1
|
Wrońska AK, Boguś MI, Włóka E, Kazek M, Kaczmarek A, Zalewska K. Cuticular fatty acids of Galleria mellonella (Lepidoptera) inhibit fungal enzymatic activities of pathogenic Conidiobolus coronatus. PLoS One 2018. [PMID: 29518079 PMCID: PMC5843172 DOI: 10.1371/journal.pone.0192715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The entomopathogenic fungus Conidiobolus coronatus produces enzymes that may hydrolyze the cuticle of Galleria mellonella. Of these enzymes, elastase activity was the highest: this figure being 24 times higher than NAGase activity 553 times higher than chitinase activity and 1844 times higher than lipase activity. The present work examines the differences in the hydrolysis of cuticles taken from larvae, pupae and adults (thorax and wings), by C. coronatus enzymes. The cuticles of the larvae and adult thorax were the most susceptible to digestion by proteases and lipases. Moreover, the maximum concentration of free N-glucosamine was in the hydrolysis of G. mellonella thorax. These differences in the digestion of the various types of cuticle may result from differences in their composition. GC-MS analysis of the cuticular fatty acids isolated from pupae of G. mellonella confirmed the presence of C 8:0, C 9:0, C 12:0, C 14:0, C 15:0, C 16:1, C 16:0, C 17:0, C 18:1, C 18:0, with C 16:0 and C 18:0 being present in the highest concentrations. Additional fatty acids were found in extracts from G. mellonella imagines: C 10:0, C 13:0, C 20:0 and C 20:1, with a considerable dominance of C 16:0 and C 18:1. In larvae, C 16:0 and C 18:1 predominated. Statistically significant differences in concentration (p≤0.05) were found between the larvae, pupae and imago for each fatty acid. The qualitative and quantitative differences in the fatty acid composition of G. mellonella cuticle occurring throughout normal development might be responsible for the varied efficiency of fungal enzymes in degrading larval, pupal and adult cuticles.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
- * E-mail:
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Emilia Włóka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
| | - Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
| | | |
Collapse
|
2
|
Boguś MI, Wieloch W, Ligęza-Żuber M. Coronatin-2 from the entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella larvae and incapacitates hemocytes. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:66-76. [PMID: 27444104 DOI: 10.1017/s0007485316000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coronatin-2, a 14.5 kDa protein, was isolated from culture filtrates of the entomopathogenic fungus Conidiobolus coronatus (Costantin) Batko (Entomophthoramycota: Entomophthorales). After LC-MS/MS (liquid chromatography tandem mass spectrometry) analysis of the tryptic peptide digest of coronatin-2 and a mass spectra database search no orthologs of this protein could be found in fungi. The highest homology was observed to the partial translation elongation factor 1a from Sphaerosporium equinum (protein sequence coverage, 21%), with only one peptide sequence, suggesting that coronatin-2 is a novel fungal protein that has not yet been described. In contrast to coronatin-1, an insecticidal 36 kDa protein, which shows both elastolytic and chitinolytic activity, coronatin-2 showed no enzymatic activity. Addition of coronatin-2 into cultures of hemocytes taken from larvae of Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), resulted in progressive disintegration of nets formed by granulocytes and plasmatocytes due to rapid degranulation of granulocytes, extensive vacuolization of plasmatocytes accompanied by cytoplasm expulsion, and cell disintegration. Spherulocytes remained intact, while oenocytes rapidly disintegrated. Coronatin-2 produced 80% mortality when injected into G. mellonella at 5 µg larva-1. Further study is warranted to determine the relevance of the acute toxicity of coronatin-2 and its effects on hemocytes in vitro to virulence of C. coronatus against its hosts.
Collapse
Affiliation(s)
- M I Boguś
- W. Stefański Institute of Parasitology,Polish Academy of Sciences,Twarda 51/55,00-818 Warszawa,Poland
| | - W Wieloch
- W. Stefański Institute of Parasitology,Polish Academy of Sciences,Twarda 51/55,00-818 Warszawa,Poland
| | - M Ligęza-Żuber
- W. Stefański Institute of Parasitology,Polish Academy of Sciences,Twarda 51/55,00-818 Warszawa,Poland
| |
Collapse
|
3
|
Wu KH, Hsieh YH, Tai PC. Mutational analysis of Cvab, an ABC transporter involved in the secretion of active colicin V. PLoS One 2012; 7:e35382. [PMID: 22539970 PMCID: PMC3335142 DOI: 10.1371/journal.pone.0035382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/16/2012] [Indexed: 11/28/2022] Open
Abstract
CvaB is the central membrane transporter of the colicin V secretion system that belongs to an ATP-binding cassette superfamily. Previous data showed that the N-terminal and C-terminal domains of CvaB are essential for the function of CvaB. N-terminal domain of CvaB possesses Ca2+-dependent cysteine proteolytic activity, and two critical residues, Cys32 and His105, have been identified. In this study, we also identify Asp121 as being the third residue of the putative catalytic triad within the active site of the enzyme. The Asp121 mutants lose both their colicin V secretion activity and N-terminal proteolytic activity. The adjacent residue Pro122 also appears to play a critical role in the colicin V secretion. However, the reversal of the two residues D121P - P122D results in loss of activity. Based on molecular modeling and protein sequence alignment, several residues adjacent to the critical residues, Cys32 and His105, were also examined and characterized. Site-directed mutagenesis of Trp101, Asp102, Val108, Leu76, Gly77, and Gln26 indicate that the neighboring residues around the catalytic triad affect colicin V secretion. Several mutated CvaB proteins with defective secretion were also tested, including Asp121 and Pro122, and were found to be structurally stable. These results indicate that the residues surrounding the identified catalytic triad are functionally involved in the secretion of biologically active colicin V.
Collapse
Affiliation(s)
- Kai-Hui Wu
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Phang C. Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wieloch W, Boguś MI, Ligęza M, Koszela-Piotrowska I, Szewczyk A. Coronatin-1 isolated from entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella hemocytes in vitro and forms potassium channels in planar lipid membrane. Toxicon 2011; 58:369-79. [PMID: 21798278 DOI: 10.1016/j.toxicon.2011.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Entomopathogenic fungi are important natural regulatory factors of insect populations and have potential as biological control agents of insect pests. The cosmopolitan soil fungus Conidiobolus coronatus (Entomopthorales) easily attacks Galleria mellonella (Lepidoptera) larvae. Prompt death of invaded insects is attributed to the action of toxic metabolites released by the invader. Effect of fungal metabolites on hemocytes, insect blood cells involved in innate defense response, remains underexplored to date. C. coronatus isolate 3491 inducing 100% mortality of G. mellonella last instar larvae exposed to sporulating colonies, was cultivated at 20 °C in minimal medium. Post-incubation filtrates were used as a source of fungal metabolites. A two-step HPLC (1 step: Shodex KW-803 column eluted with 50 mM KH(2)PO(4) supplemented with 0.1 M KCl, pH 6.5; 2 step: ProteinPak™ CM 8HR column equilibrated with 5 mM KH(2)PO(4), pH 6.5, proteins eluted with a linear gradient of 0.5 M KCl) allowed the isolation of coronatin-1, an insecticidal 36 kDa protein showing both elastolytic and chitinolytic activities. Addition of coronatin-1 into primary in vitro cultures of G. mellonella hemocytes resulted in rapid disintegration of spherulocytes freely floating in culture medium and shrinkage of plasmatocytes adhering to the bottom of culture well. Coronatin-1 stimulated pseudopodia atrophy and, in consequence, disintegration of nets formed by cultured hemocytes. After incorporation of coronatin-1 into planar lipid membrane (PLM) ion channels selective for K(+) ions in 50/450 mM KCl solutions were observed. Potassium current flows were recorded in nearly 70% of experiments with conductance from 300 pS up to 1 nS. All observed channels were active at both positive and negative membrane potentials. Under experimental conditions incorporated coronatin-1 exhibited a zero current potential (E(rev)) of 47.7 mV, which indicates K(+)-selectivity of this protein. The success of the purification of coronatin-1 will allow further characterization of the mode of action of this molecule, including ability of coronatin-1 to form potassium channels in immunocompetent hemocytes.
Collapse
Affiliation(s)
- Wioletta Wieloch
- Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | | | | | | | | |
Collapse
|
5
|
Boguś MI, Czygier M, Gołębiowski M, Kędra E, Kucińska J, Mazgajska J, Samborski J, Wieloch W, Włóka E. Effects of insect cuticular fatty acids on in vitro growth and pathogenicity of the entomopathogenic fungus Conidiobolus coronatus. Exp Parasitol 2010; 125:400-8. [DOI: 10.1016/j.exppara.2010.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 03/25/2010] [Accepted: 04/06/2010] [Indexed: 11/30/2022]
|
6
|
Silva TC, De Paula Moura S, Ramos HR, De Araujo PS, Bueno Da Costa MH. Design of a Modern Liposome and Bee Venom Formulation for the Traditional VIT-Venom Immunotherapy. J Liposome Res 2008; 18:353-68. [DOI: 10.1080/08982100802518046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tatiana C. Silva
- Laboratório de Microesferas e Lipossomas
- Departamento de Medicina, Disciplina de Clínica Médica-UNIFESP, São Paulo, Brasil
| | | | - Henrique R. Ramos
- Laboratório de Biotecnologia Molecular, (Centro de Biotecnologia), Instituto Butantan, São Paulo, Brasil
- Departamento de Bioquímica-Instituto de Química-USP, São Paulo, Brasil
| | | | | |
Collapse
|
7
|
Boguś MI, Kedra E, Bania J, Szczepanik M, Czygier M, Jabłoński P, Pasztaleniec A, Samborski J, Mazgajska J, Polanowski A. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:909-22. [PMID: 17512001 DOI: 10.1016/j.jinsphys.2007.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 05/15/2023]
Abstract
The resistance of Galleria mellonella, Dendrolimus pini, and Calliphora vicina larvae against infection by the enthomopathogen Conidiobolus coronatus was shown to vary among the studied species. Exposure of both G. mellonella and D. pini larvae to the fungus resulted in rapid insect death, while all the C. vicina larvae remained unharmed. Microscopic studies revealed diverse responses of the three species to the fungal pathogen: (1) the body cavities of D. pini larvae were completely overgrown by fungal hyphae, with no signs of hemocyte response, (2) infected G. mellonella larvae formed melanotic capsules surrounding the fungal pathogen, and (3) the conidia of C. coronatus did not germinate on the cuticle of C. vicina larvae. The in vitro study on the degradation of the insect cuticle by proteases secreted by C. coronatus revealed that the G. mellonella cuticle degraded at the highest rate. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. Of all the tested species, only plasmatocytes exhibited phagocytic potential. Exposure to the fungal pathogen resulted in elevated phagocytic activity, found to be the highest in the infected G. mellonella. The incubation of insect hemolymph with fungal conidia and hyphae revealed diverse reactions of hemocytes of the studied insect species. The encapsulation potential of D. pini hemocytes was low. Hemocytes of G. mellonella showed a high ability to attach and encapsulate fungal structures. Incubation of C. vicina hemolymph with C. coronatus did not result in any hemocytic response. Phenoloxidase (PO) activity was found to be highest in D. pini hemolymph, moderate in G. mellonella, and lowest in the hemolymph of C. vicina. Fungal infection resulted in a significant decrease of PO activity in G. mellonela larvae, while that in the larvae of D. pini remained unchanged. PO activity in C. vicina exposed to fungus slightly increased. The lysozyme-like activity increased in the plasma of all three insect species after contact with the fungal pathogen. Anti E. coli activity was detected neither in control nor in infected D. pini larvae. No detectable anti E. coli activity was found in the control larvae of G. mellonella; however, its exposure to C. coronatus resulted in an increase in the activity to detectable level. In the case of C. vicina exposure to the fungus, the anti E. coli activity was significantly higher than in control larvae. The defense mechanisms of D. pini (species of economic importance in Europe) are presented for the first time.
Collapse
Affiliation(s)
- M I Boguś
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warszawa, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bania J, Samborski J, Bogus M, Polanowski A. Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:186-96. [PMID: 16933280 DOI: 10.1002/arch.20134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The relatively little-investigated entomopathogen Conidiobolus coronatus secretes several proteinases into culture broth. Using a combination of ion-exchange and size-exclusion chromatography, we purified to homogeneity a serine proteinase of Mr 30,000-32,000, as ascertained by SDS-PAGE. The purified enzyme showed subtilisin-like activity. It very effectively hydrolyzed N-Suc-Ala(2)-Pro-Phe-pNa with a Km-1.36 x 10(-4) M and Kcat-24 s(-1), and N-Suc-Ala(2)-Pro-Leu-pNa with Km-6.65 x 10(-4) M and Kcat-11 s(-1). The specificity index k(cat)/K(m) for the tested substrates was calculated to be 176,340 s(-1) M(-1) and 17,030 s(-1) M(-1), respectively. Using oxidized insulin B chain as a substrate, the purified proteinase exhibited specificity to aromatic and hydrophobic amino-acid residues, such as Phe, Leu, and Gly at the P1 position, splitting primarily the peptide bonds: Phe(1)-Val(2), Leu(15)-Tyr(16), and Gly(23)-Phe(24). The proteinase appeared to be sensitive to the specific synthetic inhibitors of the serine proteinases DFP (diisopropyl flourophosphate) and PMSF (phenyl-methylsulfonyl fluoride) as well as to some naturally occurring protein inhibitors of chymotrypsin. It is worth noting that the enzyme exhibited the highest sensitivity to inhibition by AMCI-1 (with an association constant of 3 x 10(10) M(-1)), an inhibitor of cathepsin G/chymotrypsin from the larval hemolymph of Apis mellifera, reinforcing the possibility of involvement of inhibitors from hemolymph in insect innate immunity. The substrate specificity and proteinase inhibitor effects indicate that the purified proteinase from the fermentation broth of Conidiobolus coronatus is a subtilisin-like serine proteinase.
Collapse
Affiliation(s)
- Jacek Bania
- Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Agricultural University of Wroclaw, Wroclaw, Poland.
| | | | | | | |
Collapse
|
9
|
Pandhare J, Deshpande V. Both chaperone and isomerase functions of protein disulfide isomerase are essential for acceleration of the oxidative refolding and reactivation of dimeric alkaline protease inhibitor. Protein Sci 2004; 13:2493-501. [PMID: 15295108 PMCID: PMC2280025 DOI: 10.1110/ps.03552004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oxidative refolding of the dimeric alkaline protease inhibitor (API) from Streptomyces sp. NCIM 5127 has been investigated. We demonstrate here that both isomerase and chaperone functions of the protein folding catalyst, protein disulfide isomerase (PDI), are essential for efficient refolding of denatured-reduced API (dr-API). Although the role of PDI as an isomerase and a chaperone has been reported for a few monomeric proteins, its role as a foldase in refolding of oligomeric proteins has not been demonstrated hitherto. Spontaneous refolding and reactivation of dr-API in redox buffer resulted in 45% to 50% reactivation. At concentrations <0.25 microM, reactivation rates and yields of dr-API are accelerated by catalytic amounts of PDI through its isomerase activity, which promotes disulfide bond formation and rearrangement. dr-API is susceptible to aggregation at concentrations >25 microM, and a large molar excess of PDI is required to enhance reactivation yields. PDI functions as a chaperone by suppressing aggregation and maintains the partially unfolded monomers in a folding-competent state, thereby assisting dimerization. Simultaneously, isomerase function of PDI brings about regeneration of native disulfides. 5-Iodoacetamidofluorescein-labeled PDI devoid of isomerase activity failed to enhance the reactivation of dr-API despite its intact chaperone activity. Our results on the requirement of a stoichiometric excess of PDI and of presence of PDI in redox buffer right from the initiation of refolding corroborate that both the functions of PDI are essential for efficient reassociation, refolding, and reactivation of dr-API.
Collapse
Affiliation(s)
- Jui Pandhare
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | |
Collapse
|
10
|
Pandhare J, Dash C, Rao M, Deshpande V. Slow Tight Binding Inhibition of Proteinase K by a Proteinaceous Inhibitor. J Biol Chem 2003; 278:48735-44. [PMID: 14507912 DOI: 10.1074/jbc.m308976200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of slow onset inhibition of Proteinase K by a proteinaceous alkaline protease inhibitor (API) from a Streptomyces sp. is presented. The kinetic analysis revealed competitive inhibition of Proteinase K by API with an IC50 value 5.5 +/- 0.5 x 10-5 m. The progress curves were time-dependent, consistent with a two-step slow tight binding inhibition. The first step involved a rapid equilibrium for formation of reversible enzyme-inhibitor complex (EI) with a Ki value 5.2 +/- 0.6 x 10-6 m. The EI complex isomerized to a stable complex (EI*) in the second step because of inhibitor-induced conformational changes, with a rate constant k5 (9.2 +/- 1 x 10-3 s-1). The rate of dissociation of EI* (k6) was slower (4.5 +/- 0.5 x 10-5 s-1) indicating the tight binding nature of the inhibitor. The overall inhibition constant Ki* for two-step inhibition of Proteinase K by API was 2.5 +/- 0.3 x 10-7 m. Time-dependent dissociation of EI* revealed that the complex failed to dissociate after a time point and formed a conformationally altered, irreversible complex EI**. These conformational states of enzyme-inhibitor complexes were characterized by fluorescence spectroscopy. Tryptophanyl fluorescence of Proteinase K was quenched as a function of API concentration without any shift in the emission maximum indicating a subtle conformational change in the enzyme, which is correlated to the isomerization of EI to EI*. Time-dependent shift in the emission maxima of EI* revealed the induction of gross conformational changes, which can be correlated to the irreversible conformationally locked EI** complex. API binds to the active site of the enzyme as demonstrated by the abolished fluorescence of 5-iodoacetamidofluorescein-labeled Proteinase K. The chemoaffinity labeling experiments lead us to hypothesize that the inactivation of Proteinase K is because of the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the catalytic triad and other residues involved in catalysis.
Collapse
Affiliation(s)
- Jui Pandhare
- Division of Biochemical Sciences, National Chemical Laboratory, Pune-411 008, India
| | | | | | | |
Collapse
|
11
|
Pandhare J, Zog K, Deshpande VV. Differential stabilities of alkaline protease inhibitors from actinomycetes: effect of various additives on thermostability. BIORESOURCE TECHNOLOGY 2002; 84:165-169. [PMID: 12139333 DOI: 10.1016/s0960-8524(02)00025-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exploiting the vast diversity of soil samples, we have isolated three actinomycetes strains producing alkaline protease inhibitors API-I (242 U/ml). API-II (116 U/ml) and API-III (186 U/ml). The inhibitors exhibited different properties in their molecular nature and in their pH and temperature stabilities. API-I and API-II were high molecular weight (> 10 kD) proteinaceous inhibitors whereas API-III was a low molecular weight inhibitor (< 10 kD). API-I and API-II exhibited stability over a pH range of 5-12 whereas API-III displayed a wide pH stability from 2-12. API-I was stable at 60 degrees C with a half-life of 2 h but API-II showed a half-life of 1 h at 45 degrees C. API-III exhibited the least thermal stability with complete loss of activity at 37 degrees C after 1 h. The stability of API-I, II and III at 65, 55 and 45 degrees C, respectively, was enhanced by the addition of various additives. Glycine (I M) offered complete protection to the three APIs. Polyethylene glycol 8000 (10 mM) prevented the thermoinactivation of API-I. In the presence of glycerol and sorbitol (10%) increase in stability by 40 60% of API-I and API-II was obtained. API-I offered enhanced stability to the target alkaline protease at 50 degrees C by forming a reversible enzyme-inhibitor complex.
Collapse
Affiliation(s)
- Jui Pandhare
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
12
|
Tanksale A, Ghatge M, Deshpande V. Alpha-crystallin binds to the aggregation-prone molten-globule state of alkaline protease: implications for preventing irreversible thermal denaturation. Protein Sci 2002; 11:1720-8. [PMID: 12070325 PMCID: PMC2384148 DOI: 10.1110/ps.0201802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 04/03/2002] [Accepted: 04/16/2002] [Indexed: 10/14/2022]
Abstract
Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.0 ("U" state) through a partially unfolded "I" state at pH 3.5 that undergoes transition to a molten globule-(MG) like "I(A)" state in the presence of 0.5 M sodium sulfate. The thermally-stressed I(A) state showed complete loss of structure and was prone to aggregation. Alpha-crystallin was able to bind to this state and suppress its aggregation, thereby preventing irreversible denaturation of the enzyme. The alpha-crystallin-bound I(A) state exhibited native-like secondary and tertiary structure showing the interaction of alpha-crystallin with the MG state of the protease. 8-Anilinonaphthalene sulphonate (ANS) binding studies revealed the involvement of hydrophobic interactions in the formation of the complex of alpha-crystallin and protease. Refolding of acid-denatured protease by dilution to pH 7.5 resulted in aggregation of the protein. Unfolding of the protease in the presence of alpha-crystallin and its subsequent refolding resulted in the generation of a near-native intermediate with partial secondary and tertiary structure. Our studies represent the first report of involvement of a molecular chaperone-like alpha-crystallin in the unfolding and refolding of a protease. Alpha-crystallin blocks the unfavorable pathways that lead to irreversible denaturation of the alkaline protease and keeps it in a near-native, folding-competent intermediate state.
Collapse
Affiliation(s)
- Aparna Tanksale
- Levine Science Research Center, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
13
|
Vernekar JV, Tanksale AM, Ghatge MS, Deshpande VV. Novel bifunctional alkaline protease inhibitor: protease inhibitory activity as the biochemical basis of antifungal activity. Biochem Biophys Res Commun 2001; 285:1018-24. [PMID: 11467854 DOI: 10.1006/bbrc.2001.5257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An alkaline protease inhibitor (API) from a Streptomyces sp. NCIM 5127 was shown to possess antifungal activity against several phytopathogenic fungi besides its antiproteolytic (anti-feedent) activity [J. V. Vernekar et al. (1999) Biochem. Biophys. Res. Commun. 262, 702-707]. Based on the correlation between antiproteolytic and antifungal activities in several tests such as copurification, heat inactivation, chemical modification, and its binding interaction with the fungal protease, we demonstrate, for the first time, that the dual function of API is a consequence of its ability to inhibit the essential alkaline protease. The parallel enrichment of both the functions during purification together with the heat inactivation of API leading to the concomitant loss of the two activities suggested their presence on a single molecule. Chemical modification of API with NBS resulted in the complete loss of antiproteolytic and antifungal activities, with no gross change in conformation implying the involvement of a Trp residue in the active site of the inhibitor and the presence of a single active site for the two activities. Treatment of API with DTT abolished both the activities although the native structure of API remained virtually unaffected, indicating the catalytic role of the disulfide bonds. Inactivation of API either by active site modification or by conformational changes leads to the concurrent loss of both the antiproteolytic and antifungal activities. Experimental evidences presented here serve to implicate that the antifungal activity of API is a consequence of its protease inhibitory activity.
Collapse
Affiliation(s)
- J V Vernekar
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
| | | | | | | |
Collapse
|