1
|
Yao Y, Chang Y, Li S, Zhu J, Wu Y, Jiang X, Li L, Liu R, Ma R, Li G. Complement C3a Receptor Antagonist Alleviates Tau Pathology and Ameliorates Cognitive Deficits in P301S Mice. Brain Res Bull 2023:110685. [PMID: 37330021 DOI: 10.1016/j.brainresbull.2023.110685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Human tauopathies, including Alzheimer's disease (AD), are a major class of neurodegenerative diseases characterized by intracellular deposition of pathological hyperphosphorylated forms of Tau protein. Complement system is composed of many proteins, which form a complex regulatory network to modulate the immune activity in the brain. Emerging studies have demonstrated a critical role of complement C3a receptor (C3aR) in the development of tauopathy and AD. The underlying mechanisms by which C3aR activation mediates tau hyperphosphorylation in tauopathies, however, remains largely unknown. Here, we observed that the expression of C3aR is upregulated in the brains of P301S mice - a mouse model of tauopathy and AD. Pharmacologic blockade of C3aR ameliorates synaptic integrity and reduced tau hyperphosphorylation in P301S mice. Besides, the administration of C3aR antagonist (C3aRA: SB 290157) improved spatial memory as tested in the Morris water maze. Moreover, C3a receptor antagonist inhibited tau hyperphosphorylation by regulating p35/CDK5 signaling. In summary, results suggest that the C3aR plays an essential role in the accumulation of hyperphosphorylated Tau and behavioral deficits in P301S mice. C3aR could be a feasible therapeutic target for the treatment of tauopathy disorders, including AD. AVAILABILITY OF DATA AND MATERIALS: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yi Yao
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruitian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Haidian District, Beijing 100190, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Bencze J, Szarka M, Bencs V, Szabó RN, Módis LV, Aarsland D, Hortobágyi T. Lemur Tyrosine Kinase 2 (LMTK2) Level Inversely Correlates with Phospho-Tau in Neuropathological Stages of Alzheimer's Disease. Brain Sci 2020; 10:E68. [PMID: 32012723 PMCID: PMC7071479 DOI: 10.3390/brainsci10020068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
: Alzheimer's disease (AD) is the most common neurodegenerative dementia. Mapping the pathomechanism and providing novel therapeutic options have paramount significance. Recent studies have proposed the role of LMTK2 in AD. However, its expression pattern and association with the pathognomonic neurofibrillary tangles (NFTs) in different brain regions and neuropathological stages of AD is not clear. We performed chromogenic (CHR) LMTK2 and fluorescent phospho-tau/LMTK2 double-labelling (FDL) immunohistochemistry (IHC) on 10-10 postmortem middle frontal gyrus (MFG) and anterior hippocampus (aHPC) samples with early and late neuropathological Braak tau stages of AD. MFG in early stage was our 'endogenous control' region as it is not affected by NFTs. Semiquantitative CHR-IHC intensity scoring revealed significantly higher (p < 0.001) LMTK2 values in this group compared to NFT-affected regions. FDL-IHC demonstrated LMTK2 predominance in the endogenous control region, while phospho-tau overburden and decreased LMTK2 immunolabelling were detected in NFT-affected groups (aHPC in early and both regions in late stage). Spearman's correlation coefficient showed strong negative correlation between phospho-tau/LMTK2 signals within each group. According to our results, LMTK2 expression is inversely proportionate to the extent of NFT pathology, and decreased LMTK2 level is not a general feature in AD brain, rather it is characteristic of the NFT-affected regions.
Collapse
Affiliation(s)
- János Bencze
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Szarka
- Horvath Csaba Memorial Institute of Bioanalytical Research, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Vitrolink Ltd., 4033 Debrecen, Hungary
- Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Hungary
| | - Viktor Bencs
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Renáta Nóra Szabó
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - László V. Módis
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| |
Collapse
|
4
|
Bencze J, Szarka M, Bencs V, Szabó RN, Smajda M, Aarsland D, Hortobágyi T. Neuropathological characterization of Lemur tyrosine kinase 2 (LMTK2) in Alzheimer's disease and neocortical Lewy body disease. Sci Rep 2019; 9:17222. [PMID: 31748522 PMCID: PMC6868282 DOI: 10.1038/s41598-019-53638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and neocortical Lewy body disease (LBD) are the most common neurodegenerative dementias, with no available curative treatment. Elucidating pathomechanism and identifying novel therapeutic targets are of paramount importance. Lemur tyrosine kinase 2 (LMTK2) is involved in several physiological and pathological cellular processes. Herewith a neuropathological characterization is presented in AD and neocortical LBD samples using chromogenic and fluorescent LMTK2 immunohistochemistry on post-mortem brain tissues and compared them to age-matched controls (CNTs). LMTK2 immunopositivity was limited to the neuronal cytoplasm. Neurons, including tau-positive tangle-bearing ones, showed decreased chromogenic and immunofluorescent labelling in AD in every cortical layer compared to CNT and neocortical LBD. Digital image analysis was performed to measure the average immunopositivity of groups. Mean grey values were calculated for each group after measuring the grey scale LMTK2 signal intensity of each individual neuron. There was significant difference between the mean grey values of CNT vs. AD and neocortical LBD vs. AD. The moderate decrease in neocortical LBD suggests the effect of coexisting AD pathology. We provide neuropathological evidence on decreased neuronal LMTK2 immunolabelling in AD, with implications for pathogenesis.
Collapse
Affiliation(s)
- János Bencze
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Máté Szarka
- Horvath Csaba Memorial Institute of Bioanalytical Research, Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Vitrolink Ltd., Debrecen, Hungary
| | - Viktor Bencs
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renáta Nóra Szabó
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary.
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
5
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
6
|
Cao LL, Guan PP, Liang YY, Huang XS, Wang P. Calcium Ions Stimulate the Hyperphosphorylation of Tau by Activating Microsomal Prostaglandin E Synthase 1. Front Aging Neurosci 2019; 11:108. [PMID: 31143112 PMCID: PMC6521221 DOI: 10.3389/fnagi.2019.00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is reportedly associated with the accumulation of calcium ions (Ca2+), and this accumulation is responsible for the phosphorylation of tau. Although several lines of evidence demonstrate the above phenomenon, the inherent mechanisms remain unknown. Using APP/PS1 Tg mice and neuroblastoma (N)2a cells as in vivo and in vitro experimental models, we observed that Ca2+ stimulated the phosphorylation of tau by activating microsomal PGE synthase 1 (mPGES1) in a prostaglandin (PG) E2-dependent EP receptor-activating manner. Specifically, the highly accumulated Ca2+ stimulated the expression of mPGES1 and the synthesis of PGE2. Treatment with the inhibitor of Ca2+ transporter, NMDAR, attenuated the expression of mPGES1 and the production of PGE2 were attenuated in S(+)-ketamine-treated APP/PS1 Tg mice. Elevated levels of PGE2 were responsible for the hyperphosphorylation of tau in an EP-1-, EP-2-, and EP-3-dependent but not EP4-dependent cyclin-dependent kinase (Cdk) 5-activating manner. Reciprocally, the knockdown of the expression of mPGES1 ameliorated the expected cognitive decline by inhibiting the phosphorylation of tau in APP/PS1 Tg mice. Moreover, CDK5 was found to be located downstream of EP1-3 to regulate the phosphorylation of tau though the cleavage of p35 to p25. Finally, the phosphorylation of tau by Ca2+ contributed to the cognitive decline of APP/PS1 Tg mice.
Collapse
Affiliation(s)
- Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
7
|
Bencze J, Mórotz GM, Seo W, Bencs V, Kálmán J, Miller CCJ, Hortobágyi T. Biological function of Lemur tyrosine kinase 2 (LMTK2): implications in neurodegeneration. Mol Brain 2018; 11:20. [PMID: 29631601 PMCID: PMC5891947 DOI: 10.1186/s13041-018-0363-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are frequent, incurable diseases characterised by abnormal protein accumulation and progressive neuronal loss. Despite their growing prevalence, the underlying pathomechanism remains unclear. Lemur tyrosine kinase 2 (LMTK2) is a member of a transmembrane serine/threonine-protein kinase family. Although it was described more than a decade ago, our knowledge on LMTK2’s biological functions is still insufficient. Recent evidence has suggested that LMTK2 is implicated in neurodegeneration. After reviewing the literature, we identified three LMTK2-mediated mechanisms which may contribute to neurodegenerative processes: disrupted axonal transport, tau hyperphosphorylation and enhanced apoptosis. Moreover, LMTK2 gene expression is decreased in an Alzheimer’s disease mouse model. According to these features, LMTK2 might be a promising therapeutic target in near future. However, further investigations are required to clarify the exact biological functions of this unique protein.
Collapse
Affiliation(s)
- János Bencze
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Gábor Miklós Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Woosung Seo
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Viktor Bencs
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - János Kálmán
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Christopher Charles John Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary. .,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary. .,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
8
|
Zhao G, Wang C, Wang H, Gao L, Liu Z, Xu B, Guo X. Characterization of the CDK5 gene in Apis cerana cerana (AccCDK5) and a preliminary identification of its activator gene, AccCDK5r1. Cell Stress Chaperones 2018; 23:13-28. [PMID: 28674940 PMCID: PMC5741578 DOI: 10.1007/s12192-017-0820-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is an unusual CDK whose function has been implicated in protecting the central nervous system (CNS) from oxidative damage. However, there have been few studies of CDK5 in insects. In this study, we identified the AccCDK5 gene from Apis cerana cerana and investigated its role in oxidation resistance. We found that AccCDK5 is highly conserved across species and contains conserved features of the CDK5 family. The results of qPCR analysis indicated that AccCDK5 is highly expressed during the larval and pupal stages and in the adult head and muscle. We further observed that AccCDK5 is induced by several environmental oxidative stresses. Moreover, the overexpression of the AccCDK5 protein in E. coli enhances the resistance of the bacteria to oxidative stress. The activation of CDK5 requires binding to its activator. Therefore, we also identified and cloned cyclin-dependent kinase 5 regulatory subunit 1, which we named AccCDK5r1, from Apis cerana cerana. AccCDK5r1 contains a conserved cell localization targeting domain as well as binding and activation sites for CDK5. Yeast two-hybrid analysis demonstrated the interaction between AccCDK5 and AccCDK5r1. The expression patterns of the two genes were similar after stress treatment. Collectively, these results suggest that AccCDK5 plays a pivotal role in the response to oxidative stresses and that AccCDK5r1 is a potential activator of AccCDK5.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Lijun Gao
- College of Life Sciences, Taishan Medical University, Taian, Shandong, 271016, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
9
|
Ferreras S, Fernández G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, Krapacher FA, Mlewski EC, Mascó DH, Arias C, Pozzo-Miller L, Paglini MG. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons. Front Cell Neurosci 2017; 11:372. [PMID: 29225566 PMCID: PMC5705944 DOI: 10.3389/fncel.2017.00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.
Collapse
Affiliation(s)
- Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - María V Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luján Masseroni
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Favio A Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Estela C Mlewski
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel H Mascó
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - María G Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Virology Institute "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia. J Neurosci 2017; 37:9917-9924. [PMID: 28912154 DOI: 10.1523/jneurosci.0621-17.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 01/10/2023] Open
Abstract
Increased p25, a proteolytic fragment of the regulatory subunit p35, is known to induce aberrant activity of cyclin-dependent kinase 5 (Cdk5), which is associated with neurodegenerative disorders, including Alzheimer's disease. Previously, we showed that replacing endogenous p35 with the noncleavable mutant p35 (Δp35) attenuated amyloidosis and improved cognitive function in a familial Alzheimer's disease mouse model. Here, to address the role of p25/Cdk5 in tauopathy, we generated double-transgenic mice by crossing mice overexpressing mutant human tau (P301S) with Δp35KI mice. We observed significant reduction of phosphorylated tau and its seeding activity in the brain of double transgenic mice compared with the P301S mice. Furthermore, synaptic loss and impaired LTP at hippocampal CA3 region of P301S mice were attenuated by blocking p25 generation. To further validate the role of p25/Cdk5 in tauopathy, we used frontotemporal dementia patient-derived induced pluripotent stem cells (iPSCs) carrying the Tau P301L mutation and generated P301L:Δp35KI isogenic iPSC lines using CRISPR/Cas9 genome editing. We created cerebral organoids from the isogenic iPSCs and found that blockade of p25 generation reduced levels of phosphorylated tau and increased expression of synaptophysin. Together, these data demonstrate a crucial role for p25/Cdk5 in mediating tau-associated pathology and suggest that inhibition of this kinase can remedy neurodegenerative processes in the presence of pathogenic tau mutation.SIGNIFICANCE STATEMENT Accumulation of p25 results in aberrant Cdk5 activation and induction of numerous pathological phenotypes, such as neuroinflammation, synaptic loss, Aβ accumulation, and tau hyperphosphorylation. However, it was not clear whether p25/Cdk5 activity is necessary for the progression of these pathological changes. We recently developed the Δp35KI transgenic mouse that is deficient in p25 generation and Cdk5 hyperactivation. In this study, we used this mouse model to elucidate the role of p25/Cdk5 in FTD mutant tau-mediated pathology. We also used a frontotemporal dementia patient-derived induced pluripotent stem cell carrying the Tau P301L mutation and generated isogenic lines in which p35 is replaced with noncleavable mutant Δp35. Our data suggest that p25/Cdk5 plays an important role in tauopathy in both mouse and human model systems.
Collapse
|
11
|
Wei YP, Ye JW, Wang X, Zhu LP, Hu QH, Wang Q, Ke D, Tian Q, Wang JZ. Tau-Induced Ca 2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation. Neurosci Bull 2017. [PMID: 28646348 DOI: 10.1007/s12264-017-0148-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca2+ concentration with a simultaneous increase in the phosphorylation of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca2+/CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca2+/calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca2+/CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.
Collapse
Affiliation(s)
- Yu-Ping Wei
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Wang Ye
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Wang
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Ping Zhu
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-Hua Hu
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Tian
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Abás S, Erdozain AM, Keller B, Rodríguez-Arévalo S, Callado LF, García-Sevilla JA, Escolano C. Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I 2 Receptor Ligands. ACS Chem Neurosci 2017; 8:737-742. [PMID: 28029766 DOI: 10.1021/acschemneuro.6b00426] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The imidazoline I2 receptors (I2-IRs) are widely distributed in the brain, and I2-IR ligands may have therapeutic potential as neuroprotective agents. Since structural data for I2-IR remains unknown, the discovery of selective I2-IR ligands devoid of α2-adrenoceptor (α2-AR) affinity is likely to provide valuable tools in defining the pharmacological characterization of these receptors. We report the pharmacological characterization of a new family of (2-imidazolin-4-yl)phosphonates. Radioligand binding studies showed that they displayed a higher affinity for I2-IRs than idazoxan, and high I2/α2 selectivity. In vivo studies in mice showed that acute treatments with 1b and 2c significantly increased p-FADD/FADD ratio (an index of cell survival) in the hippocampus when compared with vehicle-treated controls. Additionally, acute and repeated treatments with 2c, but not with 1b, markedly reduced hippocampal p35 cleavage into neurotoxic p25. The present results indicate a neuroprotective potential of (2-imidazolin-4-yl)phosphonates acting at I2-IRs.
Collapse
Affiliation(s)
- Sònia Abás
- Laboratory
of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology,
Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences,
and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Amaia M. Erdozain
- Department
of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Salud Mental, CIBERSAM
| | - Benjamin Keller
- Laboratory
of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands (UIB), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Sergio Rodríguez-Arévalo
- Laboratory
of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology,
Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences,
and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Luis F. Callado
- Department
of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Salud Mental, CIBERSAM
| | - Jesús A. García-Sevilla
- Laboratory
of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands (UIB), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Carmen Escolano
- Laboratory
of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology,
Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences,
and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
13
|
Risher JF, Tucker P. Alkyl Mercury-Induced Toxicity: Multiple Mechanisms of Action. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 240:105-149. [PMID: 27161558 PMCID: PMC10508330 DOI: 10.1007/398_2016_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are a number of mechanisms by which alkylmercury compounds cause toxic action in the body. Collectively, published studies reveal that there are some similarities between the mechanisms of the toxic action of the mono-alkyl mercury compounds methylmercury (MeHg) and ethylmercury (EtHg). This paper represents a summary of some of the studies regarding these mechanisms of action in order to facilitate the understanding of the many varied effects of alkylmercurials in the human body. The similarities in mechanisms of toxicity for MeHg and EtHg are presented and compared. The difference in manifested toxicity of MeHg and EtHg are likely the result of the differences in exposure, metabolism, and elimination from the body, rather than differences in mechanisms of action between the two.
Collapse
Affiliation(s)
- John F Risher
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road (MS F-58), Atlanta, GA, 30333, USA.
| | - Pamela Tucker
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road (MS F-58), Atlanta, GA, 30333, USA
| |
Collapse
|
14
|
Amin ND, Zheng Y, Bk B, Shukla V, Skuntz S, Grant P, Steiner J, Bhaskar M, Pant HC. The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35. Mol Biol Cell 2016; 27:3221-3232. [PMID: 27630261 PMCID: PMC5170856 DOI: 10.1091/mbc.e15-12-0857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/07/2016] [Indexed: 11/11/2022] Open
Abstract
In a series of studies, we have identified TFP5, a truncated fragment of p35, the Cdk5 kinase regulatory protein, which inhibits Cdk5/p35 and the hyperactive Cdk5/p25 activities in test tube experiments. In cortical neurons, however, and in vivo in Alzheimer's disease (AD) model mice, the peptide specifically inhibits the Cdk5/p25 complex and not the endogenous Cdk5/p35. To account for the selective inhibition of Cdk5/p25 activity, we propose that the "p10" N-terminal domain of p35, absent in p25, spares Cdk5/p35 because p10 binds to macromolecules (e.g., tubulin and actin) as a membrane-bound multimeric complex that favors p35 binding to Cdk5 and catalysis. To test this hypothesis, we focused on Munc 18, a key synapse-associated neuronal protein, one of many proteins copurifying with Cdk5/p35 in membrane-bound multimeric complexes. Here we show that, in vitro, the addition of p67 protects Cdk5/p35 and has no effect on Cdk5/p25 activity in the presence of TFP5. In cortical neurons transfected with p67siRNA, we also show that TFP5 inhibits Cdk5/p35 activity, whereas in the presence of p67 the activity is protected. It does so without affecting any other kinases of the Cdk family of cyclin kinases. This difference may be of significant therapeutic value because the accumulation of the deregulated, hyperactive Cdk5/p25 complex in human brains has been implicated in pathology of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yali Zheng
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Binukumar Bk
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Skuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
16
|
Yousuf MA, Tan C, Torres-Altoro MI, Lu FM, Plautz E, Zhang S, Takahashi M, Hernandez A, Kernie SG, Plattner F, Bibb JA. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem 2016; 138:317-27. [PMID: 26998748 DOI: 10.1111/jnc.13620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Abstract
Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation. Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI.
Collapse
Affiliation(s)
- Mohammad A Yousuf
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa I Torres-Altoro
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fang-Min Lu
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erik Plautz
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masaya Takahashi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adan Hernandez
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steven G Kernie
- Department of Pediatrics and Pathology & Cell Biology, Columbia University, New York, New York, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Ciesielski J, Su TP, Tsai SY. Myristic acid hitchhiking on sigma-1 receptor to fend off neurodegeneration. ACTA ACUST UNITED AC 2016; 3. [PMID: 27077074 PMCID: PMC4827442 DOI: 10.14800/rci.1114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NFTs) and stunting axon growth and development. It is known that the sigma-1 receptor (Sig-1R), an endoplasmic reticulum chaperone, can be involved in axon growth by promoting neurite sprouting through nerve growth factor (NGF) and tropomyosin receptor kinase B (TrkB)[1, 2]. It has also been previously demonstrated that a Sig-1R deficiency impairs the process of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs)[3]. The recent study by Tsai et al. sought to understand the relationship between Sig-1R and tauopathy[4]. It was discovered that the Sig-1R helps maintain proper tau phosphorylation and axon development by facilitating p35 myristoylation and promoting p35 turnover. Neurons that had the Sig-1R knocked down exhibited shortened axons and higher levels of phosphorylated tau proteins compared to control neurons. Here we discuss these recent findings on the role of Sig-1R in tauopathy and highlight the newly presented physiological consequences of the Sig-1R-lipid interaction, helping to understand the close relationship between lipids and neurodegeneration.
Collapse
Affiliation(s)
- Jenna Ciesielski
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, Maryland 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, Maryland 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, Maryland 21224, USA
| |
Collapse
|
18
|
Papa L, Robertson CS, Wang KKW, Brophy GM, Hannay HJ, Heaton S, Schmalfuss I, Gabrielli A, Hayes RL, Robicsek SA. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care 2016; 22:52-64. [PMID: 25052159 DOI: 10.1007/s12028-014-0028-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study assessed whether early levels of biomarkers measured in CSF within 24-h of severe TBI would improve the clinical prediction of 6-months mortality. METHODS This prospective study conducted at two Level 1 Trauma Centers enrolled adults with severe TBI (GCS ≤8) requiring a ventriculostomy as well as control subjects. Ventricular CSF was sampled within 24-h of injury and analyzed for seven candidate biomarkers (UCH-L1, MAP-2, SBDP150, SBDP145, SBDP120, MBP, and S100B). The International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) scores (Core, Extended, and Lab) were calculated for each patient to determine risk of 6-months mortality. The IMPACT models and biomarkers were assessed alone and in combination. RESULTS There were 152 patients enrolled, 131 TBI patients and 21 control patients. Thirty six (27 %) patients did not survive to 6 months. Biomarkers were all significantly elevated in TBI versus controls (p < 0.001). Peak levels of UCH-L1, SBDP145, MAP-2, and MBP were significantly higher in non-survivors (p < 0.05). Of the seven biomarkers measured at 12-h post-injury MAP-2 (p = 0.004), UCH-L1 (p = 0.024), and MBP (p = 0.037) had significant unadjusted hazard ratios. Of the seven biomarkers measured at the earliest time within 24-h, MAP-2 (p = 0.002), UCH-L1 (p = 0.016), MBP (p = 0.021), and SBDP145 (0.029) had the most significant elevations. When the IMPACT Extended Model was combined with the biomarkers, MAP-2 contributed most significantly to the survival models with sensitivities of 97-100 %. CONCLUSIONS These data suggest that early levels of MAP-2 in combination with clinical data provide enhanced prognostic capabilities for mortality at 6 months.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, 86 W. Underwood (S-200), Orlando, FL, 32806, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wilkaniec A, Czapski GA, Adamczyk A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J Neurochem 2015; 136:222-33. [PMID: 26376455 DOI: 10.1111/jnc.13365] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Tsai SYA, Pokrass MJ, Klauer NR, Nohara H, Su TP. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid. Proc Natl Acad Sci U S A 2015; 112:6742-7. [PMID: 25964330 PMCID: PMC4450430 DOI: 10.1073/pnas.1422001112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.
Collapse
Affiliation(s)
- Shang-Yi A Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Michael J Pokrass
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Neal R Klauer
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Hiroshi Nohara
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| |
Collapse
|
21
|
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke.
Collapse
|
22
|
Vázquez-Rosa E, Rodríguez-Cruz EN, Serrano S, Rodríguez-Laureano L, Vega IE. Cdk5 phosphorylation of EFhd2 at S74 affects its calcium binding activity. Protein Sci 2014; 23:1197-207. [PMID: 24917152 DOI: 10.1002/pro.2499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022]
Abstract
EFhd2 is a calcium binding protein, which is highly expressed in the central nervous system and associated with pathological forms of tau proteins in tauopathies. Previous phosphoproteomics studies and bioinformatics analysis suggest that EFhd2 may be phosphorylated. Here, we determine whether Cdk5, a hyperactivated kinase in tauopathies, phosphorylates EFhd2 and influence its known molecular activities. The results indicated that EFhd2 is phosphorylated by brain extract of the transgenic mouse CK-p25, which overexpresses the Cdk5 constitutive activator p25. Consistently, in vitro kinase assays demonstrated that Cdk5, but not GSK3β, directly phosphorylates EFhd2. Biomass, tandem mass spectrometry, and mutagenesis analyses indicated that Cdk5 monophosphorylates EFhd2 at S74, but not the adjacent S76. Furthermore, Cdk5-mediated phosphorylation of EFhd2 affected its calcium binding activity. Finally, a phospho-specific antibody was generated against EFhd2 phosphorylated at S74 and was used to detect this phosphorylation event in postmortem brain tissue from Alzheimer's disease and normal-aging control cases. Results demonstrated that EFhd2 is phosphorylated in vivo at S74. These results imply that EFhd2's physiological and/or pathological function could be regulated by its phosphorylation state.
Collapse
Affiliation(s)
- Edwin Vázquez-Rosa
- Department of Chemistry, College of Natural Sciences, University of Puerto Rico-Río Piedras Campus, San Juan, Puerto Rico, 00931; Protein Mass Spectrometry Core Facility, College of Natural Sciences, University of Puerto Rico - Río Piedras Campus, San Juan, Puerto Rico, 00931
| | | | | | | | | |
Collapse
|
23
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 828] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
24
|
Wang W, Cao X, Zhu X, Gu Y. Molecular dynamic simulations give insight into the mechanism of binding between 2-aminothiazole inhibitors and CDK5. J Mol Model 2013; 19:2635-45. [PMID: 23525963 DOI: 10.1007/s00894-013-1815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 03/04/2013] [Indexed: 12/20/2022]
Abstract
Molecular docking, molecular dynamics (MD) simulations, and binding free energy analysis were performed to reveal differences in the binding affinities between five 2-aminothiazole inhibitors and CDK5. The hydrogen bonding and hydrophobic interactions between inhibitors and adjacent residues are analyzed and discussed. The rank of calculated binding free energies using the MM-PBSA method is consistent with experimental result. The results illustrate that hydrogen bonds with Cys83 favor inhibitor binding. The van der Waals interactions, especially the important contact with Ile10, dominate in the binding free energy and play a crucial role in distinguishing the different bioactivity of the five inhibitors.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | | | | | | |
Collapse
|
25
|
Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci 2013; 33:334-43. [PMID: 23283346 DOI: 10.1523/jneurosci.3593-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aberrant hyperactivation of Cyclin-dependent kinase 5 (Cdk5), by the production of its truncated activator p25, results in the formation of hyperphosphorylated tau, neuroinflammation, amyloid deposition, and neuronal death in vitro and in vivo. Mechanistically, this occurs as a result of a neurotoxic insult that invokes the intracellular elevation of calcium to activate calpain, which cleaves the Cdk5 activator p35 into p25. It has been shown previously that the p25 transgenic mouse as a model to investigate the mechanistic implications of p25 production in the brain, which recapitulates deregulated Cdk5-mediated neuropathological changes, such as hyperphosphorylated tau and neuronal death. To date, strategies to inhibit Cdk5 activity have not been successful in targeting selectively aberrant activity without affecting normal Cdk5 activity. Here we show that the selective inhibition of p25/Cdk5 hyperactivation in vivo, through overexpression of the Cdk5 inhibitory peptide (CIP), rescues against the neurodegenerative pathologies caused by p25/Cdk5 hyperactivation without affecting normal neurodevelopment afforded by normal p35/Cdk5 activity. Tau and amyloid pathologies as well as neuroinflammation are significantly reduced in the CIP-p25 tetra transgenic mice, whereas brain atrophy and subsequent cognitive decline are reversed in these mice. The findings reported here represent an important breakthrough in elucidating approaches to selectively inhibit the p25/Cdk5 hyperactivation as a potential therapeutic target to reduce neurodegeneration.
Collapse
|
26
|
Barros-Miñones L, Martín-de-Saavedra D, Perez-Alvarez S, Orejana L, Suquía V, Goñi-Allo B, Hervias I, López MG, Jordan J, Aguirre N, Puerta E. Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta Mol Basis Dis 2013; 1832:705-17. [PMID: 23415811 DOI: 10.1016/j.bbadis.2013.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Phosphodiesterase 5 (PDE5) inhibitors have recently been reported to exert beneficial effects against ischemia-reperfusion injury in several organs but their neuroprotective effects in brain stroke models are scarce. The present study was undertaken to assess the effects of sildenafil against cell death caused by intrastriatal injection of malonate, an inhibitor of succinate dehydrogenase; which produces both energy depletion and lesions similar to those seen in cerebral ischemia. Our data demonstrate that sildenafil (1.5mg/kg by mouth (p.o.)), given 30min before malonate (1.5μmol/2μL), significantly decreased the lesion volume caused by this toxin. This protective effect can be probably related to the inhibition of excitotoxic pathways. Thus, malonate induced the activation of the calcium-dependent protease, calpain and the cyclin-dependent kinase 5, cdk5; which resulted in the hyperphosphorylation of tau and the cleavage of the protective transcription factor, myocyte enhancer factor 2, MEF2. All these effects were also significantly reduced by sildenafil pre-treatment, suggesting that sildenafil protects against malonate-induced cell death through the regulation of the calpain/p25/cdk5 signaling pathway. Similar findings were obtained using inhibitors of calpain or cdk5, further supporting our contention. Sildenafil also increased MEF2 phosphorylation and Bcl-2/Bax and Bcl-xL/Bax ratios, effects that might as well contribute to prevent cell death. Finally, sildenafil neuroprotection was extended not only to rat hippocampal slices subjected to oxygen and glucose deprivation when added at the time of reoxygenation, but also, in vivo when administered after malonate injection. Thus, the therapeutic window for sildenafil against malonate-induced hypoxia was set at 3h.
Collapse
|
27
|
Gael B, Julie D, Shao Z, Xuan Z, Ren Y, Xu J, Arbez N, Mauger G, Bruban J, Georgakopoulos A, Shioi J, Robakis NK. Presenilin mediates neuroprotective functions of ephrinB and brain-derived neurotrophic factor and regulates ligand-induced internalization and metabolism of EphB2 and TrkB receptors. Neurobiol Aging 2013; 34:499-510. [PMID: 22475621 PMCID: PMC3394882 DOI: 10.1016/j.neurobiolaging.2012.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Activation of EphB receptors by ephrinB (efnB) ligands on neuronal cell surface regulates important functions, including neurite outgrowth, axonal guidance, and synaptic plasticity. Here, we show that efnB rescues primary cortical neuronal cultures from necrotic cell death induced by glutamate excitotoxicity and that this function depends on EphB receptors. Importantly, the neuroprotective function of the efnB/EphB system depends on presenilin 1 (PS1), a protein that plays crucial roles in Alzheimer's disease (AD) neurodegeneration. Furthermore, absence of one PS1 allele results in significantly decreased neuroprotection, indicating that both PS1 alleles are necessary for full expression of the neuroprotective activity of the efnB/EphB system. We also show that the ability of brain-derived neurotrophic factor (BDNF) to protect neuronal cultures from glutamate-induced cell death depends on PS1. Neuroprotective functions of both efnB and BDNF, however, were independent of γ-secretase activity. Absence of PS1 decreases cell surface expression of neuronal TrkB and EphB2 without affecting total cellular levels of the receptors. Furthermore, PS1-knockout neurons show defective ligand-dependent internalization and decreased ligand-induced degradation of TrkB and Eph receptors. Our data show that PS1 mediates the neuroprotective activities of efnB and BDNF against excitotoxicity and regulates surface expression and ligand-induced metabolism of their cognate receptors. Together, our observations indicate that PS1 promotes neuronal survival by regulating neuroprotective functions of ligand-receptor systems.
Collapse
Affiliation(s)
- Barthet Gael
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Dunys Julie
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhiping Shao
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhao Xuan
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Ymin Ren
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Jindong Xu
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nicolas Arbez
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gweltas Mauger
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Julien Bruban
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Junichi Shioi
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nikolaos K. Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
28
|
Jin N, Qian W, Yin X, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer's disease. Nucleic Acids Res 2013; 41:3240-56. [PMID: 23341039 PMCID: PMC3597642 DOI: 10.1093/nar/gks1227] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired brain glucose uptake and metabolism precede the appearance of clinical symptoms in Alzheimer disease (AD). Neuronal glucose transporter 3 (GLUT3) is decreased in AD brain and correlates with tau pathology. However, what leads to the decreased GLUT3 is yet unknown. In this study, we found that the promoter of human GLUT3 contains three potential cAMP response element (CRE)-like elements, CRE1, CRE2 and CRE3. Overexpression of CRE-binding protein (CREB) or activation of cAMP-dependent protein kinase significantly increased GLUT3 expression. CREB bound to the CREs and promoted luciferase expression driven by human GLUT3-promoter. Among the CREs, CRE2 and CRE3 were required for the promotion of GLUT3 expression. Full-length CREB was decreased and truncation of CREB was increased in AD brain. This truncation was correlated with calpain I activation in human brain. Further study demonstrated that calpain I proteolysed CREB at Gln28–Ala29 and generated a 41-kDa truncated CREB, which had less activity to promote GLUT3 expression. Importantly, human brain GLUT3 was correlated with full-length CREB positively and with activation of calpain I negatively. These findings suggest that overactivation of calpain I caused by calcium overload proteolyses CREB, resulting in a reduction of GLUT3 expression and consequently impairing glucose uptake and metabolism in AD brain.
Collapse
Affiliation(s)
- Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012; 32:11820-34. [PMID: 22915123 DOI: 10.1523/jneurosci.0875-12.2012] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca²⁺) homeostasis has been linked to presenilins, the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP), thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca²⁺ homeostasis and whether ER Ca²⁺ could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP(695)), or APP harboring the Swedish double mutation (APP(swe)) triggers increased ryanodine receptor (RyR) expression and enhances RyR-mediated ER Ca²⁺ release in SH-SY5Y neuroblastoma cells and in APP(swe)-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca²⁺ release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions, and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca²⁺ homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches.
Collapse
|
30
|
p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc Natl Acad Sci U S A 2012; 109:20041-6. [PMID: 23151508 DOI: 10.1073/pnas.1212914109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyclin-dependent kinase 5(CDK5) in complex with its activator, p35 (protein of 35 kDa), is essential for early neurodevelopment in mammals. However, endogenous cleavage of p35 to p25 is associated with neuron death and neurodegenerative disease. Here we show that a peptide (p10') encoding the N-terminal domain of p35 protects against CDK5/p25-induced toxicity in neurons. p10' also prevented the death of neurons treated with the neurotoxin, 1-methyl-4-phenylpyridinium (MPP(+)), which induces conversion of endogenous p35 to p25, and Parkinson disease (PD)-like symptoms in animals. MPP(+) induces CDK5/p25-dependent phosphorylation of peroxiredoxin 2 (Prx2), resulting in inhibition of its peroxireductase activity and accumulation of reactive oxygen species (ROS). We found that p10' expression inhibited both Prx2 phosphorylation and ROS accumulation in neurons. In addition, p10' inhibited the p25-induced appearance of antigen of the Ki67 antibody (Ki67) and phosphohistone H2AX (γH2AX), classic markers of cell cycle activity and DNA double-strand breakage, respectively, associated with neuron death. Our results suggest that p10 (protein of 10 kDa) is a unique prosurvival domain in p35, essential for normal CDK5/p35 function in neurons. Loss of the p10 domain results in CDK5/p25 toxicity and neurodegeneration in vivo.
Collapse
|
31
|
Ferreira A. Calpain dysregulation in Alzheimer's disease. ISRN BIOCHEMISTRY 2012; 2012:728571. [PMID: 25969760 PMCID: PMC4393001 DOI: 10.5402/2012/728571] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques and neurofibrillary tangles in the neocortex and hippocampus of AD patients. In addition, a marked decrease in synaptic contacts has been detected in these affected brain areas. Due to its prevalence in the aging population, this disease has been the focus of numerous studies. The data obtained from those studies suggest that the mechanisms leading to the formation of the hallmark lesions of AD might be linked. One of such mechanisms seems to be the dysregulation of calcium homeostasis that results in the abnormal activation of calpains. Calpains are a family of Ca(2+)-dependent cysteine proteases that play a key role in multiple cell functions including cell development, differentiation and proliferation, axonal guidance, growth cone motility, and cell death, among others. In this paper, we briefly reviewed data on the structure of these proteases and their regulation under normal conditions. We also summarized data underscoring the participation of calpains in the neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 8-140, Chicago, IL 60611, USA
| |
Collapse
|
32
|
Shukla V, Zheng YL, Mishra SK, Amin ND, Steiner J, Grant P, Kesavapany S, Pant HC. A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice. FASEB J 2012; 27:174-86. [PMID: 23038754 DOI: 10.1096/fj.12-217497] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD), one of the leading neurodegenerative disorders of older adults, which causes major socioeconomic burdens globally, lacks effective therapeutics without significant side effects. Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs), it has been reported that cyclin-dependent kinase 5 (Cdk5), a critical neuronal kinase, is hyperactivated in AD brains and is, in part, responsible for the above pathology. Here we show that a modified truncated 24-aa peptide (TFP5), derived from the Cdk5 activator p35, penetrates the blood-brain barrier after intraperitoneal injections, inhibits abnormal Cdk5 hyperactivity, and significantly rescues AD pathology (up to 70-80%) in 5XFAD AD model mice. The mutant mice, injected with TFP5 exhibit behavioral rescue, whereas no rescue was observed in mutant mice injected with either saline or scrambled peptide. However, TFP5 does not inhibit cell cycle Cdks or normal Cdk5/p35 activity, and thereby has no toxic side effects (even at 200 mg/kg), a common problem in most current therapeutics for AD. In addition, treated mice displayed decreased inflammation, amyloid plaques, NFTs, cell death, and an extended life by 2 mo. These results suggest TFP5 as a potential therapeutic, toxicity-free candidate for AD.
Collapse
Affiliation(s)
- Varsha Shukla
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
He R, Eggert JA. The finger of an angel: memory return with epigenetic manipulation. Epigenomics 2012; 4:295-302. [DOI: 10.2217/epi.12.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Scientists have been trying to crack the memory code for hundreds of years; however, centuries later, even the simplest elements of memory formation are still not fully understood. Recent studies in epigenetics indicate neuronal activity can induce transient reprogramming of epigenetic codes required for long-term memory consolidation. This suggests epigenetics as a basic mechanism in the regulation of long-term memory; and highlights the possibility that epigenetic modifications, as well as environmental factors, can change certain gene expression of brain neurons to restore the ability to remember, even with an aging brain or innate mental deficits. This article is an overview of basic knowledge and current research on epigenetic regulation of long-term memory, and prospects for future research.
Collapse
Affiliation(s)
- Ran He
- Healthcare Genetics Program, College of Health, Education & Human Development, Clemson University, Clemson, SC 29634, USA
| | - Julia A Eggert
- Healthcare Genetics Program, College of Health, Education & Human Development, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
34
|
Crosstalk between cdk5 and MEK-ERK signalling upon opioid receptor stimulation leads to upregulation of activator p25 and MEK1 inhibition in rat brain. Neuroscience 2012; 215:17-30. [PMID: 22537847 DOI: 10.1016/j.neuroscience.2012.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) participates in opioid receptor signalling through complex molecular mechanisms. The acute effects of selective μ-(fentanyl) and δ-(SNC-80) opioid receptor agonists, as well as the chronic effects of morphine (the prototypic opiate agonist mainly acting at μ-receptors), modulating cdk5 and activators p35/p25 and their interactions with neurotoxic/apoptotic factors, dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) and extracellular signal-regulated kinase (ERK) were quantified (Western Blot analyses) in the rat corpus striatum and/or cerebral cortex. To assess the involved mechanisms, MDL28170 was used to inhibit calpain activity and SL327 to disrupt MEK (ERK kinase)-ERK activation. Acute fentanyl (0.1mg/kg) and SNC-80 (10mg/kg) induced rapid (7-60 min) 2- to 4-fold increases of p25 content, without induction of cdk5/p25 pro-apoptotic c-Jun NH(2)-terminal protein kinase or aberrant cleavage of poly(ADP-ribose)-polymerase-1, a hallmark of apoptosis. In contrast, fentanyl and SNC-80 stimulated cdk5-mediated p-Thr75 DARPP-32 (+116-166%; PKA inhibition) and p-Thr286 MEK1 (+21-82%; MEK inactivation), and this latter effect resulted in uncoupling of MEK to ERK signals. Calpain inhibition with MDL28170 (cleavage of p35 to p25) attenuated fentanyl-induced p25 accumulation (-57%), but not the stimulation of p-Thr286 MEK1 or p-Thr75 DARPP-32. MEK-ERK inhibition with SL327 fully prevented fentanyl-induced p25 upregulation. Notably, chronic morphine treatment (10-100mg/kg for 6 days) also increased p25 content and p25/p35 ratio (and activated/inactivated MEK1) in rat brain cortex, which indicated that p25 upregulation persisted under the sustained stimulation of μ-opioid receptors. The results demonstrate that the acute stimulation of opioid receptors leads to upregulation of p25 activator through a MEK-ERK and calpain-dependent pathway, and to disruption of MEK-ERK signalling by a cdk5/p35-induced MEK1 inhibition. Moreover, the effects induced by the sustained stimulation of μ-receptors with morphine suggest the participation of cdk5/p25 complex in opiate-induced long-term neuroplasticity.
Collapse
|
35
|
Jantas D, Lorenc-Koci E, Kubera M, Lason W. Neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors on lactacystin-induced cell damage in primary cortical neurons. Neurotoxicology 2011; 32:845-56. [PMID: 21683092 DOI: 10.1016/j.neuro.2011.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/17/2011] [Accepted: 05/25/2011] [Indexed: 10/25/2022]
Abstract
The dysfunction of the proteasome system is implicated in the pathomechanism of several chronic neurodegenerative diseases. Lactacystin (LC), an irreversible proteasome inhibitor, induces cell death in primary cortical neurons, however, the molecular mechanisms of its neurotoxic action has been only partially unraveled. In this study we aimed to elucidate an involvement of the key enzymatic pathways responsible for LC-induced neuronal cell death. Incubation of primary cortical neurons with LC (0.25-50 μg/ml) evoked neuronal cell death in concentration- and time-dependent manner. Lactacystin (2.5 μg/ml; 6.6μM) enhanced caspase-3 activity, but caspase-3 inhibitor, Ac-DEVD-CHO did not attenuate the LC-evoked cell damage. Western blot analysis showed a time-dependent, prolonged activation of MAPK/ERK1/2 pathway after LC exposure. Moreover, inhibitors of MAPK/ERK1/2 signaling, U0126 and PD98052 attenuated the LC-evoked cell death. We also found that LC-treatment resulted in the induction of calpains and calpain inhibitors (MDL28170 and calpeptin) protected neurons against the LC-induced cell damage. Neuroprotective action of MAPK/ERK1/2 and calpain inhibitors were connected with attenuation of LC-induced DNA fragmentation measured by Hoechst 33342 staining and TUNEL assay. However, only MAPK/ERK1/2 but not calpain inhibitors, attenuated the LC-induced AIF (apoptosis inducing factor) release. Further studies showed no synergy between neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors given in combination when compared to their effects alone. The obtained data provided evidence for neuroprotective potency of MAPK/ERK1/2 and calpain, but not caspase-3 inhibition against the neurotoxic effects of LC in primary cortical neurons and give rationale for using these inhibitors in the treatment of neurodegenerative diseases connected with proteasome dysfunction.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|
36
|
Orejana L, Barros-Miñones L, Jordán J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging 2011; 33:625.e11-20. [PMID: 21546125 DOI: 10.1016/j.neurobiolaging.2011.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 01/03/2023]
Abstract
Aging is associated with a deterioration of cognitive performance and with increased risk of neurodegenerative disorders. In the present study we tested whether the specific phosphodiesterase 5 inhibitor sildenafil could ameliorate the age-dependent cognitive impairments shown by the senescence-accelerated mouse prone-8 (SAMP8). Sildenafil administration (7.5 mg/kg for 4 weeks) to 5-month-old SAMP8 mice attenuated spatial learning and memory impairments shown by these mice in the Morris Water Maze. Tau hyperphosphorylation (AT8 but not PHF-1 epitope) shown by SAMP8 mice at this age was also decreased in the hippocampus of sildenafil-treated mice, an effect probably related to a decrease in cyclin-dependent kinase 5 protein expression and activity (p25/p35 ratio). Interestingly, sildenafil also phosphorylated Akt, which was associated with an increase of glycogen synthase kinase-3β phosphorylation, providing a plausible explanation for the reductions in tau hyperphosphorylation (AT8 and PHF-1 epitopes) and attenuation of cognitive deficits shown by 9-month-old SAMP8 mice. Overall, sildenafil might be beneficial in age-related brain dysfunction and could be an emerging candidate for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lourdes Orejana
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
37
|
Czapski GA, Gąssowska M, Songin M, Radecka UD, Strosznajder JB. Alterations of Cyclin dependent kinase 5 expression and phosphorylation in Amyloid precursor protein (APP)-transfected PC12 cells. FEBS Lett 2011; 585:1243-8. [DOI: 10.1016/j.febslet.2011.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
38
|
Chew J, Chen MJ, Lee AYW, Peng ZF, Chong KWY, He L, Bay BH, Ng JMJ, Qi RZ, Cheung NS. Identification of p10 as a neurotoxic product generated from the proteolytic cleavage of the neuronal Cdk5 activator. J Cell Biochem 2011; 111:1359-66. [PMID: 20830735 DOI: 10.1002/jcb.22864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The involvement of cyclin-dependent kinase-5 (Cdk5) and p25, the proteolytic fragment of activator p35, has long been implicated in the development of neuron-fibrillary tangles (NFTs), a hallmark of Alzheimer's disease (AD). Findings in this area over the past decade have been highly controversial and inconclusive. Here we report unprecedented detection of endogenous p10, the smaller proteolytic fragment of the Cdk5 activator p35 in treated primary cortical neurons that underwent significant apoptosis, triggered by proteasome inhibitors MG132 and lactacystin, and protein kinase inhibitor staurosporine (STS). p10 appeared exclusively in the detergent-resistant fraction made up of nuclear matrix, membrane-bound organelles, insoluble membrane proteins, and cytoskeletal components. Intriguingly, transient overexpression of p10 in neural cells induced apoptotic morphologies, suggesting that p10 may play an important role in mediating neuronal cell death in neurodegenerative diseases. We demonstrated for the first time that p10-mediated apoptosis occurred via a caspases-independent pathway. Furthermore, as p10 may contain the myristoylation signal for p35 which is responsible for binding p35 to several intracellular components and the membrane, all in all these novel results present that the accumulation of p10 to the detergent-insoluble fraction may be a crucial pathological event to triggering neuronal cell death.
Collapse
Affiliation(s)
- Jenny Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaźmierczak A, Czapski GA, Adamczyk A, Gajkowska B, Strosznajder JB. A novel mechanism of non-Aβ component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochem Int 2010; 58:206-14. [PMID: 21130128 DOI: 10.1016/j.neuint.2010.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/15/2023]
Abstract
The non-Aβ component of Alzheimer's disease (AD) amyloid (NAC) is produced from the precursor protein NACP/α-synuclein (ASN) by till now unknown mechanism. Previous study showed that like ASN, NAC peptide induced oxidative/nitrosative stress and apoptosis. Our present study focused on the mechanisms of PC12 cells death evoked by NAC peptide, with particular consideration on the role of p53 protein. On the basis of molecular and transmission electron microscopic (TEM) analysis it was found that exogenous NAC peptide (10 μM) caused mitochondria dysfunction, enhanced free radical generation, and induced both apoptotic and autophagic cell death. Morphological and immunocytochemical evidence from TEM showed marked changes in expression and in translocation of proapoptotic protein Bax. We also observed time-dependent enhancement of Tp53 gene expression after NAC treatment. Free radicals scavenger N-tert-butyl-alpha-phenylnitrone (PBN, 1 mM) and p53 inhibitor (α-Pifithrin, 20 μM) significantly protected PC12 cells against NAC peptide-evoked cell death. In addition, exposure to NAC peptide resulted in higher expression of cyclin-dependent kinase 5 (Cdk5), one of the enzymes responsible for p53 phosphorylation and activation. Concomitantly, we observed the increase of expression of Cdk5r1 and Cdk5r2 genes, coding p35 and p39 peptides that are essential regulators of Cdk5 activity. Moreover, the specific Cdk5 inhibitor (BML-259, 10 μM) protected large population of cells against NAC-evoked cell death. Our findings indicate that NAC peptide exerts its toxic effect by activation of p53/Cdk5 and Bax-dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Anna Kaźmierczak
- Mossakowski Medical Research Center, Polish Academy of Sciences, Department of Cellular Signaling, Pawińskiego 5, 02-106 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
40
|
Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. J Neurosci 2010; 30:14946-54. [PMID: 21068297 PMCID: PMC3426835 DOI: 10.1523/jneurosci.4305-10.2010] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/17/2022] Open
Abstract
Despite the progress of the past two decades, the cause of Alzheimer's disease (AD) and effective treatments against it remain elusive. The hypothesis that amyloid-β (Aβ) peptides are the primary causative agents of AD retains significant support among researchers. Nonetheless, a growing body of evidence shows that Aβ peptides are unlikely to be the sole factor in AD etiology. Evidence that Aβ/amyloid-independent factors, including the actions of AD-related genes, also contribute significantly to AD pathogenesis was presented in a symposium at the 2010 Annual Meeting of the Society for Neuroscience. Here we summarize the studies showing how amyloid-independent mechanisms cause defective endo-lysosomal trafficking, altered intracellular signaling cascades, or impaired neurotransmitter release and contribute to synaptic dysfunction and/or neurodegeneration, leading to dementia in AD. A view of AD pathogenesis that encompasses both the amyloid-dependent and -independent mechanisms will help fill the gaps in our knowledge and reconcile the findings that cannot be explained solely by the amyloid hypothesis.
Collapse
Affiliation(s)
- Sanjay W Pimplikar
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
41
|
Zheng YL, Amin ND, Hu YF, Rudrabhatla P, Shukla V, Kanungo J, Kesavapany S, Grant P, Albers W, Pant HC. A 24-residue peptide (p5), derived from p35, the Cdk5 neuronal activator, specifically inhibits Cdk5-p25 hyperactivity and tau hyperphosphorylation. J Biol Chem 2010; 285:34202-12. [PMID: 20720012 DOI: 10.1074/jbc.m110.134643] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of Cdk5-p35 is tightly regulated in the developing and mature nervous system. Stress-induced cleavage of the activator p35 to p25 and a p10 N-terminal domain induces deregulated Cdk5 hyperactivity and perikaryal aggregations of hyperphosphorylated Tau and neurofilaments, pathogenic hallmarks in neurodegenerative diseases, such as Alzheimer disease and amyotrophic lateral sclerosis, respectively. Previously, we identified a 125-residue truncated fragment of p35 called CIP that effectively and specifically inhibited Cdk5-p25 activity and Tau hyperphosphorylation induced by Aβ peptides in vitro, in HEK293 cells, and in neuronal cells. Although these results offer a possible therapeutic approach to those neurodegenerative diseases assumed to derive from Cdk5-p25 hyperactivity and/or Aβ induced pathology, CIP is too large for successful therapeutic regimens. To identify a smaller, more effective peptide, in this study we prepared a 24-residue peptide, p5, spanning CIP residues Lys(245)-Ala(277). p5 more effectively inhibited Cdk5-p25 activity than did CIP in vitro. In neuron cells, p5 inhibited deregulated Cdk5-p25 activity but had no effect on the activity of endogenous Cdk5-p35 or on any related endogenous cyclin-dependent kinases in HEK293 cells. Specificity of p5 inhibition in cortical neurons may depend on the p10 domain in p35, which is absent in p25. Furthermore, we have demonstrated that p5 reduced Aβ(1-42)-induced Tau hyperphosphorylation and apoptosis in cortical neurons. These results suggest that p5 peptide may be a unique and useful candidate for therapeutic studies of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Crespo-Biel N, Camins A, Canudas AM, Pallàs M. Kainate-induced toxicity in the hippocampus: potential role of lithium. Bipolar Disord 2010; 12:425-36. [PMID: 20636640 DOI: 10.1111/j.1399-5618.2010.00825.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We investigated the neuroprotective effects of lithium in an experimental neurodegeneration model gated to kainate (KA) receptor activation. METHODS The hippocampus from KA-treated mice and hippocampal cell cultures were used to evaluate the pathways regulated by chronic lithium pretreatment in both in vivo and in vitro models. RESULTS Treatment with KA, as measured by fragmentation of alpha-spectrin and biochemically, induced the activation of calpain resulting in p35 cleavage to p25, indicating activation of cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3ss (GSK-3ss) and an increase in tau protein phosphorylation. Treatment with lithium reduced calpain activation and reduced the effects of cdk5 and GSK-3ss on tau. KA treatment of cultures resulted in neuronal demise. According to nuclear condensed cell counts, the addition of lithium to neuronal cell cultures (0.5-1 mM) a few days before KA treatment had neuroprotective and also antiapoptotic effects. The action of lithium on calpain/cdk5 and GSK-3ss pathways produced similar results in vivo. As calpain is activated by an increase in intracellular calcium, we showed that lithium reduced calcium concentrations in basal and KA-treated hippocampal cells, which was accompanied by an increase in NCX3, a Na+/Ca2+ exchanger pump. CONCLUSION A robust neuroprotective effect of lithium in the excitotoxic process induced by KA in mouse hippocampus was demonstrated via modulation of calcium entry and the subsequent inhibition of the calpain pathway. These mechanisms may act in an additive way with other mechanisms previously described for lithium, suggesting that it may be useful as a possible therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Natalia Crespo-Biel
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB) i Centro de Investigación de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Lebel M, Cyr M. Molecular and cellular events of dopamine D1 receptor-mediated tau phosphorylation in SK-N-MC cells. Synapse 2010; 65:69-76. [DOI: 10.1002/syn.20818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Park HJ, Cui FJ, Roh JW, Jung YC, Kim SH, Kim YS, Kang UG. Effects of electroconvulsive shock on the phosphorylation of DARPP-32 in rat striatum. Psychiatry Res 2009; 170:91-5. [PMID: 19818513 DOI: 10.1016/j.psychres.2008.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 11/28/2022]
Abstract
Dopamine- and cAMP-regulated phosphoprotein with molecular weight 32 kDa (DARPP-32) is a key integrative molecule in the dopaminergic and glutamatergic signaling pathways in the striatum. Electroconvulsive shock (ECS), which induces massive neuronal depolarization, can activate various signaling pathways. In this study we investigated whether ECS could affect the phosphorylation status of DARPP-32. Male Sprague-Dawley rats underwent ECS and were sacrificed by decapitation at 0, 2, 10, 60, and 180 min after treatment. The phosphorylations of Thr34 and Thr75 residues of DARPP-32 and Ser159 residue of cyclin-dependent kinase 5 (CDK5) were investigated in the striatum. The activity of protein phosphatase 1 (PP1) and the binding between DARPP-32 and PP1 were also analyzed. Thr34 phosphorylation of DARPP-32 increased immediately after ECS and this state was maintained for more than 60 min. The activity of PP1 decreased and the binding between PP1 and DARPP-32 increased in accordance with this phosphorylation pattern. However, the phosphorylation at Thr75 showed no significant change except for an initial transient decrease. The phosphorylation of CDK5, which is responsible for Thr75 phosphorylation of DARPP-32, did not exhibit significant fluctuations. Our findings indicate that ECS increases Thr34 phosphorylation of DARPP-32, and thus inhibits the activity of PP1.
Collapse
Affiliation(s)
- Hye-Jean Park
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 2009; 14:1289-98. [DOI: 10.1007/s10495-009-0405-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Mlewski EC, Krapacher FA, Ferreras S, Paglini G. Transient enhanced expression of Cdk5 activator p25 after acute and chronic d-amphetamine administration. Ann N Y Acad Sci 2008; 1139:89-102. [PMID: 18991853 DOI: 10.1196/annals.1432.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular and molecular mechanisms of sensitization in the addictive process are still unclear. Recently, chronic treatment with cocaine has been shown to upregulate the expression of cyclin-dependent kinase 5 (cdk5) and its specific activator, p35, in the striatum, as a downstream target gene of DeltaFosB, and has been implicated in compensatory adaptive changes associated with psychostimulants. Cdk5 is a serine/threonine kinase and its activation is achieved through association with a regulatory subunit, either p35 or p39. P35 is cleaved by the protease calpain, which results in the generation of a truncated product termed p25, which contains all elements necessary for cdk5 activation. The cdk5/p35 complex plays an essential role in neuronal development and survival. It has also been involved in neuronal trafficking and transport and in dopaminergic transmission, indicating its role either in presynaptic and postsynaptic signaling. In this study we report that the cdk5/p35 complex participates in acute and chronic d-amphetamine (AMPH)-evoked behavioral events, and we show a surprisingly transient enhanced expression of p25 and a lasting increased expression of p35 in dorsal striatal synaptosomes after acute and chronic AMPH administration. Pak1, a substrate for cdk5, is also enriched in the synaptosomal fraction of acute AMPH-treated rats. Our data suggest that the transient upregulation of p25 may regulate the activity of cdk5 in phosphorylating particular substrates, such as Pak1, implicated in the compensatory adaptive morphophysiologic changes associated with the process of behavioral sensitization to psychostimulants.
Collapse
Affiliation(s)
- Estela Cecilia Mlewski
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
47
|
Kesavapany S, Lau KF, McLoughlin DM, Brownlees J, Ackerley S, Leigh PN, Shaw CE, Miller CCJ. p35/cdk5 binds and phosphorylates β-catenin and regulates β-catenin/presenilin-1 interaction. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2001.01376.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Lithium Treatment Decreases Activities of Tau Kinases in a Murine Model of Senescence. J Neuropathol Exp Neurol 2008; 67:612-23. [DOI: 10.1097/nen.0b013e3181776293] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Enhanced tau phosphorylation in the hippocampus of mice treated with 3,4-methylenedioxymethamphetamine ("Ecstasy"). J Neurosci 2008; 28:3234-45. [PMID: 18354027 DOI: 10.1523/jneurosci.0159-08.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) ("Ecstasy") produces neurotoxic effects, which result into an impairment of learning and memory and other neurological dysfunctions. We examined whether MDMA induces increases in tau protein phosphorylation, which are typically associated with Alzheimer's disease and other chronic neurodegenerative disorders. We injected mice with MDMA at cumulative doses of 10-50 mg/kg intraperitoneally, which are approximately equivalent to doses generally consumed by humans. MDMA enhanced the formation of reactive oxygen species and induced reactive gliosis in the hippocampus, without histological evidence of neuronal loss. An acute or 6 d treatment with MDMA increased tau protein phosphorylation in the hippocampus, revealed by both anti-phospho(Ser(404))-tau and paired helical filament-1 antibodies. This increase was restricted to the CA2/CA3 subfields and lasted 1 and 7 d after acute and repeated MDMA treatment, respectively. Tau protein was phosphorylated as a result of two nonredundant mechanisms: (1) inhibition of the canonical Wnt (wingless-type MMTV integration site family) pathway, with ensuing activation of glycogen synthase kinase-3beta; and (2) activation of type-5 cyclin-dependent kinase (Cdk5). MDMA induced the expression of the Wnt antagonist, Dickkopf-1, and the expression of the Cdk5-activating protein, p25. In addition, the increase in tau phosphorylation was attenuated by strategies that rescued the Wnt pathway or inhibited Cdk5. Finally, an impairment in hippocampus-dependent spatial learning was induced by doses of MDMA that increased tau phosphorylation, although the impairment outlasted this biochemical event. We conclude that tau hyperphosphorylation in the hippocampus may contribute to the impairment of learning and memory associated with MDMA abuse.
Collapse
|
50
|
Abstract
The calpain family of proteases is causally linked to postischemic neurodegeneration. However, the precise mechanisms by which calpains contribute to postischemic neuronal death have not been fully elucidated. This review outlines the key features of the calpain system, and the evidence for its causal role in postischemic neuronal pathology. Furthermore, the consequences of specific calpain substrate cleavage at various subcellular locations are explored. Calpain substrates within synapses, plasma membrane, endoplasmic reticulum, lysosomes, mitochondria, and the nucleus, as well as the overall effect of postischemic calpain activity on calcium regulation and cell death signaling are considered. Finally, potential pathways for calpain-mediated neurodegeneration are outlined in an effort to guide future studies aimed at understanding the downstream pathology of postischemic calpain activity and identifying optimal therapeutic strategies.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | |
Collapse
|