse
Affiliation(s)
- Kashaf Ul Khair
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, 54770, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Sheharyaar Farid
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hafiz Khuzama Ishaq
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Usman Iftikhar
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
4
|
Ueba Y, Aratake T, Onodera KI, Higashi Y, Hamada T, Shimizu T, Shimizu S, Yawata T, Nakamura R, Akizawa T, Ueba T, Saito M. Attenuation of zinc-enhanced inflammatory M1 phenotype of microglia by peridinin protects against short-term spatial-memory impairment following cerebral ischemia in mice. Biochem Biophys Res Commun 2018; 507:476-483. [DOI: 10.1016/j.bbrc.2018.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/04/2023]
|
5
|
Haley HMS, Hill AG, Greenwood AI, Woerly EM, Rienstra CM, Burke MD. Peridinin Is an Exceptionally Potent and Membrane-Embedded Inhibitor of Bilayer Lipid Peroxidation. J Am Chem Soc 2018; 140:15227-15240. [PMID: 30388000 PMCID: PMC6452872 DOI: 10.1021/jacs.8b06933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antilipoperoxidant protein dysfunction is associated with many human diseases, suggesting that bilayer lipid peroxidation may contribute broadly to pathogenesis. Small molecule inhibitors of this membrane-localized chemistry could in theory enable better understanding and/or treatment of such diseases, but currently available compounds have important limitations. Many biological questions thus remain unanswered, and clinical trials have largely been disappointing. Enabled by efficient, building block-based syntheses of three atypical carotenoid natural products produced by microorganisms that thrive in environments of extreme oxidative stress, we found that peridinin is a potent inhibitor of nonenzymatic bilayer lipid peroxidation in liposomes and in primary human endothelial cells. We also found that peridinin blocks monocyte-endothelial cell adhesion, a key step in atherogenesis. A series of frontier solid-state NMR experiments with a site-specifically 13C-labeled isotopolog synthesized using the same MIDA boronate building block-based total synthesis approach revealed that peridinin is completely embedded within and physically spans the hydrophobic core of POPC membranes, maximizing its effective molarity at the site of the targeted lipid peroxidation reactions. Alternatively, the widely used carotenoid astaxanthin is significantly less potent and was found to primarily localize extramembranously. Peridinin thus represents a promising and biophysically well-characterized starting point for the development of small molecule antilipoperoxidants that serve as more effective biological probes and/or therapeutics.
Collapse
Affiliation(s)
- Hannah M. S. Haley
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Adam G. Hill
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Alexander I. Greenwood
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Nuclear Magnetic Resonance (NMR) Facility in Applied Science and Physics, William & Mary, Williamsburg, Virginia 23185, United States (A.I.G.)
| | - Eric M. Woerly
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States (E.M.W.)
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana–Champaign, Champaign, Illinois 61821, United States
| |
Collapse
|
6
|
Neto FC, Guaratini T, Costa-Lotufo L, Colepicolo P, Gates PJ, Lopes NP. Re-investigation of the fragmentation of protonated carotenoids by electrospray ionization and nanospray tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1540-1548. [PMID: 27321841 DOI: 10.1002/rcm.7589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). METHODS Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. RESULTS It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. CONCLUSIONS Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fausto Carnevale Neto
- NPPNS, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Thais Guaratini
- NPPNS, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Lychnoflora Pesquisa e Desenvolvimento em Produtos Naturais LTDA, Ribeirão Preto, SP, Brazil
| | - Letícia Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Paul J Gates
- School of Chemistry, University of Bristol, Cantocks Close, Bristol, UK
| | - Norberto Peporine Lopes
- NPPNS, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Sheetal KR, Singh SD, Anand A, Prasad S. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0221-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Rapid assessment of chemical compounds from Phyllogorgia dilatata using Raman spectroscopy. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Di Donato M, Ragnoni E, Lapini A, Foggi P, Hiller RG, Righini R. Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin. J Chem Phys 2015; 142:212409. [DOI: 10.1063/1.4915072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Martins PLG, Marques LG, Colepicolo P. Antioxidant enzymes are induced by phenol in the marine microalga Lingulodinium polyedrum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 116:84-89. [PMID: 25770655 DOI: 10.1016/j.ecoenv.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Knowing the impacts of different anthropogenic activities on ecosystems promotes preservation of aquatic organisms. Aiming to facilitate the identification of polluted or contaminated areas, the study of microalga Lingulodinium polyedrum in phenol-containing medium comprises the determination of toxic and metabolic phenol effects, featuring a possible use of this microorganism as bioindicator for this pollutant. Marine microalga L. polyedrum exposure to phenol increases superoxide dismutase (SOD) and catalase (CAT) activities. The 20% and 50% inhibitory concentrations (IC20 and IC50) of cells exposed to phenol were 40 μmol L(-1) and 120 μmol L(-1), respectively. Phenol biodegradation by L. polyedrum was 0.02 μmol h(-1)cell(-1), and its biotransformation was catalyzed by glutathione S-transferase (GST), phenol hydroxylase and catechol 2,3-dihydroxygenase metabolic pathways. Phenol exposure produced the metabolites 2-hydroxymuconic semialdehyde acid, 1,2-dihydroxybenzene (catechol), and 2-oxo-4-pentenoic acid; also, it induced the activity of key antioxidant biomarker enzymes SOD and CAT by three folds compared to that in the controls. Further, phenol decreased the glutathione/oxidized glutathione ratio (GSH/GSSG), highlighting the effective glutathione oxidation in L. polyedrum. Overall, our results suggest that phenol alters microalga growth conditions and microalgae are sensitive bioindicators to pollution by phenol in marine environments.
Collapse
Affiliation(s)
- P L G Martins
- Laboratório de Bioquímica e Biologia Molecular de Algas. Departamento de Bioquímica-Instituto de Química-Universidade de São Paulo Av. Prof. Lineu Prestes, 748-0970 São Paulo, SP, Brazil; Centro de Capacitação e Pesquisa em Meio Ambiente (CEPEMA-USP), Universidade de São Paulo. Rd. Cônego Domênico Rangoni, km 271, Cubatão, SP, Brazil.
| | - L G Marques
- Laboratório de Bioquímica e Biologia Molecular de Algas. Departamento de Bioquímica-Instituto de Química-Universidade de São Paulo Av. Prof. Lineu Prestes, 748-0970 São Paulo, SP, Brazil
| | - P Colepicolo
- Laboratório de Bioquímica e Biologia Molecular de Algas. Departamento de Bioquímica-Instituto de Química-Universidade de São Paulo Av. Prof. Lineu Prestes, 748-0970 São Paulo, SP, Brazil
| |
Collapse
|
11
|
Mezzetti A, Kish E, Robert B, Spezia R. Assignment of IR bands of isolated and protein-bound Peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Carbonera D, Di Valentin M, Spezia R, Mezzetti A. The unique photophysical properties of the Peridinin-Chlorophyll-α-Protein. Curr Protein Pept Sci 2015; 15:332-50. [PMID: 24678668 PMCID: PMC4030626 DOI: 10.2174/1389203715666140327111139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/22/2022]
Abstract
Peridinin-Chlorophyll-a-Proteins (PCPs) are water-soluble light harvesting complexes from dinoflagellates.
They have unique light-harvesting and energy transfer properties which have been studied in details in the last 15 years.
This review aims to give an overview on all the main aspects of PCPs photophysics, with an emphasis on some aspects
which have not been reviewed in details so far, such as vibrational spectroscopy studies, theoretical calculations, and
magnetic resonance studies. A paragraph on the present development of PCPs towards technological applications is also
included.
Collapse
Affiliation(s)
| | | | | | - Alberto Mezzetti
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
13
|
Maia LF, Ferreira GR, Costa RCC, Lucas NC, Teixeira RI, Fleury BG, Edwards HGM, de Oliveira LFC. Raman Spectroscopic Study of Antioxidant Pigments from Cup Corals Tubastraea spp. J Phys Chem A 2014; 118:3429-37. [DOI: 10.1021/jp501278w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lenize F. Maia
- NEEM
Núcleo de Espectroscopia e Estrutura Molecular, Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-330 Juiz
de Fora, MG, Brazil
| | - Gilson R. Ferreira
- NEEM
Núcleo de Espectroscopia e Estrutura Molecular, Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-330 Juiz
de Fora, MG, Brazil
- Faculdade
de Ciências
Médicas e da Saúde de Juiz de Fora, Hospital Maternidade Therezinha de Jesus - SUPREMA, 36033-003 Juiz de Fora, MG, Brazil
| | - Regina C. C. Costa
- NEEM
Núcleo de Espectroscopia e Estrutura Molecular, Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-330 Juiz
de Fora, MG, Brazil
| | - Nanci C. Lucas
- Instituto
de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Rodolfo I. Teixeira
- Instituto
de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Beatriz G. Fleury
- Departamento
de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, 20559-000 Rio de Janeiro, RJ, Brazil
| | - Howell G. M. Edwards
- Centre
for Astrobiology and Extremophile Research, School of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Luiz F. C. de Oliveira
- NEEM
Núcleo de Espectroscopia e Estrutura Molecular, Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-330 Juiz
de Fora, MG, Brazil
| |
Collapse
|
14
|
Madden KS, Mosa FA, Whiting A. Non-isoprenoid polyene natural products – structures and synthetic strategies. Org Biomol Chem 2014; 12:7877-99. [DOI: 10.1039/c4ob01337a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Bovi D, Mezzetti A, Vuilleumier R, Gaigeot MP, Chazallon B, Spezia R, Guidoni L. Environmental effects on vibrational properties of carotenoids: experiments and calculations on peridinin. Phys Chem Chem Phys 2011; 13:20954-64. [PMID: 21946923 DOI: 10.1039/c1cp21985e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carotenoids are employed in light-harvesting complexes of dinoflagellates with the two-fold aim to extend the spectral range of the antenna and to protect it from radiation damage. We have studied the effect of the environment on the vibrational properties of the carotenoid peridinin in different solvents by means of vibrational spectroscopies and QM/MM molecular dynamics simulations. Three prototypical solvents were considered: cyclohexane (an apolar/aprotic solvent), deuterated acetonitrile (a polar/aprotic solvent) and methanol (a polar/protic solvent). Thanks to effective normal mode analysis, we were able to assign the experimental Raman and IR bands and to clarify the effect of the solvent on band shifts. In the 1500-1650 cm(-1) region, seven vibrational modes of the polyene chain were identified and assigned to specific molecular vibrations. In the 1700-1800 cm(-1) region a strong progressive down-shift of the lactonic carbonyl frequency is observed passing from cyclohexane to methanol solutions. This has been rationalized here in terms of solvent polarity and solute-solvent hydrogen bond interactions. On the basis of our data we propose a classification of non-equivalent peridinins in the Peridinin-Chlorophyll-Proteins, light-harvesting complexes of dinoflagellates.
Collapse
Affiliation(s)
- Daniele Bovi
- Dipartimento di Fisica, Università di Roma LA SAPIENZA, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Shaker K, Müller M, Ghani M, Dahse HM, Seifert K. Terpenes from the Soft Corals Litophyton arboreum and Sarcophyton ehrenbergi. Chem Biodivers 2010; 7:2007-15. [DOI: 10.1002/cbdv.201000016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Woerly EM, Cherney AH, Davis EK, Burke MD. Stereoretentive Suzuki-Miyaura coupling of haloallenes enables fully stereocontrolled access to (-)-peridinin. J Am Chem Soc 2010; 132:6941-3. [PMID: 20441218 DOI: 10.1021/ja102721p] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stimulated by the substantial challenge of synthesizing the complex and sensitive stereogenic allene-containing core of (-)-peridinin, the first stereocontrolled coupling of haloallenes with boronic acids has been achieved. This new method and the principles that emerged during its development stand to enable the more efficient and flexible preparation of a wide range of natural products, pharmaceuticals, and intermediates that possess a stereogenic allene motif. This new reaction was harnessed to achieve the first completely stereocontrolled total synthesis of (-)-peridinin. This synthesis was accomplished using only one reaction iteratively to assemble four fully functionalized building blocks with complete stereoretention at each initial halide or boron-bearing carbon. This synthesis elevates the capacity of the iterative cross-coupling strategy to an unprecedented benchmark. Moreover, the efficient and highly modular nature of this synthesis promises to enable systematic dissection of the heretofore enigmatic structure/function relationships that underlie the protein-like antilipoperoxidant activities of this remarkable small molecule natural product.
Collapse
Affiliation(s)
- Eric M Woerly
- Howard Hughes Medical Institute, Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
18
|
Sugawara T, Yamashita K, Asai A, Nagao A, Shiraishi T, Imai I, Hirata T. Esterification of xanthophylls by human intestinal Caco-2 cells. Arch Biochem Biophys 2009; 483:205-12. [DOI: 10.1016/j.abb.2008.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 11/26/2022]
|
19
|
Van Tassle AJ, Prantil MA, Hiller RG, Fleming GR. Excited State Structural Dynamics of the Charge Transfer State of Peridinin. Isr J Chem 2007. [DOI: 10.1560/ijc.47.1.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog Lipid Res 2007; 46:328-75. [PMID: 17765976 DOI: 10.1016/j.plipres.2007.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/13/2007] [Accepted: 07/02/2007] [Indexed: 12/01/2022]
Abstract
Nowadays, about 200 natural allenic metabolites, more than 2700 synthetic allenic compounds, and about 1300 cumulenic structures are known. The present review describes research on natural as well as some biological active allenic and cumulenic lipids and related compounds isolated from different sources. Intensive searches for new classes of pharmacologically potent agents produced by living organisms have resulted in the discovery of dozens of such compounds possessing high anticancer, cytotoxic, antibacterial, antiviral, and other activities. Known allenic and cumulenic compounds can be subdivided on several structural classes: fatty acids, hydrocarbons, terpenes, steroids, carotenoids, marine bromoallenes, peptides, aromatic, cumulenic, and miscellaneous compounds. This review emphasizes the role of natural and synthetic allenic and cumulenic lipids and other related compounds as an important source of leads for drug discovery.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, Hebrew University, Jerusalem 91120, Israel.
| | | |
Collapse
|
21
|
Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:60-78. [PMID: 16901759 DOI: 10.1016/j.cbpc.2006.05.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/24/2006] [Accepted: 05/02/2006] [Indexed: 11/18/2022]
Abstract
In order to survive in a highly competitive environment, freshwater or marine algae have to develop defense strategies that result in a tremendous diversity of compounds from different metabolic pathways. Recent trends in drug research from natural sources have shown that algae are promising organisms to furnish novel biochemically active compounds. The current review describes the main substances biosynthesized by algae with potential economic impact in food science, pharmaceutical industry and public health. Emphasis is given to fatty acids, steroids, carotenoids, polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyketides and toxins.
Collapse
Affiliation(s)
- Karina H M Cardozo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Thais Guaratini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Marcelo P Barros
- Centro de Ciências Biológicas e da Saúde, Universidade Cruzeiro do Sul, CEP 08060-070, São Paulo, SP, Brazil
| | - Vanessa R Falcão
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Angela P Tonon
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Norberto P Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Sara Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Moacir A Torres
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Anderson O Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, PO Box 26077, CEP 05599-970, São Paulo, SP, Brazil.
| | - Ernani Pinto
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Guaratini T, Gates PJ, Pinto E, Colepicolo P, Lopes NP. Differential ionisation of natural antioxidant polyenes in electrospray and nanospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3842-3848. [PMID: 17979109 DOI: 10.1002/rcm.3286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Carotenoids are natural products with high economic relevance for the pharmaceutical industries and are a common subject for biochemical research. Reported here is a comparative study of the ionisation of carotenoids by electrospray mass spectrometry (ESI-MS) and nanospray mass spectrometry (nanoESI-MS). The results demonstrate that, along with solvent choice, the influence of the different ionisation processes of ESI and nanoESI are fundamental in determining how ionisation is achieved and which ions (molecular ion or protonated molecule) are observed in MS. The increased understanding afforded by this study will help in the development of unequivocal microanalytical methods for carotenoids and related antioxidant polyenes.
Collapse
Affiliation(s)
- Thais Guaratini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av Professor Lineu Prestes, 748 CP 20780, CEP 05508900, São Paulo-SP, Brazil
| | | | | | | | | |
Collapse
|
23
|
Guaratini T, Lopes NP, Pinto E, Colepicolo P, Gates PJ. Mechanism for the elimination of aromatic molecules from polyenes in tandem mass spectrometry. Chem Commun (Camb) 2006:4110-2. [PMID: 17024265 DOI: 10.1039/b609672g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a general mechanism for the elimination of aromatic molecules from polyene containing natural products of several compound classes in tandem mass spectrometry.
Collapse
Affiliation(s)
- Thais Guaratini
- School of Chemistry, University of Bristol, Cantock's Close, UK
| | | | | | | | | |
Collapse
|
24
|
Guaratini T, Vessecchi R, Pinto E, Colepicolo P, Lopes NP. Balance of xanthophylls molecular and protonated molecular ions in electrospray ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:963-8. [PMID: 15934042 DOI: 10.1002/jms.874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This paper reports the chemical evidence of the balance between radical molecular ions and protonatedmolecules of xanthophylls (an oxygen-containing carotenoid) with a conjugated pi-system (polyene) and oxygen as a heteroatom in ESI and HRESI mass spectrometry. The ionization energy of neutral xanthophylls was calculated by semi-empirical methods. The results were compared with those previously published for carotenoids and retinoids, which have also been shown in ESI-MS to form M(+*) and [M + H](+), respectively. This study demonstrates, for the first time, the correlation of an extended conjugation and the presence of oxygen in the formation and balance of M(+*) or [M + H](+) for the carotenoids, neoxanthin, lutein, violaxanthin and zeaxanthin.
Collapse
Affiliation(s)
- Thais Guaratini
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, Av Professor Lineu Prestes, 748 CP 20780, CEP 05508900, São Paulo-SP, Brazil
| | | | | | | | | |
Collapse
|
25
|
Barros MP, Pinto E, Sigaud-Kutner TCS, Cardozo KHM, Colepicolo P. Rhythmicity and oxidative/nitrosative stress in algae. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028666] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Bittencourt-Oliveira MDC, Kujbida P, Cardozo KHM, Carvalho VM, Moura ADN, Colepicolo P, Pinto E. A novel rhythm of microcystin biosynthesis is described in the cyanobacterium Microcystis panniformis Komárek et al. Biochem Biophys Res Commun 2005; 326:687-94. [PMID: 15596154 DOI: 10.1016/j.bbrc.2004.11.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Indexed: 11/16/2022]
Abstract
The presence of microcystins (MCY) in the cyanobacteria Microcystis panniformis Komárek et al. is reported for the first time. This strain of cyanobacterium has been isolated from Barra Bonita, an eutrophicated water reservoir in São Paulo state, Brazil. The identification of M. panniformis was confirmed by both traditional morphological analysis and the phycocyanin intergenic spacer sequences. MCY-LR and [Asp(3)]-MCY-LR were identified in this strain after HPLC purification and extensive ESI-MS/MS analysis. Their levels in this strain were determined by HPLC and ranged from 0.25 to 2.75 and 0.08 to 0.75 fmol/cell, respectively. Analyzing the levels of MCY-LR and [Asp(3)]-MCY-LR in different times during the light:dark (L:D) cycle, it was found that levels of MCYs per cell were at least threefold as high during the day-phase than during the night-phase. This may be associated to the biological clock since prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a timing mechanism that is independent of the cell division cycle. Our findings also showed the same pattern under light:light (L:L) cycle.
Collapse
|
27
|
Mao L, Wang Y, Hu X. π−π Stacking Interactions in the Peridinin−Chlorophyll−Protein ofAmphidiniumcarterae. J Phys Chem B 2003. [DOI: 10.1021/jp0276496] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Sigaud-Kutner TCS, Pinto E, Okamoto OK, Latorre LR, Colepicolo P. Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. PHYSIOLOGIA PLANTARUM 2002; 114:566-571. [PMID: 11975730 DOI: 10.1034/j.1399-3054.2002.1140409.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ability of phytoplankton to cope with oxidative stress is one of the main factors that influence its survival in the marine environment, when senescence conditions prevail. In a first attempt to investigate the antioxidant strategies of different phytoplanktonic groups face to oxidative stress, the superoxide dismutase (SOD; EC 1.15.1.1) activity and photosynthetic pigment content along the growth curves of the dinoflagellate Lingulodinium polyedrum (Stein) Dodge, the prasinophycean Tetraselmis gracilis (Kylin) Butcher and the diatom Minutocellus polymorphus (Hargraves and Guillard) Hasle, von Stosch and Syvertsen were evaluated in batch-cultures. Total SOD activity was determined by an indirect method involving the inhibition of cytochrome c reduction. The contents of photosynthetic pigments were analysed by HPLC using a reverse phase column (RP-18), based on a ternary gradient. A peak of total SOD activity was detected at the beginning of the T. gracilis and M. polymorphus exponential growth. In L. polyedrum and M. polymorphus, SOD activity increased approximately three times by day 17 of growth, compared to the values obtained on day 3 (exponential phase) of the growth curve. All three species of microalgae had reduced SOD activity at the end of their growth. The levels of peridinin in L. polyedrum increased about 60% by day 17 of growth compared to the values obtained at exponential phase. Tetraselmis gracilis exhibited a remarkable increase (approximately 85%) in beta-carotene concentration after 10-14 days of growth whereas the beta-carotene levels in M. polymorphus decreased about 85% along its growth curve. These findings suggest that the antioxidant response during senescence in batch-cultures differ according to the species. Induction of SOD activity may occur either in the early exponential or stationary growth phases, which is important to prevent oxidative stress triggered by a number of factors that affects growth, such as nutrient and light availability.
Collapse
Affiliation(s)
- T. C. S Sigaud-Kutner
- aDepartamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, 05513-970 São Paulo, SP, Brazil bDepartment of Molecular and Cellular Biology, Harvard University, Cambridge 02138, MA, USA
| | | | | | | | | |
Collapse
|
29
|
Barros MP, Pinto E, Colepicolo P, Pedersén M. Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun 2001; 288:225-32. [PMID: 11594777 DOI: 10.1006/bbrc.2001.5765] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astaxanthin and peridinin, two typical carotenoids of marine microalgae, and lycopene were incorporated in phosphatidylcholine multilamellar liposomes and tested as inhibitors of lipid oxidation. Contrarily to peridinin results, astaxanthin strongly reduced lipid damage when the lipoperoxidation promoters-H(2)O(2), tert-butyl hydroperoxide (t-ButOOH) or ascorbate-and Fe(2+):EDTA were added simultaneously to the liposomes. In order to check if the antioxidant activity of carotenoids was also related to their effect on membrane permeability, the peroxidation processes were initiated by adding the promoters to Fe(2+)-loaded liposomes (encapsulated in the inner aqueous solution). Despite that the rigidifying effect of carotenoids in membranes was not directly measured here, peridinin probably has decreased membrane permeability to initiators (t-ButOOH > ascorbate > H(2)O(2)) since its incorporation limited oxidative damage on iron-liposomes. On the other hand, the antioxidant activity of astaxanthin in iron-containing vesicles might be derived from its known rigidifying effect and the inherent scavenging ability.
Collapse
Affiliation(s)
- M P Barros
- Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|