1
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
2
|
WANG Y, ZHAO K, LI L, SONG X, HE Y, DING N, LI L, WANG S, LIU Z. A review of the immune activity of chitooligosaccharides. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.97822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Li LI
- Chenland Nutritionals, United States
| | - Xuena SONG
- Qingdao Chenland Health Industry Group Co, China
| | - Yao HE
- Nanchang University, China
| | | | - Lijie LI
- Qingdao Engineering Vocational College, China
| | | | - Zimin LIU
- Chenland Nutritionals, United States
| |
Collapse
|
3
|
Samankul A, Senawong G, Swatsitang P, Sripa B, Phaosiri C, Kanokmedhakul S, Senawong T. Ethanolic extract of Ya-nang ( Tiliacora triandra) leaf powder induces apoptosis in cholangiocarcinoma cell lines via induction of hyperacetylation and inhibition of growth signaling. PeerJ 2022; 10:e14518. [PMID: 36540797 PMCID: PMC9760018 DOI: 10.7717/peerj.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To develop alternative medicine for reducing undesired side effects of chemotherapy in CCA patients, the anticancer activity of Tiliacora triandra leaf powder ethanolic (TLPE) extract against cholangiocarcinoma cell lines was investigated. Methods Antiproliferation was studied using the MTT assay while apoptosis induction and cell cycle arrest were analyzed by flow cytometry. The levels of key proteins and phenolic acid content were analyzed by western blotting and reversed-phase HPLC, respectively. Results TLPE extract inhibited CCA cell growth in a dose- and time-dependent manner, with IC50 values of 7.86 ± 0.05 µg/ml for KKU-M213B cells and 8.59 ± 0.36 µg/ml for KKU-100 cells at an exposure time of 72 h. TLPE extract inhibited the growth of CCA cell lines by inducing apoptosis of both cell lines and causing an increased population of KKU-100 cells at G0/G1 phase. TLPE extract up-regulated Ac-H3 but down-regulated p-ERK, p53, Bax, CDK4 and Bcl2 expressions in KKU-M213B cells. TLPE extract up-regulated Ac-H3, p21 and Bax but down-regulated p-ERK, p53, CDK4 and Bcl2 expressions in KKU-100 cells. Additionally, phenolic acids including p-hydroxybenzoic, vanillic, syringic, p-coumaric, ferulic and sinapinic acids were identified. Conclusion These results suggest the possibility of developing T. triandra leaf powder ethanolic extract as a chemotherapeutic or chemoprevention agent for cholangiocarcinoma.
Collapse
Affiliation(s)
- Arunta Samankul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Prasan Swatsitang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanokbhorn Phaosiri
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Haque A, Sahu V, Lombardo JL, Xiao L, George B, Wolff RA, Morris JS, Rashid A, Kopchick JJ, Kaseb AO, Amin HM. Disruption of Growth Hormone Receptor Signaling Abrogates Hepatocellular Carcinoma Development. J Hepatocell Carcinoma 2022; 9:823-837. [PMID: 35996397 PMCID: PMC9391993 DOI: 10.2147/jhc.s368208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most common type of primary liver cancers. It is an aggressive neoplasm with dismal outcome because most of the patients present with an advanced-stage disease, which precludes curative surgical options. Therefore, these patients require systemic therapies that typically induce small improvements in overall survival. Hence, it is crucial to identify new and promising therapeutic targets for HCC to improve the current outcome. The liver is a key organ in the signaling cascade triggered by the growth hormone receptor (GHR). Previous studies have shown that GHR signaling stimulates the proliferation and regeneration of liver cells and tissues; however, a definitive role of GHR signaling in HCC pathogenesis has not been identified. Methods In this study, we used a direct and specific approach to analyze the role of GHR in HCC development. This approach encompasses mice with global (Ghr-/- ) or liver-specific (LiGhr-/- ) disruption of GHR expression, and the injection of diethylnitrosamine (DEN) to develop HCC in these mice. Results Our data show that DEN induced HCC in a substantial majority of the Ghr+/+ (93.5%) and Ghr +/- (87.1%) mice but not in the Ghr-/- (5.6%) mice (P < 0.0001). Although 57.7% of LiGhr-/- mice developed HCC after injection of DEN, these mice had significantly fewer tumors than LiGhr+/+ (P < 0.001), which implies that the expression of GHR in the liver cells might increase tumor burden. Notably, the pathologic, histologic, and biochemical characteristics of DEN-induced HCC in mice resembled to a great extent human HCC, despite the fact that etiologically this model does not mimic this cancer in humans. Our data also show that the effects of DEN on mice livers were primarily related to its carcinogenic effects and ability to induce HCC, with minimal effects related to toxic effects. Conclusion Collectively, our data support an important role of GHR in HCC development, and suggest that exploiting GHR signaling may represent a promising approach to treat HCC.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vishal Sahu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jamie Lynne Lombardo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bhawana George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
6
|
Kesebir AÖ, Güller P, Kalın R, Özdemir H, Küfrevioğlu Öİ. Methyl benzoate derivatives as inhibitors of pentose phosphate pathway, which promotes cancer progression and drug resistance: An In Silico study supported By In Vitro results. Biotechnol Appl Biochem 2022; 69:1275-1283. [DOI: 10.1002/bab.2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Arzu Öztürk Kesebir
- Department of Chemistry, Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Pınar Güller
- Department of Chemistry, Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science Erzurum Technical University Erzurum 25700 Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science Atatürk University Erzurum 25240 Turkey
| | | |
Collapse
|
7
|
The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21238894. [PMID: 33255318 PMCID: PMC7727670 DOI: 10.3390/ijms21238894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, an inheritable phenomenon, which influences the expression of gene without altering the DNA sequence, offers a new perspective on the pathogenesis of hepatocellular carcinoma (HCC). Nonalcoholic steatohepatitis (NASH) is projected to account for a significant share of HCC incidence due to the growing prevalence of various metabolic disorders. One of the major molecular mechanisms involved in epigenetic regulation, post-translational histone modification seems to coordinate various aspects of NASH which will further progress to HCC. Mounting evidence suggests that the orchestrated events of cellular and nuclear changes during apoptosis can be regulated by histone modifications. This review focuses on the current advances in the study of acetylation-/methylation-mediated histone modification in apoptosis and the implication of these epigenetic regulations in HCC. The reversibility of epigenetic alterations and the agents that can target these alterations offers novel therapeutic approaches and strategies for drug development. Further molecular mechanistic studies are required to enhance information governing these epigenetic modulators, which will facilitate the design of more effective diagnosis and treatment options.
Collapse
|
8
|
Alfarouk KO, Ahmed SBM, Elliott RL, Benoit A, Alqahtani SS, Ibrahim ME, Bashir AHH, Alhoufie STS, Elhassan GO, Wales CC, Schwartz LH, Ali HS, Ahmed A, Forde PF, Devesa J, Cardone RA, Fais S, Harguindey S, Reshkin SJ. The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH. Metabolites 2020; 10:E285. [PMID: 32664469 PMCID: PMC7407102 DOI: 10.3390/metabo10070285] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the "Warburg Effect". However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of cancer but not in others. An interesting aspect of this metabolic pathway is the shared regulation of the glycolytic and PPP pathways by intracellular pH (pHi). Indeed, as with glycolysis, the optimum activity of the enzymes driving the PPP occurs at an alkaline pHi, which is compatible with the cytoplasmic pH of cancer cells. Here, we outline each step of the PPP and discuss its possible correlation with cancer.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
- American Biosciences Inc., New York, NY 10913, USA;
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
| | | | - Robert L. Elliott
- The Elliott-Elliott-Baucom Breast Cancer Research and Treatment Center, Baton Rouge, LA 70806, USA;
- The Sallie A. Burdine Breast Foundation, Baton Rouge, LA 70806, USA;
| | - Amanda Benoit
- The Sallie A. Burdine Breast Foundation, Baton Rouge, LA 70806, USA;
| | - Saad S. Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Adil H. H. Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Sari T. S. Alhoufie
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia;
| | - Gamal O. Elhassan
- Unaizah College of Pharmacy, Qassim University, Unaizah 56264, Saudi Arabia;
| | | | | | - Heyam S. Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Patrick F. Forde
- CancerResearch@UCC, Western Gateway Building, University College Cork, Cork T12 XF62, Ireland;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Salvador Harguindey
- Department of Oncology, Institute for Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
9
|
Funk K, Czauderna C, Klesse R, Becker D, Hajduk J, Oelgeklaus A, Reichenbach F, Fimm-Todt F, Lauterwasser J, Galle PR, Marquardt JU, Edlich F. BAX Redistribution Induces Apoptosis Resistance and Selective Stress Sensitivity in Human HCC. Cancers (Basel) 2020; 12:cancers12061437. [PMID: 32486514 PMCID: PMC7352885 DOI: 10.3390/cancers12061437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer therapies induce differential cell responses, ranging from efficient cell death to complete stress resistance. The BCL-2 proteins BAX and BAK govern the cellular decision between survival and mitochondrial apoptosis. Therefore, the status of BAX/BAK regulation can predict the cellular apoptosis predisposition. Relative BAX/BAK localization was analyzed in tumor and corresponding non-tumor samples from 34 hepatocellular carcinoma (HCC) patients. Key transcriptome changes and gene expression profiles related to the status of BAX regulation were applied to two independent cohorts including over 500 HCC patients. The prediction of apoptotic response was tested using cell lines and polyclonal tumor isolates. Cellular protection from BAX was confirmed by challenging cells with mitochondrial BAX. We discovered a subgroup of HCC with selective protection from BAX-dependent apoptosis. BAX-protected tumors showed enrichment of signaling pathways associated with oxidative stress response and DNA repair as well as increased genetic heterogeneity. Gene expression profiles characteristic to BAX-specific protection are enriched in poorly differentiated HCCs and show significant association to the overall survival of HCC patients. Consistently, addiction to DNA repair of BAX-protected cancer cells caused selective sensitivity to PARP inhibition. Molecular characteristics of BAX-protected HCC were enriched in cells challenged with mitochondrial BAX. Our results demonstrate that predisposition to BAX activation impairs tumor biology in HCC. Selective BAX inhibition or lack thereof delineates distinct subgroups of HCC patients with molecular features and differential response pattern to apoptotic stimuli and inhibition of DNA repair mechanisms.
Collapse
Affiliation(s)
- Kathrin Funk
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carolin Czauderna
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Diana Becker
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Jovana Hajduk
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Aline Oelgeklaus
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Frank Reichenbach
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Fimm-Todt
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
| | - Joachim Lauterwasser
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
| | - Peter R. Galle
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Jens U. Marquardt
- Department of Medicine I, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Correspondence: (J.U.M.); (F.E.)
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (J.U.M.); (F.E.)
| |
Collapse
|
10
|
Gao J, Yin X, Yu X, Dai C, Zhou F. Long noncoding LINC01551 promotes hepatocellular carcinoma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of microRNA-122-5p to regulate ADAM10 expression. J Cell Biochem 2019; 120:16393-16407. [PMID: 31270840 DOI: 10.1002/jcb.28549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.
Collapse
Affiliation(s)
- Jun Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangbao Yin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Hlosrichok A, Sumkhemthong S, Sritularak B, Chanvorachote P, Chaotham C. A bibenzyl from Dendrobium ellipsophyllum induces apoptosis in human lung cancer cells. J Nat Med 2018; 72:615-625. [PMID: 29488156 DOI: 10.1007/s11418-018-1186-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Failure of current chemotherapeutic drugs leads to the recurrence of tumor pathology and mortality in lung cancer patients. This study aimed to evaluate the anticancer activity and related mechanisms of 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB), a bibenzyl extracted from Dendrobium ellipsophyllum Tang and Wang, in human lung cancer cells. Cytotoxicity of TDB (0-300 µM) in different types of human lung cancer cells (H460, H292 and H23) and human dermal papilla cells (DPCs) was evaluated via MTT viability assay. Selective anticancer activity of TDB against human lung cancer cells was demonstrated with a high IC50 (approximately > 300 µM) in DPCs, while IC50 in human lung cancer H460, H292 and H23 cells was approximately 100 ± 5.18, 100 ± 8.73 and 188.89 ± 8.30 µM, respectively. After treatment with 50 µM of TDB for 24 h, flow cytometry analysis revealed the significant increase of early and late apoptosis with absence of necrosis cell death in human lung cancer cells. The up-regulation of p53, a tumor-suppressor protein, was elucidated in human lung cancer cells treated with 10-50 µM of TDB. Alteration to down-stream signaling of p53 including activation of pro-apoptosis protein (Bcl-2-associated X protein; Bax), reduction of anti-apoptosis (B cell lymphoma 2; Bcl-2 and myeloid cell leukemia 1; Mcl-1) and suppression on protein kinase B (Akt) survival pathway were notified in TDB-treated lung cancer cells. The information obtained from this study strengthens the potential development of TDB as an anticancer compound with a favorable human safety profile and high efficacy.
Collapse
Affiliation(s)
- Anirut Hlosrichok
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somruethai Sumkhemthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boonchoo Sritularak
- Departments of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Macrolide antibiotics differentially influence human HepG2 cytotoxicity and modulate intrinsic/extrinsic apoptotic pathways in rat hepatocellular carcinoma model. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:379-395. [DOI: 10.1007/s00210-016-1337-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/29/2016] [Indexed: 01/20/2023]
|
13
|
Abstract
Hepatocellular carcinoma (HCC) is a major health problem. In human hepatocarcinogenesis, the balance between cell death and proliferation is deregulated, tipping the scales for a situation where antiapoptotic signals are overpowering the death-triggering stimuli. HCC cells harbor a wide variety of mutations that alter the regulation of apoptosis and hence the response to chemotherapeutical drugs, making them resistant to the proapoptotic signals. Considering all these modifications found in HCC cells, therapeutic approaches need to be carefully studied in order to specifically target the antiapoptotic signals. This review deals with the recent relevant contributions reporting molecular alterations for HCC that lead to a deregulation of apoptosis, as well as the challenge of death-inducing chemotherapeutics in current HCC treatment.
Collapse
Affiliation(s)
- Joaquim Moreno-Càceres
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain
| |
Collapse
|
14
|
Li B, Su S, Zhang MY, He L, Wang QD, He K. Effect of GnT-V knockdown on the proliferation, migration and invasion of the SMMC7721/R human hepatocellular carcinoma drug-resistant cell line. Mol Med Rep 2015; 13:469-76. [PMID: 26531171 DOI: 10.3892/mmr.2015.4492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a commonly occurring malignant tumor, with a high incidence rate. The present study aimed to investigate the effect of knocking down the N‑glycosyltransferase‑V (GnT‑V) protein on the proliferation, migration and invasion of the human HCC drug‑resistant cell line, SMMC7721/R. SMMC7721/R cells with GnT‑V‑knockdown (SMMC‑7721/R‑GnT‑V) were constructed using the method of lentiviral transfection. The expression of GnT‑V was assessed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting. Cell proliferation was determined using an MTT assay, and the extent of cellular apoptosis was assessed using flow cytometric analysis. Additionally, the metastatic ability of the cells in vitro was analyzed using cell adhesion and invasion assays. Western blotting was used to investigate the protein expression levels of caspase‑3, caspase‑9, Bcl‑2, Bax, matrix metalloproteinase (MMP)‑2 and MMP‑9, and RT‑qPCR was used to determine the mRNA expression levels of the genes for the breast cancer resistance protein and P‑glycoprotein in the SMMC‑7721/R cells. Taken together, the results of the present study revealed that the knockdown of GnT‑V significantly suppressed the proliferation, migration and invasion (P<0.05) of the SMMC‑7721/R cells. Furthermore, the possible mechanism underlying these phenomena may be associated with the induction of mitochondria‑mediated apoptosis, inhibition of the degradation of the extracellular matrix and an enhancement of the drug-sensitivity. GnT‑V‑knockdown may therefore be used to treat drug‑resistant HCC in the future.
Collapse
Affiliation(s)
- Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meng-Yu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lei He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qing-Da Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Kai He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Castronuovo CC, Cuestas ML, Oubiña JR, Mathet VL. Effect of several PEO-PPO amphiphiles onbax,bcl-2, andhTERTmRNAs: An insight into apoptosis and cell immortalization induced in hepatoma cells by these polymeric excipients. Biotechnol Appl Biochem 2015; 63:273-80. [DOI: 10.1002/bab.1352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Cynthia Celeste Castronuovo
- Instituto de Investigaciones en Microbiología y Parasitología Médica; UBA-CONICET; Facultad de Medicina; Universidad de Buenos Aires; Ciudad Autónoma de Buenos Aires; Argentina
- CONICET; Ciudad Autónoma de Buenos Aires; Argentina
| | - María Luján Cuestas
- Instituto de Investigaciones en Microbiología y Parasitología Médica; UBA-CONICET; Facultad de Medicina; Universidad de Buenos Aires; Ciudad Autónoma de Buenos Aires; Argentina
- CONICET; Ciudad Autónoma de Buenos Aires; Argentina
| | - José Raúl Oubiña
- Instituto de Investigaciones en Microbiología y Parasitología Médica; UBA-CONICET; Facultad de Medicina; Universidad de Buenos Aires; Ciudad Autónoma de Buenos Aires; Argentina
- CONICET; Ciudad Autónoma de Buenos Aires; Argentina
| | - Verónica Lidia Mathet
- Instituto de Investigaciones en Microbiología y Parasitología Médica; UBA-CONICET; Facultad de Medicina; Universidad de Buenos Aires; Ciudad Autónoma de Buenos Aires; Argentina
- CONICET; Ciudad Autónoma de Buenos Aires; Argentina
| |
Collapse
|
16
|
Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147:765-783.e4. [PMID: 25046161 PMCID: PMC4531834 DOI: 10.1053/j.gastro.2014.07.018] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets.
Collapse
Affiliation(s)
- Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Diseases, Keck
School of Medicine, University of Southern California, Los Angeles, CA 90089,
USA
| | - Robert F. Schwabe
- Department of Medicine; Institute of Human Nutrition,
Columbia University, New York, NY 10032, USA,To whom correspondence should be addressed: Dr.
Tom Luedde, M.D., Ph.D. Department of Medicine III, Division of GI-
and Hepatobiliary Oncology University Hospital RWTH Aachen.
Pauwelsstrasse 30, D-52074 Aachen; Germany or
Dr. Robert F. Schwabe Columbia University Department of Medicine; Institute of
Human Nutrition Russ Berrie Pavilion, Room 415 1150 St. Nicholas Ave New York,
NY 10032; USA
| |
Collapse
|
17
|
Molecular mechanisms underlying antiproliferative and differentiating responses of hepatocarcinoma cells to subthermal electric stimulation. PLoS One 2014; 9:e84636. [PMID: 24416255 PMCID: PMC3885594 DOI: 10.1371/journal.pone.0084636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Capacitive Resistive Electric Transfer (CRET) therapy applies currents of 0.4–0.6 MHz to treatment of inflammatory and musculoskeletal injuries. Previous studies have shown that intermittent exposure to CRET currents at subthermal doses exert cytotoxic or antiproliferative effects in human neuroblastoma or hepatocarcinoma cells, respectively. It has been proposed that such effects would be mediated by cell cycle arrest and by changes in the expression of cyclins and cyclin-dependent kinase inhibitors. The present work focuses on the study of the molecular mechanisms involved in CRET-induced cytostasis and investigates the possibility that the cellular response to the treatment extends to other phenomena, including induction of apoptosis and/or of changes in the differentiation stage of hepatocarcinoma cells. The obtained results show that the reported antiproliferative action of intermittent stimulation (5 m On/4 h Off) with 0.57 MHz, sine wave signal at a current density of 50 µA/mm2, could be mediated by significant increase of the apoptotic rate as well as significant changes in the expression of proteins p53 and Bcl-2. The results also revealed a significantly decreased expression of alpha-fetoprotein in the treated samples, which, together with an increased concentration of albumin released into the medium by the stimulated cells, can be interpreted as evidence of a transient cytodifferentiating response elicited by the current. The fact that this type of electrical stimulation is capable of promoting both, differentiation and cell cycle arrest in human cancer cells, is of potential interest for a possible extension of the applications of CRET therapy towards the field of oncology.
Collapse
|
18
|
Marcq I, Nyga R, Cartier F, Amrathlal RS, Ossart C, Ouled-Haddou H, Ghamlouch H, Galmiche A, Chatelain D, Lamotte L, Debuysscher V, Fuentes V, Nguyen-Khac E, Regimbeau JM, Marolleau JP, Latour S, Bouhlal H. Identification of SLAMF3 (CD229) as an inhibitor of hepatocellular carcinoma cell proliferation and tumour progression. PLoS One 2013; 8:e82918. [PMID: 24376606 PMCID: PMC3869749 DOI: 10.1371/journal.pone.0082918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/29/2013] [Indexed: 01/26/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.
Collapse
Affiliation(s)
- Ingrid Marcq
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Rémy Nyga
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Flora Cartier
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- INSERM U1053, Laboratoire de Physiologie du Cancer du Foie, Université Bordeaux Segalen, 146, rue Léo Saignat, Bordeaux, France
| | - Rabbind Singh Amrathlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Christèle Ossart
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Hakim Ouled-Haddou
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Hussein Ghamlouch
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Antoine Galmiche
- Service de Biochimie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Denis Chatelain
- Service d’Anatomie Pathologique, Centre Hospitalier Universitaire sud, Amiens, France
| | - Luciane Lamotte
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Véronique Debuysscher
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Vincent Fuentes
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’Immunologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Eric Nguyen-Khac
- Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Marc Regimbeau
- Service de chirurgie digestive Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Pierre Marolleau
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Sylvain Latour
- IRNEM U768, Hôpital Necker enfants maladies, Paris, France
| | - Hicham Bouhlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
- * E-mail:
| |
Collapse
|
19
|
Expression of glutathione peroxidase 2 is associated with not only early hepatocarcinogenesis but also late stage metastasis. Toxicology 2013; 311:115-23. [PMID: 23867582 DOI: 10.1016/j.tox.2013.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 01/16/2023]
Abstract
Understanding of mechanisms of cancer progression is very important for reduction of cancer mortality. Of six rat hepatocellular carcinoma (HCC) cell lines, differing in their metastatic potential to the lung after inoculation into the tail vein of nude mice, the most metastatic featured particular overexpression of glutathione peroxidase 2 (GPX2). Therefore, we analyzed the influence of interference in highly metastatic L2 cells by siRNA transfection. Gpx2 siRNA significantly inhibited cell proliferation at 24 and 48h time points with induction of apoptosis but not cell cycle arrest. High expression of mutated p53 was detected in all HCC cell lines, with reduction in Gpx2 siRNA-transfected cells. Migration and invasion in vitro were also suppressed as compared to control siRNA-transfected cells and secretion of matrix metalloproteinase 9 was reduced. In vivo, the numbers and areas of metastatic nodules per area in the lungs were significantly reduced in the mice inoculated with Gpx2 siRNA-transfected cells as compared to control siRNA-transfected cells. In conclusion, expression of GPX2 is associated with cancer metastasis from rat HCCs both in vitro and in vivo. Together with immunohistochemical findings of elevated expression in rat and also human liver lesions, the results point to important roles in hepatocarcinogenesis.
Collapse
|
20
|
Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/ β -Catenin Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:371813. [PMID: 23606879 PMCID: PMC3625556 DOI: 10.1155/2013/371813] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/12/2013] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE) prevents diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF- κ B). Since NF- κ B concurrently induces Wnt/ β -catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/ β -catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg) was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen) and alteration in cell cycle progression (cyclin D1) due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β -catenin and augmented glycogen synthase kinase-3 β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/ β -catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF- κ B and Wnt/ β -catenin pathways) to exert chemoprevention of HCC.
Collapse
|
21
|
Ke PY, Chen SSL. Hepatitis C virus and cellular stress response: implications to molecular pathogenesis of liver diseases. Viruses 2012. [PMID: 23202463 PMCID: PMC3497051 DOI: 10.3390/v4102251] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV) is a leading risk factor for chronic liver disease progression, including steatosis, cirrhosis, and hepatocellular carcinoma. With approximately 3% of the human population infected worldwide, HCV infection remains a global public health challenge. The efficacy of current therapy is still limited in many patients infected with HCV, thus a greater understanding of pathogenesis in HCV infection is desperately needed. Emerging lines of evidence indicate that HCV triggers a wide range of cellular stress responses, including cell cycle arrest, apoptosis, endoplasmic reticulum (ER) stress/unfolded protein response (UPR), and autophagy. Also, recent studies suggest that these HCV-induced cellular responses may contribute to chronic liver diseases by modulating cell proliferation, altering lipid metabolism, and potentiating oncogenic pathways. However, the molecular mechanism underlying HCV infection in the pathogenesis of chronic liver diseases still remains to be determined. Here, we review the known stress response activation in HCV infection in vitro and in vivo, and also explore the possible relationship of a variety of cellular responses with the pathogenicity of HCV-associated diseases. Comprehensive knowledge of HCV-mediated disease progression shall shed new insights into the discovery of novel therapeutic targets and the development of new intervention strategy.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33371, Taiwan, Republic of China; (P.-Y.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Steve S.-L. Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- Author to whom correspondence should be addressed; (S.-L.C.); Tel.: +886-2-2652-3933, Fax: +886-2-2652-3073
| |
Collapse
|
22
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
23
|
Zhao X, Ning Q, Sun X, Tian D. Pokemon reduces Bcl-2 expression through NF-κ Bp65: A possible mechanism of hepatocellular carcinoma. ASIAN PAC J TROP MED 2012; 4:492-7. [PMID: 21771706 DOI: 10.1016/s1995-7645(11)60133-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/11/2011] [Accepted: 05/15/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To investigate the relationship among Pokemon, NF-κ B p65 and Bcl-2 in hepatoma cells. METHODS HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-κ B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κ B p65 and apoptotic rate was determined by flow cytometric analysis. RESULTS Expressions of Pokemon, NF-κ B p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κ B p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κ B p65 inhibited the expression of NF-κ B p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. CONCLUSIONS The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κ B p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κ B regulatory pathway.
Collapse
Affiliation(s)
- Xinkai Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | | | | | | |
Collapse
|
24
|
Zhao XK, Ning QM, Sun XN, Tian DA. SiRNA-mediated inhibition of NF-κB p65 down-regulations Bcl-2 expression and promotes apoptosis in hepatocellular carcinoma cell lines. Shijie Huaren Xiaohua Zazhi 2011; 19:2358-2362. [DOI: 10.11569/wcjd.v19.i22.2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of small interfering RNA (siRNA)-mediated inhibition of nuclear factor-κB P65 (NF-κB p65) on Bcl-2 expression and apoptosis in human hepatocellular carcinoma (HCC) cell lines.
METHODS: HCC cell lines HepG2, SMMC7721 and human fetal liver cell line LO2 were used in the study. The expression of NF-κB p65 and Bcl-2 in the above three cell lines was detected by Western blot. SiRNA technology was then used to inhibit NF-κB p65 to observe the effect of NF-κB p65 knockdown on Bcl-2 expression and cell apoptosis.
RESULTS: The expression levels of NF-κB p65 and Bcl-2 in HepG2 and SMMC7721 cells were significantly higher than those in LO2 cells (2.14 ± 0.19, 2.09 ± 0.27 vs 0.54 ± 0.11; 1.42 ± 0.15, 1.47 ± 0.14 vs 0.60 ± 0.08, all P < 0.05). No significant difference was detected in the expression levels of NF-κB p65 and Bcl-2 between HepG2 and SMMC7721 cells. SiRNA transfection significantly down-regulated NF-κB p65 expression in HepG2 and SMMC7721 cells compared to non-transfected cells (2.08 ± 0.19 vs 0.99 ± 0.12; 2.03 ± 0.17 vs 0.94 ± 0.14, both P < 0.05). SiRNA-mediated NF-κB p65 knockdown significantly down-regulated Bcl-2 expression (1.37 ± 0.05 vs 0.72 ± 0.02; 1.44 ± 0.03 vs 0.69 ± 0.03, both P < 0.05) and increased apoptosis (5.12% ± 0.61% vs 37.87% ± 4.10%; 5.80% ± 0.71% vs 40.19% ± 3.78%, both P < 0.05) in HepG2 and SMMC7721 cells compared to non-transfected cells.
CONCLUSION: SiRNA-mediated NF-κB p65 knockdown significantly down-regulates Bcl-2 expression and promotes apoptosis in HepG2 and SMMC7721 cells.
Collapse
|
25
|
Chen TA, Wang JL, Hung SW, Chu CL, Cheng YC, Liang SM. Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production. PLoS One 2011; 6:e23317. [PMID: 21826248 PMCID: PMC3149645 DOI: 10.1371/journal.pone.0023317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023] Open
Abstract
Background The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC), one of the most common human cancers worldwide. Methodology/Principal Findings Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC50 values in the range of 0.1–0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. Conclusions/Significance The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.
Collapse
Affiliation(s)
- Tai-An Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Ling Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shao-Wen Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chiao-Li Chu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Chih Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ. Development of the human cancer microRNA network. SILENCE 2010; 1:6. [PMID: 20226080 PMCID: PMC2835996 DOI: 10.1186/1758-907x-1-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 02/02/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND MicroRNAs are a class of small noncoding RNAs that are abnormally expressed in different cancer cells. Molecular signature of miRNAs in different malignancies suggests that these are not only actively involved in the pathogenesis of human cancer but also have a significant role in patients survival. The differential expression patterns of specific miRNAs in a specific cancer tissue type have been reported in hundreds of research articles. However limited attempt has been made to collate this multitude of information and obtain a global perspective of miRNA dysregulation in multiple cancer types. RESULTS In this article a cancer-miRNA network is developed by mining the literature of experimentally verified cancer-miRNA relationships. This network throws up several new and interesting biological insights which were not evident in individual experiments, but become evident when studied in the global perspective. From the network a number of cancer-miRNA modules have been identified based on a computational approach to mine associations between cancer types and miRNAs. The modules that are generated based on these association are found to have a number of common predicted target onco/tumor suppressor genes. This suggests a combinatorial effect of the module associated miRNAs on target gene regulation in selective cancer tissues or cell lines. Moreover, neighboring miRNAs (group of miRNAs that are located within 50 kb of genomic location) of these modules show similar dysregulation patterns suggesting common regulatory pathway. Besides this, neighboring miRNAs may also show a similar dysregulation patterns (differentially coexpressed) in the cancer tissues. In this study, we found that in 67% of the cancer types have at least two neighboring miRNAs showing downregulation which is statistically significant (P < 10-7, Randomization test). A similar result is obtained for the neighboring miRNAs showing upregulation in specific cancer type. These results elucidate the fact that the neighboring miRNAs might be differentially coexpressed in cancer tissues as that of the normal tissue types. Additionally, cancer-miRNA network efficiently detect hub miRNAs dysregulated in many cancer types and identify cancer specific miRNAs. Depending on the expression patterns, it is possible to identify those hubs that have strong oncogenic or tumor suppressor characteristics. CONCLUSIONS Limited work has been done towards revealing the fact that a number of miRNAs can control commonly altered regulatory pathways. However, this becomes immediately evident by accompanying the analysis of cancer-miRNA relationships in the proposed network model. These raise many unaddressed issues in miRNA research that have never been reported previously. These observations are expected to have an intense implication in cancer and may be useful for further research.
Collapse
Affiliation(s)
| | - Ramkrishna Mitra
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Michael Q Zhang
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Amaral JD, Castro RE, Steer CJ, Rodrigues CMP. p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis. Trends Mol Med 2009; 15:531-41. [PMID: 19822456 DOI: 10.1016/j.molmed.2009.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/06/2023]
Abstract
The interplay between p53 and apoptosis in diseases such as cancer, neurodegeneration, ischemia and atherosclerosis underscores the need to understand the complexity of p53 networks. Here, we highlight recent studies of p53-induced apoptosis in human diseases, with a focus on the modulation of liver cell apoptosis. In addition, recent work has provided new insights into mechanisms underlying the antiapoptotic functions of the endogenous bile acid ursodeoxycholic acid (UDCA), suggesting that the finely tuned, complex control of p53 by Mdm2 is a key step in the UDCA modulation of deregulated, p53-triggered apoptosis. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. Finally, we review recent therapeutic strategies and clinical applications of targeted agents, with a particular emphasis on the potential use of UDCA.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
28
|
Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 2009; 15:5073-81. [PMID: 19671867 DOI: 10.1158/1078-0432.ccr-09-0092] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Deregulated cell proliferation and apoptosis play a major role in hepatocellular carcinoma (HCC). MicroRNAs participate in the modulation of key molecules linked to hepatocarcinogenesis. PURPOSE This study aims to investigate the role of miR-221 in the modulation of Bmf, a proapoptotic BH3-only protein, and to characterize miR-221 contribution to hepatocarcinogenesis through modulation of apoptosis. EXPERIMENTAL DESIGN Transfection of miR-221 and anti-miR-221 in HCC-derived cell lines and luciferase reporter assay were used to assess Bmf as a target of miR-221. Modulation of miR-221 and Bmf expression contributed to characterize their role in anoikis. Primary HCC tissues were analyzed to assess the clinical relevance of in vitro findings. RESULTS Enforced miR-221 expression caused Bmf down-regulation, whereas anti-miR-221 induced its up-regulation. A luciferase reporter assay confirmed Bmf as a target of miR-221. Following matrix detachment, miR-221 silencing led to increased apoptotic cell death. The analysis of HCC tissues revealed an inverse correlation between miR-221 and Bmf expression and a direct correlation between Bmf and activated caspase-3, as a marker of apoptosis. High miR-221 levels were associated with tumor multifocality and reduced time to recurrence after surgery. CONCLUSIONS Our results indicate that miR-221, by targeting Bmf, inhibits apoptosis. Moreover, in HCC, miR-221 overexpression is associated with a more aggressive phenotype. These findings, together with the previously reported modulation of CDKN1B/p27 and CDKN1C/p57, show that miR-221 simultaneously affects multiple pro-oncogenic pathways and suggest miR-221 as a potential target for nonconventional treatment against HCC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Gene Targeting
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/physiology
- Middle Aged
- Neoplasm Recurrence, Local
- Neoplasms, Multiple Primary/genetics
- Neoplasms, Multiple Primary/mortality
- Neoplasms, Multiple Primary/pathology
- RNA, Small Interfering/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Laura Gramantieri
- Dipartimento di Medicina Interna e Gastroenterologia e Centro di Ricerca Biomedica Applicata, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2009; 12:2189-204. [PMID: 19120703 PMCID: PMC4514099 DOI: 10.1111/j.1582-4934.2008.00533.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Curative options for HCC are limited and exclusively available for patients carrying an early stage HCC. In advanced stages, traditional chemotherapy proved to be only marginally effective or even toxic. Thus, the identification of new treatment options is needed. New targets for non-conventional treatment will necessarily take advantage of progresses on the molecular pathogenesis of HCC. MicroRNAs (miRNAs) are a group of tiny RNAs with a fundamental role in the regulation of gene expression. Aberrant expression of several miRNAs was found to be involved in human hepatocarcinogenesis. miRNA expression signatures were correlated with bio-pathological and clinical features of HCC. In some cases, aberrantly expressed miRNAs could be linked to cancer-associated pathways, indicating a direct role in liver tumourigenesis. For example, up-regulation of mir-221 and mir-21 could promote cell cycle progression, reduce cell death and favour angiogenesis and invasion. These findings suggest that miRNAs could become novel molecular targets for HCC treatment. The demonstration of in vivo efficacy and safety of anti-miRNA compounds has opened the way to their use in clinical trials.
Collapse
Affiliation(s)
- Laura Gramantieri
- Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Hepatocellular carcinoma (HCC) is a major health problem, being the sixth most common cancer world-wide. Dysregulation of the balance between proliferation and cell death represents a pro-tumorigenic principle in human hepatocarcinogenesis. This review updates the recent relevant contributions reporting molecular alterations for HCC that induce an imbalance in the regulation of apoptosis. Alterations in the expression and/or activation of p53 are frequent in HCC cells, which confer on them resistance to chemotherapeutic drugs. Many HCCs are also insensitive to apoptosis induced either by death receptor ligands, such as FasL or TRAIL, or by transforming growth factor-beta (TGF-β). Although the expression of some pro-apoptotic genes is decreased, the balance between death and survival is dysregulated in HCC mainly due to overactivation of anti-apoptotic pathways. Indeed, some molecules involved in counteracting apoptosis, such as Bcl-XL, Mcl-1, c-IAP1, XIAP or survivin are over-expressed in HCC cells. Furthermore, some growth factors that mediate cell survival are up-regulated in HCC, as well as the molecules involved in the machinery responsible for cleavage of their pro-forms to an active peptide. The expression and/or activation of the JAK/STAT, PI3K/AKT and RAS/ERKs pathways are enhanced in many HCC cells, conferring on them resistance to apoptotic stimuli. Finally, recent evidence indicates that inflammatory processes, as well as the epithelial-mesenchymal transitions that occur in HCC cells to facilitate their dissemination, are related to cell survival. Therefore, therapeutic strategies to selectively inhibit anti-apoptotic signals in liver tumor cells have the potential to provide powerful tools to treat HCC.
Collapse
|
31
|
Hu X, Xuan Y. Bypassing cancer drug resistance by activating multiple death pathways--a proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett 2008; 259:127-37. [PMID: 18082322 DOI: 10.1016/j.canlet.2007.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/02/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022]
Abstract
Cancer drug resistance is a complex, dynamic, and "elusive" system rather than merely a matter of some drug-resistant factors. Current pharmacological approaches aim to restore the efficacy of the standard chemotherapy against drug-resistant cancers via reactivating apoptosis and inhibiting drug transporters, simply because the current available anticancer drugs mostly induce apoptosis and many of them are the substrates/inducers of the drug transporters. However, since there are so many different types of defects in apoptotic pathways as well as numerous drug transporters, which could simultaneously contribute to cancer drug resistance, to succeed in the approach is theoretically possible but practically extremely difficult. To circumvent cancer drug resistance is an alternative choice. Since there are multiple death pathways with molecular mechanisms distinct from each other, we previously proposed that the barriers set up in cancer cells to avoid one pathway were not problems for another. Thus, no matter how dynamic, complex, and "elusive" the resistance occurs along one death pathway (e.g., apoptosis), the resistance would be sequestered within this pathway, and would not affect another death pathway with mechanisms distinct from the former, and vice versa, e.g., apoptotic resistant cancers can be sensitive to an induction of a nonapoptotic death. Indeed, we recently demonstrated that the cancer cells resistant to apoptotic inducers such as anthracycline antibiotics, vinca alkaloids, epipodophylotoxins, were sensitive to necroptotic inducers such as shikonin. Therefore, to bypass cancer drug resistance is principally achievable by simultaneously activating multiple death pathways using combined classes of death inducers (apoptosis, autophagy, necroptosis, etc.). Although each class of death inducers has its own action window and limit in killing cancer cells, a rationalized combination of several classes of death inducers that compliment each other would maximize their efficacy while simultaneously minimizing their weakness. Such "mixed bullets" would probably achieve a good therapeutic efficacy by bypassing cancer drug resistance.
Collapse
Affiliation(s)
- Xun Hu
- The Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, China.
| | | |
Collapse
|
32
|
Mott JL, Gores GJ. Piercing the armor of hepatobiliary cancer: Bcl-2 homology domain 3 (BH3) mimetics and cell death. Hepatology 2007; 46:906-11. [PMID: 17654739 DOI: 10.1002/hep.21812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Justin L Mott
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
33
|
Abstract
BACKGROUND/AIMS Dysregulation of the balance between proliferation and cell death represents a protumorigenic principle in human hepatocarcinogenesis. This article aims to provide a review of the current findings about how physiological hepatocyte apoptosis is regulated and whether or not its dysregulation might contribute to the progression towards a hepatocellular carcinoma (HCC) process. RESULTS Although some physiological proapoptotic molecules are downregulated or inactivated in HCC, such as Fas, p53, Bax or Bid, dysregulation of the balance between death and survival is mainly due to overactivation of antiapoptotic signals. Thus, some growth factors that mediate cell survival are upregulated in HCC, as well as the molecules involved in the machinery responsible for cleavage of their proforms to an active peptide. The expression of the pten gene is reduced or absent in almost half the HCCs and the Spred family of Ras/ERK inhibitors is also dysregulated in HCC, which consequently lead to the overactivation of relevant survival kinases: AKT and ERKs. Alterations in the expression and/or activity of molecules involved in counteracting apoptosis, such as NF-kappaB, Bcl-X(L), Mcl-1 or c-IAP1, have also been observed in HCC. CONCLUSIONS Therefore, therapeutic strategies to inhibit selectively antiapoptotic signals in tumour cells have the potential to provide powerful tools to treat liver cancer.
Collapse
Affiliation(s)
- Isabel Fabregat
- Institut de Investigació Biomèdica de Bellvitge, Institut de Recerca Oncològica, L'Hospitalet, Barcelona, Spain.
| | | | | |
Collapse
|
34
|
Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP. Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer 2007; 43:979-92. [PMID: 17291746 DOI: 10.1016/j.ejca.2007.01.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/22/2006] [Accepted: 01/04/2007] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth commonest malignancy worldwide and its incidence is rising. Surgery, including transplantation, remains the only potentially curative modality for HCC, yet recurrence rates are high and long-term survival poor. The ability to predict individual recurrence risk and subsequently prognosis would help guide surgical and chemotherapeutic treatment. As understanding of hepatocarcinogenesis has increased, the myriad of genetic and molecular events that drive the hepatocarcinogenic disease process, including angiogenesis, invasion and metastasis, have been identified. This systematic review examines the evidence from published manuscripts reporting the prognostic potential of molecular biomarkers in hepatocellular carcinoma. In summary, a number of molecular biomarkers with prognostic significance have been identified in hepatocellular carcinoma. Not only might these molecules allow more accurate prediction of prognosis for patients with HCC, but they may also provide targets for potential therapeutic agents.
Collapse
Affiliation(s)
- Christopher D Mann
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, Biocentre, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
35
|
Cho-Rok J, Yoo J, Jang YJ, Kim S, Chu IS, Yeom YI, Choi JY, Im DS. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology 2006; 43:1042-52. [PMID: 16628636 DOI: 10.1002/hep.21137] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pituitary tumor transforming (PTTG) gene family comprises PTTG1, 2, and 3. Forced expression of PTTG1 (securin) induces cellular transformation and promotes tumor development in animal models. PTTG1 is overexpressed in various human cancers. However, the expression and pathogenic implications of the PTTG gene family in hepatocellular carcinoma are largely unknown. Gene silencing using short interfering RNA (siRNA) has become an efficient means to study the functions of genes and has been increasingly used for cancer gene therapy approaches. We report that PTTG1, but not PTTG2 and 3, was highly and frequently expressed in liver cancer tissues from patients and highly in SH-J1, SK-Hep1, and Huh-7 hepatoma cell lines. Adenoviral vector encoding siRNA against PTTG1 (Ad.PTTG1-siRNA) depleted PTTG1 specifically and efficiently in SH-J1 hepatoma cells, which resulted in activation of p53 that led to increased p21 expression and induction of apoptosis. The depletion of PTTG1 in HCT116 colorectal cancer cells exhibited a cytotoxic effect in a p53-dependent manner. Ad.PTTG1-siRNA-mediated cytotoxic effect was dependent on expression levels of PTTG1 and p53 in hepatoma cell lines. Huh-7 hepatoma cells, once transduced with Ad.PTTG1-siRNA, displayed markedly attenuated growth potential in nude mice. Intra-tumor delivery of Ad.PTTG1-siRNA led to significant inhibition of tumor growth in SH-J1 tumor xenograft established in nude mice. In conclusion, PTTG1 overexpressed in hepatoma cell lines negatively regulates the ability of p53 to induce apoptosis. PTIG1 gene silencing using siRNA may be an effective modality to treat liver cancer, in which PTTG1 is abundantly expressed. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/ suppmat/index.html).
Collapse
Affiliation(s)
- Jung Cho-Rok
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Yusong Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Apoptosis or programmed cell death occurs in the liver as in other organs. In the normal state it is not a frequent mode of hepatic cell destruction. Morphological and biochemical characteristics of liver cell apoptosis do not differ from what is observed in other cells. The Fas receptor pathway, a frequent hepatic apoptotic pathway among various others, involves intra-cellular signals amplified by mitochondria. Although hepatic apoptosis may occur by following several others pathways, Fas, which is abundantly expressed in the plasma membrane of hepatocytes, is very often involved in hepatocyte demise during B or C viral hepatitis irrespective of their clinical form, alcoholic hepatitis, cholestasis due to accumulation of hepatic biliary salts, or certain types of drug-induced hepatitis. Fas is also probably responsible for the death of biliary cells in primary biliary cirrhosis. In contrast one of the causes of resistance to apoptosis of hepatic cancerous cells could be related to an alteration of the Fas receptor. This is why much experimental work is presently performed to achieve inhibition of the Fas receptor either at the mRNA level or at the level of Fas-inductible proteolytic enzymes called caspases. One perspective is a specific treatment of apoptosis as an adjuvant treatment of liver diseases.
Collapse
Affiliation(s)
- Gérard Feldmann
- INSERM U 773, Faculté de Médecine Xavier Bichat, Université Paris 7- Denis Diderot, Paris.
| |
Collapse
|
37
|
Nakanishi F, Ohkawa K, Ishida H, Hosui A, Sato A, Hiramatsu N, Ueda K, Takehara T, Kasahara A, Sasaki Y, Hori M, Hayashi N. Alteration in gene expression profile by full-length hepatitis B virus genome. Intervirology 2005; 48:77-83. [PMID: 15812178 DOI: 10.1159/000081732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 02/13/2004] [Indexed: 11/19/2022] Open
Abstract
Persistent expression of hepatitis B virus (HBV) proteins is thought to be involved in virus-related hepatocarcinogenesis. Here, we compared the gene expression profile of cells persistently expressing the full-length HBV with that of negative control cells to comprehensively investigate virus-mediated changes in the gene expression of the host cells. RNA samples from both virus-expressing and negative control cells were used for the DNA array assay. DNA array assay and subsequent corroboration assays revealed that expression of 14 of 1,176 genes (1.2%) was altered in response to virus expression. The upregulated genes included CD44, high mobility group protein-I, thymosin beta-10 and 27-kD heat shock protein, while the downregulated genes included NM23-H1, all of which are thought to be associated with the development or progression of carcinoma in the liver or other organs. Furthermore, virus expression resulted in the decrease of two apoptosis-inducing molecules, caspase-3 and BAX, which may also contribute to carcinogenesis through prolonged survival of the host cell. Thus, expression of the virus genome caused carcinogenesis-related changes in host cell gene expression. HBV expression may change the host cell to a malignant phenotype through alterations in the expression levels of a set of genes.
Collapse
Affiliation(s)
- Fumihiko Nakanishi
- Department of Internal Medicine and Therapeutic, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zheng JY, Yang GS, Wang WZ, Li J, Li KZ, Guan WX, Wang WL. Overexpression of Bax induces apoptosis and enhances drug sensitivity of hepatocellular cancer-9204 cells. World J Gastroenterol 2005; 11:3498-503. [PMID: 15962362 PMCID: PMC4315948 DOI: 10.3748/wjg.v11.i23.3498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of overexpression of Bax in apoptotic pathways and the response of human hepatocellular cancer (HCC)-9204 cells to cell death induced by adriamycin.
METHODS: The whole length of Bax cDNA was transfected into human HCC-9204 cells by the method of lipofectamine transfection. An inducible MT-II regulatory system was constructed, which allowed controlled expression of protein upon addition of ZnSO4 (100 μmol/L) as an external inducer. Stable transfecting inducible expression vector containing Bax gene was performed. Expression of Bax in protein was analyzed by immunohistochemistry and Western blotting. TUNEL and flow cytometry were used to assess the effect of Bax on apoptosis. Colony assay and tetrazolium blue (MTT) assay were used to evaluate the difference in drug sensitivity of HCC-9204 cells after Bax-transfection.
RESULTS: Immunohistochemistry and Western blotting demonstrated that the expression of Bax protein markedly increased in Bax-transfected cells 4 h after the addition of ZnSO4. Bax positive signal was frequently found on the cytoplasm and perinuclear region of HCC-9404 cells, and there was ectopic expression in cells with marked condensation of chromatin and cytoplasm (apoptotic cells). Apoptotic index significantly increased in Bax-transfected HCC-9204/Bax cells (3.6 vs 27.2, 4.2 vs 32.3, P<0.05). Flow cytometry analysis showed a significant sub-G1 peak and apoptosis in 15.4% HCC-9204/Bax cells 24 h after treatment. Furthermore, colony survival rate decreased from 66% (HCC-9204/pMD) to 45% (HCC-9204/Bax) 2 d after ADR withdrawal. MTT assay result showed that the effects of Bax on cell viability following ADR exposure were significant as compared to the vehicle-transfected HCC-9204/pMD cells (21% vs 44%, P<0.01).
CONCLUSION: Overexpression of Bax not only induces apoptosis, but also sensitizes HCC-9204 cells to cell death induced by adriamycin.
Collapse
Affiliation(s)
- Jian-Yong Zheng
- Department of Laparoscope, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic Pathways and Therapy Resistance in Human Malignancies. Adv Cancer Res 2005; 94:143-96. [PMID: 16096001 DOI: 10.1016/s0065-230x(05)94004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are two morphologically distinct forms of cell death that are important for maintaining of cellular homeostasis. Almost all agents can provoke either response when applied to cells; however, the duration of treatment and the dose of the used agents determine which type of death (apoptosis or necrosis) is initiated. The response of tumors to chemo-, radio-, and hormone therapy or to treatment with biologically active agents may depend at least in part on the propensity of these tumors to undergo cell death. Some tumors, e.g., leukemias, small cell lung cancer, and seminomas, respond quickly to first-line therapy; this fast response is thought to result from induction of apoptosis. Solid tumors, on the other hand, usually respond slowly and less effectively, with cell death characterized not only by apoptosis but also by necrosis, or mitotic catastrophe. It is likely that resistance of tumors to treatment might be associated with defects in, or dysregulation of, different steps of the apoptotic pathways. Several attempts were undertaken to use the knowledge of these defects to design new drugs, which might either activate or re-activate the apoptotic machinery of tumor cells. Here we discuss the apoptotic pathways and their role in therapy resistance of human malignancies. Although such studies are still in progress, they offer great promise for future cancer therapy. We hope that some of these agents will turn out to be valuable additions to the future therapeutic arsenal, which will most probably include a combination of conventional cytotoxic drugs and molecular target-based pro-apoptotic drugs.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Unit of Medical Radiobiology, Department of Oncology/Pathology, Cancer Center Karolinska, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:229-49. [PMID: 14996506 DOI: 10.1016/j.bbamcr.2003.08.009] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/18/2003] [Indexed: 02/07/2023]
Abstract
The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt, Germany
| | | | | |
Collapse
|
41
|
Tan YJ, Teng E, Ting AE. A small inhibitor of the interaction between Bax and Bcl-X(L) can synergize with methylprednisolone to induce apoptosis in Bcl-X(L)-overexpressing breast-cancer cells. J Cancer Res Clin Oncol 2003; 129:437-48. [PMID: 12884026 DOI: 10.1007/s00432-003-0464-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 05/08/2003] [Indexed: 12/28/2022]
Abstract
PURPOSE To identify inhibitors of the interaction between Bax and Bcl-X(L). METHODS Using an assay based on biosensor technology, we screened a chemical library of 10,000 compounds for inhibitors of the interaction between Bax and Bcl-X(L). Using cell-culture systems we tested active compounds for their ability to induce apoptosis in Bcl-X(L)-overexpressing MCF7 cells and increase the sensitivities of the cells to apoptosis-inducing drugs [vincristine sulphate, dexamethasone, cycloheximide and 6alpha-methylprednisolone (MP)]. RESULTS A single compound, 2',4',5',7'-tetrabromofluorescein (A5), from the library was found to inhibit this interaction efficiently. Several structural analogues of A5 were tested and two of these [4',5'-dibromofluorescein (A9) and 3,4,5,6-tetrabromofluorescein (A11)] were found to be active, and their activities were confirmed by an independent in vitro pull-down assay. These active compounds were observed to induce apoptosis in Bcl-X(L)-overexpressing MCF7 cells. Moreover, two of the compounds (A5 and A11) appeared to increase the sensitivities of the cells to MP. A more rigorous test using the isobologram technique showed that there is a synergistic cytotoxic effect between A11 and MP. CONCLUSIONS We have identified a small inhibitor of the interaction between Bax and Bcl-X(L) that can synergize with methylprednisolone to induce apoptosis in Bcl-X(L)-overexpressing breast-cancer cells.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore, Republic of Singapore.
| | | | | |
Collapse
|
42
|
Daveau M, Scotte M, François A, Coulouarn C, Ros G, Tallet Y, Hiron M, Hellot MF, Salier JP. Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol Carcinog 2003; 36:130-41. [PMID: 12619035 DOI: 10.1002/mc.10103] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A change in the balance between proliferation and apoptosis in the course of hepatocellular carcinoma (HCC) development and progression has been suspected. We wanted to identify related genes whose mRNA levels could provide markers of severity and prognosis after resection. The extent of cell apoptosis, proliferation, and differentiation was measured with a terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate-biotin nick-end labeling assay, and the Ki-67 index was determined in paired tumor and cirrhotic tissue samples from patients who had undergone HCC resection after diagnosis of hepatitis C-related or alcoholism-related cirrhosis. These patients included two groups with highly versus poorly differentiated tumor cells, and the latter was split into two subgroups of those with versus without early recurrence. The mRNA levels for various apoptosis-related or proliferation-related genes and those for the growth factor/receptor systems were measured by quantitative reverse transcriptase-polymerase chain reaction in paired tumor and cirrhotic liver samples from every patient, and some of the corresponding proteins were detected by immunohistochemistry. In all instances, protein expression was highly heterogeneous within groups and similar between groups. In contrast, some differences in mRNA level between tumor and cirrhotic tissues were quite informative. Low levels of hepatocyte growth factor and transforming growth factor alpha mRNAs were found concomitantly in highly differentiated tumors, whereas overexpression of mRNAs for the cognate receptors c-met and epidermal growth factor receptor were found in poorly differentiated tumors and primarily in patients with early tumor recurrence. These results argue for growth factor-dependent HCC development and provide novel and combined prognosis markers after HCC surgery.
Collapse
Affiliation(s)
- Maryvonne Daveau
- INSERM Unité 519 and Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, Faculté de Médecine-Pharmacie, Rouen France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Osada S, Saji S, Kuno T. Clinical significance of combination study of apoptotic factors and proliferating cell nuclear antigen in estimating the prognosis of hepatocellular carcinoma. J Surg Oncol 2003; 85:48-54. [PMID: 14696087 DOI: 10.1002/jso.20006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) is one of the most common recurrence diseases, which affects the patient's prognosis. The aim of this report is to evaluate recurrence risk after primary treatment by the combination study with the clinical features and immunohistological findings. METHODS 153 removable HCCs were examined by immunohistochemical study of the proliferating cell nuclear antigen (PCNA), p53, or Bax. The relationships of these factors with histological grades, the presence of intra-hepatic metastasis (IM), tumor size, value of serum alpha-fetoprotein (AFP), and prognosis were studied. PCNA labeling index (LI) was calculated to count positive nuclei in 1,000 cells. RESULTS PCNALI was significantly higher in cancer and correlated with tumor size. PCNALI and the tumor diameter in themselves could be a good predictor for patient prognosis and the combination study of them was an even stronger indicator. The value of AFP was significantly higher in positive p53 cases. The incidence of p53 was associated with histological types. The presence of IM was found in negative Bax cases of main tumors. The appearance of Bax was not correlated with histological types. The incidence of p53 or Bax was indicated to distinguish the patient prognosis of the lower grade histological cases, in which differences could not be found by the routine histological study. CONCLUSIONS The combination study of the immunohistochemical findings and the clinical features could be one of the most important aids in interpreting the status of HCC.
Collapse
Affiliation(s)
- Shinji Osada
- Second Department of Surgery, Gifu University School of Medicine, Tsukasamachi, Gifu City, Japan.
| | | | | |
Collapse
|
44
|
Abstract
The process by which normal cells become progressively transformed to malignancy is now known to require the sequential acquisition of mutations which arise as a consequence of damage to the genome. This damage can be the result of endogenous processes such as errors in replication of DNA, the intrinsic chemical instability of certain DNA bases or from attack by free radicals generated during metabolism. DNA damage can also result from interactions with exogenous agents such as ionizing radiation, UV radiation and chemical carcinogens. Cells have evolved means to repair such damage, but for various reasons errors occur and permanent changes in the genome, mutations, are introduced. Some inactivating mutations occur in genes responsible for maintaining genomic integrity facilitating the acquisition of additional mutations. This review seeks first to identify sources of mutational damage so as to identify the basic causes of human cancer. Through an understanding of cause, prevention may be possible. The evolution of the normal cell to a malignant one involves processes by which genes involved in normal homeostatic mechanisms that control proliferation and cell death suffer mutational damage which results in the activation of genes stimulating proliferation or protection against cell death, the oncogenes, and the inactivation of genes which would normally inhibit proliferation, the tumor suppressor genes. Finally, having overcome normal controls on cell birth and cell death, an aspiring cancer cell faces two new challenges: it must overcome replicative senescence and become immortal and it must obtain adequate supplies of nutrients and oxygen to maintain this high rate of proliferation. This review examines the process of the sequential acquisition of mutations from the prospective of Darwinian evolution. Here, the fittest cell is one that survives to form a new population of genetically distinct cells, the tumor. This review does not attempt to be comprehensive but identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.
Collapse
Affiliation(s)
- J S Bertram
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| |
Collapse
|