1
|
van der Kraan PM, van Caam AP, Blaney Davidson EN, van den Bosch MH, van de Loo FA. Growth factors that drive aggrecan synthesis in healthy articular cartilage. Role for transforming growth factor-β? OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100459. [PMID: 38486843 PMCID: PMC10938168 DOI: 10.1016/j.ocarto.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Articular cartilage makes smooth movement possible and destruction of this tissue leads to loss of joint function. An important biomolecule that determines this function is the large aggregating proteoglycan of cartilage, aggrecan. Aggrecan has a relatively short half-life in cartilage and therefore continuous production of this molecule is essential. Methods In this narrative review we discuss what is the role of growth factors in driving the synthesis of aggrecan in articular cartilage. A literature search has been done using the search items; cartilage, aggrecan, explant, Transforming Growth factor-β (TGF-β), Insulin-like Growth Factor (IGF), Bone Morphogenetic Protein (BMP) and the generic term "growth factors". Focus has been on studies using healthy cartilage and models of cartilage regeneration have been excluded. Results In healthy adult articular cartilage IGF is the main factor that drives aggrecan synthesis and maintains adequate levels of production. BMP's and TGF-β have a very limited role but appear to be more important during chondrogenesis and cartilage development. The major role of TGF-β is not stimulation of aggrecan synthesis but maintenance of the differentiated articular cartilage chondrocyte phenotype. Conclusion TGF-β is a factor that is generally considered as an important factor in stimulating aggrecan synthesis in cartilage but its role in this might be very restrained in healthy, adult articular cartilage.
Collapse
Affiliation(s)
| | - Arjan P.M. van Caam
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Esmeralda N. Blaney Davidson
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Martijn H.J. van den Bosch
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Fons A.J. van de Loo
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
2
|
Gwam C, Ohanele C, Hamby J, Chughtai N, Mufti Z, Ma X. Human placental extract: a potential therapeutic in treating osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:322. [PMID: 37404996 PMCID: PMC10316113 DOI: 10.21037/atm.2019.10.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/29/2019] [Indexed: 09/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease marked by cartilage degradation and loss of function. Recently, there have been increased efforts to attenuate and reverse OA by stimulating cartilage regeneration and preventing cartilage degradation. Human placental extract (HPE) may be an option due to its anti-inflammatory, antioxidant, and growth stimulatory properties. These properties are useful in preventing cell death and senescence, which may optimize in-situ cartilage regeneration. In this review, we discuss the anatomy and physiology of the placenta, as well as explore in vivo and in vitro studies assessing its effects on tissue regeneration. Finally, we assess the potential role of HPE in cartilage regenerative medicine and OA. The Medline database was utilized for all studies that involved the use of HPE or human placenta hydrolysate. Exclusion criteria included articles not written in English, conference reviews, editorials, letters to the editor, surveys, case reports, and case series. HPE had significant anti-inflammatory and regenerative properties in vitro and in vivo. Furthermore, HPE had a role in attenuating cellular senescence and cell apoptosis via reduction of reactive oxidative species both in vitro and in vivo. One study explored the effects of HPE in OA and demonstrated reduction in cartilage catabolic gene expression, indicating HPE's effect in attenuating OA. HPE houses favorable properties that can attenuate and reverse tissue damage. This may be a beneficial therapeutic in OA as it creates a more favorable environment for in-situ cartilage regeneration. More well designed in-vitro and in-vivo studies are needed to define the role of HPE in treating OA.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jacob Hamby
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Kim JG, Rim YA, Ju JH. The Role of Transforming Growth Factor Beta in Joint Homeostasis and Cartilage Regeneration. Tissue Eng Part C Methods 2022; 28:570-587. [PMID: 35331016 DOI: 10.1089/ten.tec.2022.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is an important regulator of joint homeostasis, of which dysregulation is closely associated with the development of osteoarthritis (OA). In normal conditions, its biological functions in a joint environment are joint protective, but it can be dramatically altered in different contexts, making its therapeutic application a challenge. However, with the deeper insights into the TGF-β functions, it has been proven that TGF-β augments cartilage regeneration by chondrocytes, and differentiates both the precursor cells of chondrocytes and stem cells into cartilage-generating chondrocytes. Following documentation of the therapeutic efficacy of chondrocytes augmented by TGF-β in the last decade, there is an ongoing phase III clinical trial examining the therapeutic efficacy of a mixture of allogeneic chondrocytes and TGF-β-overexpressing cells. To prepare cartilage-restoring chondrocytes from induced pluripotent stem cells (iPSCs), the stem cells are differentiated mainly using TGF-β with some other growth factors. Of note, clinical trials evaluating the therapeutic efficacy of iPSCs for OA are scheduled this year. Mesenchymal stromal stem cells (MSCs) have inherent limitations in that they differentiate into the osteochondral pathway, resulting in the production of poor-quality cartilage. Despite the established essential role of TGF-β in chondrogenic differentiation of MSCs, whether the coordinated use of TGF-β in MSC-based therapy for degenerated cartilage is effective is unknown. We herein reviewed the general characteristics and mechanism of action of TGF-β in a joint environment. Furthermore, we discussed the core interaction of TGF-β with principal cells of OA cell-based therapies, the chondrocytes, MSCs, and iPSCs. Impact Statement Transforming growth factor-beta (TGF-β) has been widely used as a core regulator to improve or formulate therapeutic regenerative cells for degenerative joints. It differentiates stem cells into chondrocytes and improves the chondrogenic potential of differentiated chondrocytes. Herein, we discussed the overall characteristics of TGF-β and reviewed the comprehension and utilization of TGF-β in cell-based therapy for degenerative joint disease.
Collapse
Affiliation(s)
- Jung Gon Kim
- Division of Rheumatology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Bailey KN, Alliston T. At the Crux of Joint Crosstalk: TGFβ Signaling in the Synovial Joint. Curr Rheumatol Rep 2022; 24:184-197. [PMID: 35499698 PMCID: PMC9184360 DOI: 10.1007/s11926-022-01074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The effect of the transforming growth factor beta (TGFβ) signaling pathway on joint homeostasis is tissue-specific, non-linear, and context-dependent, representing a unique complexity in targeting TGFβ signaling in joint disease. Here we discuss the variety of mechanisms that TGFβ signaling employs in the synovial joint to maintain healthy joint crosstalk and the ways in which aberrant TGFβ signaling can result in joint degeneration. RECENT FINDINGS Osteoarthritis (OA) epitomizes a condition of disordered joint crosstalk in which multiple joint tissues degenerate leading to overall joint deterioration. Synovial joint tissues, such as subchondral bone, articular cartilage, and synovium, as well as mesenchymal stem cells, each demonstrate aberrant TGFβ signaling during joint disease, whether by excessive or suppressed signaling, imbalance of canonical and non-canonical signaling, a perturbed mechanical microenvironment, or a distorted response to TGFβ signaling during aging. The synovial joint relies upon a sophisticated alliance among each joint tissue to maintain joint homeostasis. The TGFβ signaling pathway is a key regulator of the health of individual joint tissues, and the subsequent interaction among these different joint tissues, also known as joint crosstalk. Dissecting the sophisticated function of TGFβ signaling in the synovial joint is key to therapeutically interrogating the pathway to optimize overall joint health.
Collapse
Affiliation(s)
- Karsyn N Bailey
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, CA, 94143, San Francisco, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, CA, 94143, San Francisco, USA.
| |
Collapse
|
5
|
|
6
|
Yu D, Hu J, Sheng Z, Fu G, Wang Y, Chen Y, Pan Z, Zhang X, Wu Y, Sun H, Dai J, Lu L, Ouyang H. Dual roles of misshapen/NIK-related kinase (MINK1) in osteoarthritis subtypes through the activation of TGFβ signaling. Osteoarthritis Cartilage 2020; 28:112-121. [PMID: 31647983 DOI: 10.1016/j.joca.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the role of misshapen/NIK-related kinase (MINK1) in age-related Osteoarthritis (OA) and injury-induced OA, and the effects of enhanced TGFβ signaling in these progresses. DESIGN The effect of MINK1 was analyzed with MINK1 knock out (Mink1-/-) mice and C57BL/6J mice. OA progress was studied in age-related OA and instability-associated OA (destabilization of the medial meniscus, DMM) models. The murine knee joint was evaluated through histological staining, Osteoarthritis Research Society International (OARSI) scores, immunohistochemistry, and μCT analysis. Primary chondrocytes were isolated from wild type and Mink1-/- mice and subjected to osteogenic induction and Western blot analysis. RESULTS MINK1 is highly expressed during cartilage development and in normal cartilage. Mink1-/- mice displayed markedly lower OARSI scores, aggrecan degradation neoepitope positive cells and increased Safranin O and pSMAD2 staining in aging-related OA model. However, in injury-induced OA, loss of MINK1 accelerates extracellular matrix (ECM) destruction, osteophyte formation, and subchondral bone sclerosis. Accelerated subchondral bone remodeling in Mink1-/- mice was accompanied with increased numbers of nestin-positive mesenchymal stem cells (MSCs) and osterix-positive osteoprogenitors. pSMAD2 staining was increased in the subchondral bone marrow of Mink1-/- mice and overexpression of MINK1 inhibited SMAD2 phosphorylation in vitro. CONCLUSIONS This study shows for the first time that activation of TGFβ/SMAD2 by MINK1 deficiency plays opposite roles in aging-related and injury-induced OA. MINK1 deficiency protects cartilage from degeneration in aging joints through increased SMAD2 activation in chondrocytes, while accelerating OA progress in injury-induced model through enhanced osteogenesis of MSCs in the subchondral bone. These findings provide insights for developing precision OA therapeutics targeting TGFβ/SMAD2 signaling.
Collapse
Affiliation(s)
- D Yu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - J Hu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Sheng
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - G Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Pan
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - H Sun
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - J Dai
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - L Lu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - H Ouyang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
7
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Shojaee A, Parham A, Ejeian F, Nasr Esfahani MH. Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Res Vet Sci 2019; 125:235-243. [PMID: 31310927 DOI: 10.1016/j.rvsc.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Equine adipose-derived mesenchymal stem cells (eq-ASCs) possess excellent regeneration potential especially for treatment of musculoskeletal disorders. Besides their common characteristics, MSCs harvested from different species reveal some species-specific and donor-dependent behaviors. Hence, the molecular analysis of MSCs may shed more light on their future clinical application of these cells. This study aimed to investigate some behavioral aspects of eq-ASCs in vitro which may influence the efficacy of stem cell therapy. For this purpose, MSCs of a donor horse were isolated, characterized and expanded under normal culture conditions. During continuous culture condition, eq-ASCs were started to formed aggregated structures that was accompanied with the up-regulation of migratory related genes including transforming growth factor beta 1 (TGFB1) and its receptor 3 (TGFBR3), and snail family transcriptional repressor 1 (SNAI1), E-cadherin (CDH1) and β-catenin (CTNNB1). Moreover, the expression of a musculoskeletal progenitor marker, scleraxis bHLH transcription factor (SCX), was also increased after 3 days. In order to clarify the impact of TGFB signaling pathway on cultured cells, gain- and loss-of-function treatment by TGFB3 and SB431542 (TGFB inhibitor) were performed, respectively. We found that TGFB3 treatment exaggerated the aggregate formation effects, in some extend via induction of cytoskeletal actin rearrangement, while inhibition of TGFB signaling pathway by SB431542 reversed this phenomenon. Overall, our findings support the fact that eq-ASCs have an inherent capacity for migration, which was enhanced by TGFB3 treatment and, this ability may play crucial role in cell motility and wound healing of transplanted cells.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Alternative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Niemelä TM, Tulamo RM, Carmona JU, López C. Evaluation of the effect of experimentally induced cartilage defect and intra-articular hyaluronan on synovial fluid biomarkers in intercarpal joints of horses. Acta Vet Scand 2019; 61:24. [PMID: 31146775 PMCID: PMC6543688 DOI: 10.1186/s13028-019-0460-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory and degenerative activity inside the joint can be studied in vivo by analysis of synovial fluid biomarkers. In addition to pro-inflammatory mediators, several anabolic and anti-inflammatory substances are produced during the disease process. They counteract the catabolic effects of the pro-inflammatory cytokines and thus diminish the cartilage damage. The response of synovial fluid biomarkers after intra-articular hyaluronan injection, alone or in combination with other substances, has been examined only in a few equine studies. The effects of hyaluronan on some pro-inflammatory mediators, such as prostaglandin E2, have been documented but especially the effects on synovial fluid anti-inflammatory mediators are less studied. In animal models hyaluronan has been demonstrated to reduce pain via protecting nociceptive nerve endings and by blocking pain receptor channels. However, the results obtained for pain-relief of human osteoarthritis are contradictory. The aim of the study was to measure the synovial fluid IL-1ra, PDGF-BB, TGF-β1 and TNF-α concentrations before and after surgically induced cartilage defect, and following intra-articular hyaluronan injection in horses. Eight Standardbred horses underwent bilateral arthroscopic surgeries of their intercarpal joints under general anaesthesia, and cartilage defect was created on the dorsal edge of the third carpal bone of one randomly selected intercarpal joint of each horse. Five days post-surgery, one randomly selected intercarpal joint was injected intra-articular with 3 mL HA (20 mg/mL). RESULTS Operation type had no significant effect on the synovial fluid IL-1ra, PDGF-BB, TGF-β1 and TNF-α concentrations but compared with baseline, synovial fluid IL-1ra and TNF-α concentrations increased. Intra-articular hyaluronan had no significant effect on the biomarker concentrations but a trend of mild improvement in the clinical signs of intra-articular inflammation was seen. CONCLUSIONS Creation of the cartilage defect and sham-operation lead to an increase of synovial fluid IL-1ra and TNF-α concentrations but changes in concentrations of anabolic growth factors TGF-β1 and PDGF-BB could not be documented 5 days after the arthroscopy. Intra-articular hyaluronan was well tolerated. Further research is needed to document possible treatment effects of intra-articular hyaluronan on the synovial fluid biomarkers of inflammation and cartilage metabolism.
Collapse
Affiliation(s)
- Tytti Maaria Niemelä
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland
| | - Riitta-Mari Tulamo
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland
| | - Jorge Uriel Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No26-10, Manizales, Caldas, Colombia
| | - Catalina López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No26-10, Manizales, Caldas, Colombia
| |
Collapse
|
10
|
Smit Y, Marais HJ, Thompson PN, Mahne AT, Goddard A. Clinical findings, synovial fluid cytology and growth factor concentrations after intra-articular use of a platelet-rich product in horses with osteoarthritis. J S Afr Vet Assoc 2019; 90:e1-e9. [PMID: 31170778 PMCID: PMC6556911 DOI: 10.4102/jsava.v90i0.1721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis is a common cause of lameness in horses, resulting in poor performance. Intra-articular platelet-rich plasma can deliver a collection of bioactive molecules, such as autologous growth factors and proteins involved in the quality of tissue repair. Horses (n=5) with osteoarthritis affecting antebrachiocarpal, middle carpal or metacarpophalangeal joints, and horses (n=5) without osteoarthritis of the corresponding joints (radiographically free of osteoarthritis), were used for the production of platelet-rich plasma which was subsequently injected into selected joints. Clinical and synovial fluid changes after intra-articular injection of platelet-rich plasma as well as synovial platelet-derived growth factor-BB and transforming growth factor-beta 1 concentration changes were evaluated in these joints and compared between normal joints and joints with osteoarthritis. A gravity filtration system produced a moderately concentrated platelet-rich plasma, representing a 4.7-fold increase in baseline platelet concentration. The synovial effusion score was significantly different between the control joints and joints with osteoarthritis on Day 0 with a higher score in the group with osteoarthritis. Within the control group, the synovial effusion score was significantly higher on Days 1 and 2 compared to Day 0. For both groups, the synovial fluid nucleated cell count, predominantly intact neutrophils, was significantly increased on Days 1 and 2, with no significant difference between groups. The mean synovial platelet-derived growth factor-BB and transforming growth factor-beta 1 concentrations were increased for both groups but significantly lowered in the group with osteoarthritis on Day 1 compared to normal joints. Concentrations for platelet-derived growth factor-BB remained unchanged on Day 5, compared to Day 1, with no significant difference between groups. In conclusion, intra-articular treatment with platelet-rich plasma resulted in increased synovial growth factor concentrations in joints but with lower concentrations in joints with osteoarthritis. A transient inflammatory reaction was seen both clinically as an increase in synovial effusion and cytologically in both normal joints and joints with osteoarthritis.
Collapse
Affiliation(s)
- Yolandi Smit
- Department of Companion Animal Clinical Studies, University of Pretoria, Onderstepoort.
| | | | | | | | | |
Collapse
|
11
|
Mariñas-Pardo L, García-Castro J, Rodríguez-Hurtado I, Rodríguez-García MI, Núñez-Naveira L, Hermida-Prieto M. Allogeneic Adipose-Derived Mesenchymal Stem Cells (Horse Allo 20) for the Treatment of Osteoarthritis-Associated Lameness in Horses: Characterization, Safety, and Efficacy of Intra-Articular Treatment. Stem Cells Dev 2018; 27:1147-1160. [DOI: 10.1089/scd.2018.0074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Javier García-Castro
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Chavez RD, Coricor G, Perez J, Seo HS, Serra R. SOX9 protein is stabilized by TGF-β and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthritis Cartilage 2017; 25:332-340. [PMID: 27746378 PMCID: PMC5258840 DOI: 10.1016/j.joca.2016.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/29/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously identified 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) as a transcriptional target of transforming growth factor β (TGF-β) in chondrocytes. PAPSS2 is required for proper sulfation of proteoglycans in cartilage. Defective sulfation in the matrix results in alterations in mechanical properties of the cartilage that would be expected to result in degeneration. The objective of this study was to identify factors that regulate PAPSS2 expression and compare to a known TGF-β responsive gene, proteoglycan 4/lubricin (PRG4). In this study, TGF-β-mediated regulation of SOX9 was characterized, and the involvement of SOX9 in regulation of PAPSS2 mRNA was investigated. DESIGN Primary bovine articular chondrocytes grown in micromass culture and ATDC5 cells were used as the model system. Adenoviruses were used to express SOX9 and SMAD3. siRNA was used to knock-down Sox9 and Smad3. Western blot and real-time quantitative RT-PCR (qPCR) were used to measure changes in protein and mRNA levels in response to treatment. RESULTS Over-expression of SOX9 was sufficient to up-regulate PAPSS2 mRNA. TGF-β treatment of SOX9-expressing cells resulted in enhanced up-regulation of PAPSS2 mRNA, suggesting that SOX9 cooperates with TGF-β signaling. Furthermore, Sox9 was required for full TGF-β-mediated induction of Papss2. In contrast, PRG4 was regulated by SMAD3 but not SOX9. SOX9 protein levels were increased after treatment with TGF-β, although SOX9 mRNA was not. SOX9 protein was post-translationally stabilized after treatment with TGF-β. CONCLUSIONS TGF-β stabilizes SOX9 protein, and SOX9 is sufficient and necessary for TGF-β-mediated regulation of PAPSS2 mRNA, providing a novel mechanism for TGF-β-mediated gene regulation in chondrocytes.
Collapse
Affiliation(s)
| | | | | | | | - R Serra
- corresponding author. Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., 660 MCLM, Birmingham, AL, 35294-0005
| |
Collapse
|
14
|
Adachi D, Yamada M, Nishiguchi S, Fukutani N, Hotta T, Tashiro Y, Morino S, Shirooka H, Nozaki Y, Hirata H, Yamaguchi M, Aoyama T. Age-related decline in chest wall mobility: a cross-sectional study among community-dwelling elderly women. J Osteopath Med 2015; 115:384-9. [PMID: 26024332 DOI: 10.7556/jaoa.2015.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CONTEXT Chest wall mobility is strongly related to respiratory function; however, the effect of aging on chest wall mobility-and the level at which this mobility is most affected-remains unclear. OBJECTIVE To investigate age-related differences in chest wall mobility and respiratory function among elderly women in different age groups. METHODS This cross-sectional observational study was performed in Himeji City in Hyogo Prefecture and Ayabe City in Kyoto Prefecture in Japan. Inclusion criteria were female sex, age 65 years or older, community resident, and ability to ambulate independently, with or without an assistive device. Thoracic excursion at the axillary and xiphoid levels and at the level of the tenth rib was measured with measuring tape. Respiratory function, including forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), was assessed by spirometry, and FVC percent predicted (%FVC), FEV1 percent predicted (%FEV1), and FEV1/FVC were calculated. Chest wall mobility and respiratory function were compared among 4 age groups. RESULTS Of 251 potential participants, 132 met the inclusion criteria. Participants were divided into 4 age groups: group 1, 65 to 69 years; group 2, 70 to 74 years; group 3, 75 to 79 years; and group 4, 80 years or older. Statistically significant differences were found in thoracic excursion at the axillary level between groups 1 and 4 and between groups 2 and 4 when adjusted for height and weight (F4.52, P=.01). In addition, statistically significant differences were found in the FVC and FEV1 values between groups 1 and 3 and between groups 2 and 3 (FVC: F4.97, P=.01; FEV1: F6.17, P=.01). CONCLUSION Chest wall mobility at the axillary level and respiratory function decreased with age in community-dwelling women aged 65 years or older. Further longitudinal studies are required to clarify the effects of aging on chest wall mobility and respiratory function.
Collapse
|
15
|
Catherine B, Girard N, Lhuissier E, Bazille C, Boumediene K. Regulation and Role of TGFβ Signaling Pathway in Aging and Osteoarthritis Joints. Aging Dis 2014; 5:394-405. [PMID: 25489490 DOI: 10.14336/ad.2014.0500394] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGFβ) is a major signalling pathway in joints. This superfamilly is involved in numerous cellular processes in cartilage. Usually, they are considered to favor chondrocyte differentiation and cartilage repair. However, other studies show also deleterious effects of TGFβ which may induce hypertrophy. This may be explained at least in part by alteration of TGFβ signaling pathways in aging chondrocytes. This review focuses on the functions of TGFβ in joints and the regulation of its signaling mediators (receptors, Smads) during aging and osteoarthritis.
Collapse
Affiliation(s)
| | - Nicolas Girard
- Normandie Univ, France ; UNICAEN, EA4652 MILPAT, Caen, France
| | - Eva Lhuissier
- Normandie Univ, France ; UNICAEN, EA4652 MILPAT, Caen, France
| | - Celine Bazille
- Normandie Univ, France ; UNICAEN, EA4652 MILPAT, Caen, France ; Service d'Anatomie Pathologique, CHU, Caen, France
| | | |
Collapse
|
16
|
Smeriglio P, Lai JH, Dhulipala L, Behn AW, Goodman SB, Smith RL, Maloney WJ, Yang F, Bhutani N. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels. Tissue Eng Part A 2014; 21:147-55. [PMID: 25054343 DOI: 10.1089/ten.tea.2014.0070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regeneration of human articular cartilage is inherently limited and extensive efforts have focused on engineering the cartilage tissue. Various cellular sources have been studied for cartilage tissue engineering including adult chondrocytes, and embryonic or adult stem cells. Juvenile chondrocytes (from donors below 13 years of age) have recently been reported to be a promising cell source for cartilage regeneration. Previous studies have compared the potential of adult and juvenile chondrocytes or adult and osteoarthritic (OA) chondrocytes. To comprehensively characterize the comparative potential of young, old, and diseased chondrocytes, here we examined cartilage formation by juvenile, adult, and OA chondrocytes in three-dimensional (3D) biomimetic hydrogels composed of poly(ethylene glycol) and chondroitin sulfate. All three human articular chondrocytes were encapsulated in the 3D biomimetic hydrogels and cultured for 3 or 6 weeks to allow maturation and extracellular matrix formation. Outcomes were analyzed using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. After 3 and 6 weeks, juvenile chondrocytes showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA chondrocytes showed a downregulation. Aggrecan and type II collagen deposition and glycosaminoglycan accumulation were high for juvenile and adult chondrocytes but not for OA chondrocytes. Similar trend was observed in the compressive moduli of the cartilage constructs generated by the three different chondrocytes. In conclusion, the juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogels. The 3D culture model described here may also provide a useful tool to further study the molecular differences among chondrocytes from different stages, which can help elucidate the mechanisms for age-related decline in the intrinsic capacity for cartilage repair.
Collapse
Affiliation(s)
- Piera Smeriglio
- 1 Department of Orthopedic Surgery, Stanford University , Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sherriff-Tadano R, Ohta A, Morito F, Mitamura M, Haruta Y, Koarada S, Tada Y, Nagasawa K, Ozaki I. Antifibrotic effects of hepatocyte growth factor on scleroderma fibroblasts and analysis of its mechanism. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0525-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Walenda G, Abnaof K, Joussen S, Meurer S, Smeets H, Rath B, Hoffmann K, Fröhlich H, Zenke M, Weiskirchen R, Wagner W. TGF-beta1 does not induce senescence of multipotent mesenchymal stromal cells and has similar effects in early and late passages. PLoS One 2013; 8:e77656. [PMID: 24147049 PMCID: PMC3798389 DOI: 10.1371/journal.pone.0077656] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) stimulates a broad range of effects which are cell type dependent, and it has been suggested to induce cellular senescence. On the other hand, long-term culture of multipotent mesenchymal stromal cells (MSCs) has a major impact on their cellular physiology and therefore it is well conceivable that the molecular events triggered by TGF-β1 differ considerably in cells of early and late passages. In this study, we analyzed the effect of TGF-β1 on and during replicative senescence of MSCs. Stimulation with TGF-β1 enhanced proliferation, induced a network like growth pattern and impaired adipogenic and osteogenic differentiation. TGF-β1 did not induce premature senescence. However, due to increased proliferation rates the cells reached replicative senescence earlier than untreated controls. This was also evident, when we analyzed senescence-associated DNA-methylation changes. Gene expression profiles of MSCs differed considerably at relatively early (P 3-5) and later passages (P 10). Nonetheless, relative gene expression differences provoked by TGF-β1 at individual time points or in a time course dependent manner (stimulation for 0, 1, 4 and 12 h) were very similar in MSCs of early and late passage. These results support the notion that TGF-β1 has major impact on MSC function, but it does not induce senescence and has similar molecular effects during culture expansion.
Collapse
Affiliation(s)
- Gudrun Walenda
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Khalid Abnaof
- Algorithmic Bioinformatics, Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
- Bioanalytical Resource Centre Aachen, Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Steffen Meurer
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Medical School, Aachen, Germany
| | - Hubert Smeets
- Genetics and Molecular Cell Biology, CARIM School for Cardiovascular Diseases, University of Maastricht, Maastricht, Netherlands
| | - Björn Rath
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen, Germany
| | - Kurt Hoffmann
- Bioanalytical Resource Centre Aachen, Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Holger Fröhlich
- Algorithmic Bioinformatics, Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
| | - Martin Zenke
- Institute for Biomedical Technology, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- * E-mail:
| |
Collapse
|
19
|
Peffers M, Liu X, Clegg P. Transcriptomic signatures in cartilage ageing. Arthritis Res Ther 2013; 15:R98. [PMID: 23971731 PMCID: PMC3978620 DOI: 10.1186/ar4278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log2 fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome.
Collapse
|
20
|
Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone 2012; 51:241-8. [PMID: 22487298 PMCID: PMC3372644 DOI: 10.1016/j.bone.2012.03.023] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 01/08/2023]
Abstract
This review is focused on aging-related changes in cells and extracellular matrix of the articular cartilage. Major extracellular matrix changes are a reduced thickness of cartilage, proteolysis, advanced glycation and calcification. The cellular changes include reduced cell density, cellular senescence with abnormal secretory profiles, and impaired cellular defense mechanisms and anabolic responses. The extracellular and cellular changes compound each other, leading to biomechanical dysfunction and tissue destruction. The consequences of aging-related changes for joint homeostasis and risk for osteoarthritis are discussed. This article is part of a Special Issue entitled "Osteoarthritis".
Collapse
Affiliation(s)
- Martin Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard F. Loeser
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
21
|
Pestka JM, Schmal H, Salzmann G, Hecky J, Südkamp NP, Niemeyer P. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics. Arch Orthop Trauma Surg 2011; 131:779-89. [PMID: 21165635 DOI: 10.1007/s00402-010-1219-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Autologous chondrocyte implantation (ACI) is a well-established therapeutic option for the treatment of cartilage defects of the knee joint. Since information concerning the cellular aspects of ACI is still limited, the aim of the present study was to investigate relevant differences between chondrocyte quality after in vitro cultivation and possible correlations with patient-specific factors. DESIGN Cell quality of 252 consecutive ACI patients was assessed after chondrocyte in vitro expansion by determination of the expression of cartilage relevant surface marker CD44 and cartilage-specific differentiation markers (aggrecan and collagen type II). All cell quality parameters were correlated with patient-specific parameters, such as age, size and defect location, number of defects and grade of joint degeneration according to the Kellgren-Lawrence classification. RESULTS Neither the expression of CD44, aggrecan or collagen type II nor cell density or viability after proliferation seemed to correlate with the grade of joint degeneration, defect aetiology or patient gender. However, chondrocytes harvested from the knee joints of patients at less than 20 years of age showed significantly higher expression rates of cartilage-specific markers when compared to older patients' chondrocytes. CONCLUSIONS The present study identifies relevant differences concerning chondrocyte quality after in vitro expansion in a highly preselected study population of 252 patients that from a surgical point of view were eligible for ACI. With the exception of patients aged 20 years or younger, no patient-specific parameters could be identified which might allow anticipation of cell quality in individual patients.
Collapse
Affiliation(s)
- Jan M Pestka
- Department for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease. ACTA ACUST UNITED AC 2011; 45:239-93. [DOI: 10.1016/j.proghi.2010.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 12/27/2022]
|
23
|
Ley C, Svala E, Nilton A, Lindahl A, Eloranta ML, Ekman S, Skiöldebrand E. Effects of high mobility group box protein-1, interleukin-1β, and interleukin-6 on cartilage matrix metabolism in three-dimensional equine chondrocyte cultures. Connect Tissue Res 2010; 52:290-300. [PMID: 21117899 DOI: 10.3109/03008207.2010.523803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of high mobility group box protein (HMGB)-1, interleukin (IL)-1β, and IL-6 on equine articular chondrocytes were investigated, with emphasis on detecting differences between anatomical sites exposed to different loading in vivo, using three-dimensional (3D) cell cultures established with chondrocytes from dorsal radial facet (DRF, highly loaded) and palmar condyle (PC, less loaded) of the third carpal bone (C3). Expression of important genes involved in cartilage metabolism, presence of glycosaminoglycans and cartilage oligomeric matrix protein (COMP) in pellets, and concentrations of matrix metalloproteinase (MMP)-13 and aggrecan epitope CS 846 were evaluated. Compared to controls, IL-1β treatment increased gene expression of versican, matrix-degrading enzymes, and tissue inhibitor of metalloproteinase (TIMP)-1, and decreased aggrecan and collagen type I and type II expression. In addition, IL-1β-treated pellets showed decreased safranin O staining and increased COMP immunostaining and MMP-13 concentrations in culture supernatants. Effects of IL-6 and HMGB-1 on gene expression were variable, although upregulation of Sry-related high-mobility group box 9 (Sox9) was often present and statistically increased in HMGB-1-treated pellets. Response to cytokines rarely differed between DRF and PC pellets. Thus, site-associated cartilage deterioration in equine carpal osteoarthritis (OA) is not explained by topographically different responses to inflammatory mediators. Differences in gene expressions of structural matrix proteins in untreated DRF and PC pellets were noted in the youngest horses, which may indicate differences in the chondrocytes potential to produce matrix in vivo. Overall, a strong catabolic response was induced by IL-1β, whereas slight anabolic effects were induced by IL-6 and HMGB-1.
Collapse
Affiliation(s)
- Cecilia Ley
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
24
|
Briston L, Dudhia J, Lees P. Age-related differences in prostaglandin E2 synthesis by equine cartilage explants and synoviocytes. J Vet Pharmacol Ther 2010; 33:268-76. [PMID: 20557444 DOI: 10.1111/j.1365-2885.2009.01131.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Time- and concentration-related actions of lipopolysaccharide (LPS) on the synthesis of prostaglandin E(2) (PGE(2)) were investigated in cartilage explants and synoviocytes harvested from 3 age groups of horses, all with clinically normal joint function: group A <10 years; group B 11-20 years and group C >20 years. Cartilage explants from group A horses were least and those from group C were most sensitive to LPS. Significant increases in PGE(2) concentration (P <or= 0.01) were obtained in group C horses in response to LPS concentrations of 1.0 microg/mL (and higher) after exposure for 24, 36 and 48 h, whereas explants from group A horses failed to respond to LPS at concentrations up to 100 microg/mL after exposure times up to 48 h. In contrast, synoviocytes from group A horses were most and those from group C horses were least sensitive to LPS stimulation. Synoviocytes from group A horses responded to LPS concentrations of 1 microg/mL (and higher) with significantly increased concentrations of PGE(2) at 24 and 36 h. Significant but numerically smaller increases in PGE(2) concentration were induced by LPS in synoviocytes from groups B and C. As the effects of high PGE(2) concentrations are catabolic for cartilage, these observations suggest that both synoviocytes and chondrocytes might exert roles in the degenerative changes which occur in cartilage in horses with osteoarthritis.
Collapse
Affiliation(s)
- L Briston
- Department of Veterinary Basic Sciences, Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, UK
| | | | | |
Collapse
|
25
|
Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 2009; 17:971-9. [PMID: 19303469 PMCID: PMC2713363 DOI: 10.1016/j.joca.2009.03.002] [Citation(s) in RCA: 473] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Age-related changes in multiple components of the musculoskeletal system may contribute to the well established link between aging and osteoarthritis (OA). This review focused on potential mechanisms by which age-related changes in the articular cartilage could contribute to the development of OA. METHODS The peer-reviewed literature published prior to February 2009 in the PubMed database was searched using pre-defined search criteria. Articles, selected for their relevance to aging and articular chondrocytes or cartilage, were summarized. RESULTS Articular chondrocytes exhibit an age-related decline in proliferative and synthetic capacity while maintaining the ability to produce pro-inflammatory mediators and matrix degrading enzymes. These findings are characteristic of the senescent secretory phenotype and are most likely a consequence of extrinsic stress-induced senescence driven by oxidative stress rather than intrinsic replicative senescence. Extracellular matrix changes with aging also contribute to the propensity to develop OA and include the accumulation of proteins modified by non-enzymatic glycation. CONCLUSION The effects of aging on chondrocytes and their matrix result in a tissue that is less able to maintain homeostasis when stressed, resulting in breakdown and loss of the articular cartilage, a hallmark of OA. A better understanding of the basic mechanisms underlying senescence and how the process may be modified could provide novel ways to slow the development of OA.
Collapse
Affiliation(s)
- R F Loeser
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
26
|
Asanbaeva A, Masuda K, Thonar EJMA, Klisch SM, Sah RL. Regulation of immature cartilage growth by IGF-I, TGF-beta1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech Model Mechanobiol 2008; 7:263-76. [PMID: 17762943 PMCID: PMC2704288 DOI: 10.1007/s10237-007-0096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 04/29/2007] [Indexed: 12/17/2022]
Abstract
Cartilage growth may involve alterations in the balance between the swelling tendency of proteoglycans and the restraining function of the collagen network. Growth factors, including IGF-I, TGF-beta1, BMP-7, and PDGF-AB, regulate chondrocyte metabolism and, consequently, may regulate cartilage growth. Immature bovine articular cartilage explants from the superficial and middle zones were incubated for 13 days in basal medium or medium supplemented with serum, IGF-I, TGF-beta1, BMP-7, or PDGF-AB. Variations in tissue size, accumulation of proteoglycan and collagen, and tensile properties were assessed. The inclusion of serum, IGF-I, or BMP-7 resulted in expansive tissue growth, stimulation of proteoglycan deposition but not of collagen, and a diminution of tensile integrity. The regulation of cartilage metabolism by TGF-beta1 resulted in tissue homeostasis, with maintenance of size, composition, and function. Incubation in basal medium or with PDGF-AB resulted in small volumetric and compositional changes, but a marked decrease in tensile integrity. These results demonstrate that the phenotype of cartilage growth, and the associated balance between proteoglycan content and integrity of the collagen network, is regulated differentially by certain growth factors.
Collapse
Affiliation(s)
- Anna Asanbaeva
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California-San Diego, 9500 Gilman Dr., Mail Code 0412, La Jolla, CA 92093-0412, USA
| | | | | | | | | |
Collapse
|
27
|
Mitsuyama H, Healey RM, Terkeltaub RA, Coutts RD, Amiel D. Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage 2007; 15:559-65. [PMID: 17276093 PMCID: PMC2707182 DOI: 10.1016/j.joca.2006.10.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 10/29/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Pathologic calcification of articular cartilage in human knees is often associated with advanced age and conditions of osteoarthritis (OA). Coincidently, most studies that have characterized calcification in joint cartilage have examined populations that are aged and presenting with clinical symptoms. Generally, these studies rely upon relatively insensitive plain radiographs or synovial fluid crystal analyses to quantify calcium levels. The purpose of this study was to examine the relationship between cartilage calcification and aging in an unselected donor population of diverse age using highly sensitive calcification imaging. METHODS A group of 106 knee blocks were obtained from 56 individual donors (25 females and 31 males, aged 12-74, avg. 50.3 years). Condylar surfaces were graded on a 4-point OA grading scale for cartilage degeneration. The condyles were cut into approximately 7-10mm thick slabs. Using a Faxitron radiography system, high-resolution images were taken of the slabs to specifically image calcification in cartilage. The quantified calcification areas were then analyzed and correlations with both OA grade and age were assessed. RESULTS Every knee presented some measurable calcification. The relative calcium deposition had a significant positive correlation with age. This same positive correlation was seen between condyles showing grade 1 and 2 changes. OA grades higher than 2 did not present any further significant increase in calcium levels. CONCLUSION These observations indicate that age rather than OA is the predominant factor driving progressive pathologic calcification in articular cartilage.
Collapse
Affiliation(s)
- H Mitsuyama
- University of California, San Diego, Department of Orthopaedic Surgery, CA 92093-0630, USA
| | | | | | | | | |
Collapse
|
28
|
Can low concentrations of Papain help repair articular cartilage defects? Open Life Sci 2007. [DOI: 10.2478/s11535-007-0005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractIn the present study, we investigate the capability of low concentrations of Papain to stimulate cartilage mesenchymal cells proliferation and transformation to chondrocytes and evaluate the healing capability of partial thickness defects in medial condyle cartilage of 30 rabbits’ knee joints. Papain 0.1 mg/ml and Ringer saline l ml each were injected intra-articularly to rabbits of experimental and control groups (15 animals each). Healthy cartilage from lateral condyle and cartilage from medial condyle where the surgical defect was created were studied histologically and by TEM. The study revealed that 0.1 mg/ml Papain activates proliferation and spreading of mesenchymal stem cells to young forms of chondrocyte from perichondrium to the upper layers of healthy cartilage. In only 22.27% cases of the experimental group, surgical defects filled with cartilaginous tissue on the background of distinct destruction of collagenous matrix in the native cartilage. However, in 55.5% of the control group the defect was spontaneously healed by hyaline cartilaginous tissue completely or partially on the basis of slight destruction of collagenous matrix. The defect site was filled with activated chondrocyte-like cells from the subchondral plate (not perichondrium) in both groups, which acquired some cisterns of rough endoplasmic reticulum (RER) and produced matrix proteins. The results suggest that Papain did not ameliorate the recovery of cartilage defects acquired through surgically-induced injury of collagenous matrix in native cartilage. We observed that articular cartilage is the source of mesenchymal stem cells which have the ability to transform into young forms of chondrocytes. This transformation process depends on the level of destruction of native cartilage collagen matrix induced by the defect or by Papain.
Collapse
|
29
|
Altinel L, Saritas ZK, Kose KC, Pamuk K, Aksoy Y, Serteser M. Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid. TOHOKU J EXP MED 2007; 211:181-6. [PMID: 17287602 DOI: 10.1620/tjem.211.181] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Avocado and soya unsaponifiables (ASU) are plant extracts used as a slow-acting antiarthritic agent. ASU stimulate the synthesis of matrix components by chondrocytes, probably by increasing the production of transforming growth factor-beta (TGF-beta). TGF-beta is expressed by chondrocytes and osteoblasts and is present in cartilage matrix. This study investigates the effect of ASU treatment on the levels of two isoforms of TGFbeta, TGF-beta1 and TGF-beta2, in the knee joint fluid using a canine model. Twenty-four outbred dogs were divided into three groups. The control animals were given a normal diet, while the treated animals were given 300 mg ASU every three days or every day. Joint fluid samples were obtained prior to treatment, and at the end of every month (up to three months). TGF-beta1 and TGF-beta2 levels were measured using a quantitative sandwich enzyme immunoassay technique. ASU treatment caused an increase in TGF-beta1 and TGF-beta2 levels in the joint fluid when compared to controls. The different doses did not cause a significant difference in joint fluid TGF levels. TGF-beta1 levels in the treated animals reached maximum values at the end of the second month and then decreased after the third month, while TGF-beta2 levels showed a marginal increase during the first two months, followed by a marked increase at the end of the third month. In conclusion, ASU increased both TGF-beta1 and TGF-beta2 levels in knee joint fluid.
Collapse
Affiliation(s)
- Levent Altinel
- Department of Orthopedics and Traumatology, Afyon Kocatepe University, School of Medicine, Afyonkarahisar, Turkey.
| | | | | | | | | | | |
Collapse
|
30
|
Sherriff-Tadano R, Ohta A, Morito F, Mitamura M, Haruta Y, Koarada S, Tada Y, Nagasawa K, Ozaki I. Antifibrotic effects of hepatocyte growth factor on scleroderma fibroblasts and analysis of its mechanism. Mod Rheumatol 2006; 16:364-71. [PMID: 17164998 DOI: 10.1007/s10165-006-0525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 08/28/2006] [Indexed: 10/23/2022]
Abstract
We investigated the effect of hepatocyte growth factor (HGF) on collagen metabolism in cultured fibroblasts from scleroderma (SSc) patients and discussed the possible mechanism of its effect. Synthesis of matrix metalloproteinase-1 (MMP-1) and collagen and mRNA levels of various cytokines were examined by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Hepatocyte growth factor enhanced MMP-1 production and mRNA levels of MMP-1 and Ets-1 (a transcriptional factor of MMPs). In addition, HGF suppressed collagen synthesis and mRNA levels of procollagenalpha1(I) and connective tissue growth factor (CTGF) in SSc fibroblasts. Expression of transforming growth factor (TGF)-beta1 was not inhibited significantly in SSc or control fibroblasts. Hepatocyte growth factor also increased interferon (IFN)-gamma mRNA significantly in SSc and control fibroblasts. Addition of anti-HGF antibody neutralized these effects of HGF on MMP-1 and collagen synthesis. The results suggest that HGF can suppress collagen accumulation in SSc fibroblasts by increasing MMP-1 levels possibly via activation of Ets-1 and also by decreasing collagen synthesis, which may be partly related to inhibition of CTGF, and increasing IFN-gamma levels rather than the effect on TGF-beta1. The present study indicates that HGF may be a promising therapeutic agent for this intractable disease.
Collapse
|
31
|
Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther 2006; 8:R65. [PMID: 16584530 PMCID: PMC1526625 DOI: 10.1186/ar1931] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/23/2006] [Accepted: 03/07/2006] [Indexed: 11/17/2022] Open
Abstract
Cartilage damage in osteoarthritis (OA) is considered an imbalance between catabolic and anabolic factors, favoring the catabolic side. We assessed whether adenoviral overexpression of transforming growth factor-β (TGFβ) enhanced cartilage repair and whether TGFβ-induced fibrosis was blocked by local expression of the intracellular TGFβ inhibitor Smad7. We inflicted cartilage damage by injection of interleukin-1 (IL-1) into murine knee joints. After 2 days, we injected an adenovirus encoding TGFβ. On day 4, we measured proteoglycan (PG) synthesis and content. To examine whether we could block TGFβ-induced fibrosis and stimulate cartilage repair simultaneously, we injected Ad-TGFβ and Ad-Smad7. This was performed both after IL-1-induced damage and in a model of primary OA. In addition to PG in cartilage, synovial fibrosis was measured by determining the synovial width and the number of procollagen I-expressing cells. Adenoviral overexpression of TGFβ restored the IL-1-induced reduction in PG content and increased PG synthesis. TGFβ-induced an elevation in PG content in cartilage of the OA model. TGFβ-induced synovial fibrosis was strongly diminished by simultaneous synovial overexpression of Smad7 in the synovial lining. Of great interest, overexpression of Smad7 did not reduce the repair-stimulating effect of TGFβ on cartilage. Adenoviral overexpression of TGFβ stimulated repair of IL-1- and OA-damaged cartilage. TGFβ-induced synovial fibrosis was blocked by locally inhibiting TGFβ signaling in the synovial lining by simultaneously transfecting it with an adenovirus overexpressing Smad7.
Collapse
Affiliation(s)
- Esmeralda N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Elly L Vitters
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
32
|
Mahmoudifar N, Doran PM. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 2005; 26:7012-24. [PMID: 16039710 DOI: 10.1016/j.biomaterials.2005.04.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Chondrocytes isolated from human foetal epiphyseal cartilage were seeded dynamically into polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to produce tissue-engineered cartilage. Several culture techniques with the potential to provide endogenous growth factors and other conditions beneficial for de novo cartilage synthesis were investigated. Osteochondral composite constructs were generated by seeding separate PGA scaffolds with either foetal chondrocytes or foetal osteoblasts then suturing the scaffolds together before bioreactor cultivation. This type of co-culture system provided direct contact between the tissue-engineered cartilage and developing tissue-engineered bone and yielded significant improvements in cartilage quality. In the cartilage section of the composites, the concentrations of glycosaminoglycan (GAG) and total collagen were increased by 55% and 2.5-fold, respectively, compared with control cartilage cultures, while levels of collagen type II were similar to those in the controls. The osteochondral composites were harvested from the bioreactors as single units with good integration between the cartilage and bone tissues. Only the cartilage layer contained GAG while only the bone layer was mineralised. In other experiments, co-culture of tissue-engineered cartilage with pieces of ex-vivo cartilage or ex-vivo bone did not improve the quality of the cartilage relative to control cultures. Addition of 10(-6) M diacerein to the culture medium also had no effect on the properties of engineered cartilage. This work demonstrates the beneficial effects of generating cartilage tissues in contact with developing bone. It also demonstrates the feasibility of producing composite osteochondral constructs for clinical application using recirculation column bioreactors.
Collapse
Affiliation(s)
- Nastaran Mahmoudifar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
33
|
Tran-Khanh N, Hoemann CD, McKee MD, Henderson JE, Buschmann MD. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J Orthop Res 2005; 23:1354-62. [PMID: 16048738 DOI: 10.1016/j.orthres.2005.05.009.1100230617] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/10/2005] [Accepted: 05/25/2005] [Indexed: 02/04/2023]
Abstract
Most fundamental studies in cartilage tissue engineering investigate the ability of chondrocytes from young animals to produce cartilaginous matrix under various conditions, while current clinical applications such as autologous chondrocyte implantation, use chondrocytes from donors that are decades past skeletal maturity. Previous investigations have suggested that several characteristics of primary chondrocytes are age-dependent but none have quantified cell proliferation, proteoglycan synthesis and accumulation, collagen synthesis and accumulation, compressive and tensile mechanical properties in order to examine the effects of donor age on all of these parameters. We enzymatically isolated primary bovine chondrocytes from fetal, young and aged animals and cultured these cells in agarose gels to assess the above-mentioned properties. We found that fetal and young (but still skeletally mature i.e. 18-month-old bovine) chondrocytes behaved similarly, while aged chondrocytes (5- to 7-year-old bovine) displayed diminished proliferation ( approximately 2x less), a slightly reduced proteoglycan accumulation per cell ( approximately 20%), and significantly less collagen accumulation per cell ( approximately 55%) compared to the younger cells. Histological observations and mechanical properties supported these findings, where a particularly significant reduction in tensile stiffness produced by aged chondrocytes compared to younger cells was observed. Our findings suggest that donor age is an important factor in determining the outcome and potential success when tissue-engineered cartilage is produced from articular chondrocytes. More specifically, primary chondrocytes from aged donors may not possess sufficient capacity to produce the extracellular matrix that is required for a mechanically resilient tissue.
Collapse
Affiliation(s)
- Nicolas Tran-Khanh
- Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
34
|
Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther 2005; 7:R1338-47. [PMID: 16277687 PMCID: PMC1297583 DOI: 10.1186/ar1833] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 08/18/2005] [Accepted: 09/01/2005] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.
Collapse
Affiliation(s)
- EN Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - A Scharstuhl
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - EL Vitters
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - PM van der Kraan
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - WB van den Berg
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
35
|
|
36
|
|
37
|
Iqbal J, Bird JL, Hollander AP, Bayliss MT. Effect of matrix depleting agents on the expression of chondrocyte metabolism by equine chondrocytes. Res Vet Sci 2004; 77:249-56. [PMID: 15276777 DOI: 10.1016/j.rvsc.2004.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2004] [Indexed: 11/18/2022]
Abstract
This study was carried out to investigate the effect of two enzymes (collagenase and chondroitinase) and two cytokines/metabolites (interleukin-1beta and retinoic acid) of known catabolic activity on the expression of cartilage metabolism/phenotype in equine articular cartilage. Articular cartilage explants from 11 horses (5-13 years old) were treated for 48 h and assayed for total sulphated glycosaminoglycan (GAG), the incorporation of 35S-sulphate, collagen degradation and mRNA expression of the proteoglycans collagen II, collagen IIA, collagen III, collagen IX, collagen X, collagen XI and glyceraldehyde-3-phosphate (GAPDH). Purified collagenase and retinoic acid were responsible for increased GAG loss from the tissues. Chondroitinase, responsible for catalysing the elimination of glucuronate residues from chondroitin A, B and C (Chondroitinase ABC) and retinoic acid treatment induced an inhibition of proteoglycan synthesis, whereas collagenase treatment did not. Collagenase activity was correlated with increased appearance of the CB11B epitope and type II collagen denaturation. By RT-PCR there was evidence of expression of altered collagen type IIA in purified collagenase treated tissues.
Collapse
Affiliation(s)
- J Iqbal
- Veterinary Basic Sciences Department, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | | | | | | |
Collapse
|
38
|
Silver FH, DeVore D, Siperko LM. Invited Review: Role of mechanophysiology in aging of ECM: effects of changes in mechanochemical transduction. J Appl Physiol (1985) 2003; 95:2134-41. [PMID: 14555674 DOI: 10.1152/japplphysiol.00429.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical forces play a role in the development and evolution of extracellular matrices (ECMs) found in connective tissue. Gravitational forces acting on mammalian tissues increase the net muscle forces required for movement of vertebrates. As body mass increases during development, musculoskeletal tissues and other ECMs are able to adapt their size to meet the increased mechanical requirements. However, the control mechanisms that allow for rapid growth in tissue size during development are altered during maturation and aging. The purpose of this mini-review is to examine the relationship between mechanical loading and cellular events that are associated with downregulation of mechanochemical transduction, which appears to contribute to aging of connective tissue. These changes result from decreases in growth factor and hormone levels, as well as decreased activation of the phosphorelay system that controls cell division, gene expression, and protein synthesis. Studies pertaining to the interactions among mechanical forces, growth factors, hormones, and their receptors will better define the relationship between mechanochemical transduction processes and cellular behavior in aging tissues.
Collapse
Affiliation(s)
- Frederick H Silver
- Department of Pathology and Laboratory Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
39
|
Chubinskaya S, Kumar B, Merrihew C, Heretis K, Rueger DC, Kuettner KE. Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:126-34. [PMID: 12385776 DOI: 10.1016/s0925-4439(02)00158-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Articular cartilage has a poor reparative capacity. This feature is exacerbated with aging and during degenerative joint conditions, contributing to loss of motion and impairment of quality of life. This study focused on osteogenic protein-1 (OP-1) and its ability to serve as a repair-stimulating factor in articular cartilage. The purpose of this work was to develop a quantitative method for the assessment of the content of OP-1 protein in extracts from human articular cartilage and to investigate the changes in OP-1 mRNA expression and protein levels with aging of normal adult cartilage. Full thickness cartilage was dissected from femoral condyles of donors with no history of joint disease within 24 h of death. Levels of OP-1 mRNA expression were measured by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method; concentration of OP-1 protein was detected by new sandwich enzyme-linked immunosorbent assay (ELISA); qualitative changes in OP-1 forms were evaluated by Western blots with various anti-OP-1 antibodies. The sensitivity of the ELISA method allowed the detection of picogram quantities of OP-1 in cartilage extracts. We found that (1) concentration of OP-1 in normal cartilage is within the range of biological activity of OP-1 in vitro; and (2) during aging of human adult, articular cartilage, levels of OP-1 protein and message are dramatically reduced (more than 4-fold; p<0.02). The major qualitative changes affected primarily mature OP-1. The results of the current study suggest the possibility that OP-1 may be critical for chondrocytes to maintain their normal homeostasis and could also serve as a repair factor during joint disease or aging.
Collapse
Affiliation(s)
- Susan Chubinskaya
- Department of Biochemistry, Rush Medical College, Rush-Presbyterian-St. Luke's Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Grimaud E, Heymann D, Rédini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 2002; 13:241-57. [PMID: 12486877 DOI: 10.1016/s1359-6101(02)00004-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel approaches to treat osteoarthritis are required and progress in understanding the biology of cartilage disorders has led to the use of genes whose products stimulate cartilage repair or inhibit breakdown of the cartilaginous matrix. Among them, transforming growth factor-beta (TGF-beta) plays a significant role in promoting chondrocyte anabolism in vitro (enhancing matrix production, cell proliferation, osteochondrogenic differentiation) and in vivo (short-term intra-articular injections lead to increased bone formation and subsequent cartilage formation, beneficial effects on osteochondrogenesis). In vivo induction of the expression of TGF-beta and the use of gene transfer may provide a new approach for treatment of osteoarthritic lesions.
Collapse
Affiliation(s)
- Eva Grimaud
- Laboratoire de Physiopathologie de la Résorption Osseuse EE 99-01, Faculté de Médecine, University of Nantes, 1 rue Gaston Veil, 44035 Nantes, France
| | | | | |
Collapse
|